/* * Copyright (c) 2018-2023, Andreas Kling * Copyright (c) 2022, kleines Filmröllchen * Copyright (c) 2022, the SerenityOS developers. * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef AK_OS_SERENITY # include extern bool s_global_initializers_ran; #endif namespace Core { class InspectorServerConnection; [[maybe_unused]] static bool connect_to_inspector_server(); struct EventLoopTimer { int timer_id { 0 }; Time interval; Time fire_time; bool should_reload { false }; TimerShouldFireWhenNotVisible fire_when_not_visible { TimerShouldFireWhenNotVisible::No }; WeakPtr owner; void reload(Time const& now); bool has_expired(Time const& now) const; }; struct EventLoop::Private { Threading::Mutex lock; ThreadEventQueue& thread_event_queue; Private() : thread_event_queue(ThreadEventQueue::current()) { } }; static Threading::MutexProtected> s_id_allocator; static Threading::MutexProtected> s_inspector_server_connection; // Each thread has its own event loop stack, its own timers, notifiers and a wake pipe. static thread_local Vector* s_event_loop_stack; static thread_local HashMap>* s_timers; static thread_local HashTable* s_notifiers; // The wake pipe is both responsible for notifying us when someone calls wake(), as well as POSIX signals. // While wake() pushes zero into the pipe, signal numbers (by defintion nonzero, see signal_numbers.h) are pushed into the pipe verbatim. thread_local int EventLoop::s_wake_pipe_fds[2]; thread_local bool EventLoop::s_wake_pipe_initialized { false }; void EventLoop::initialize_wake_pipes() { if (!s_wake_pipe_initialized) { #if defined(SOCK_NONBLOCK) int rc = pipe2(s_wake_pipe_fds, O_CLOEXEC); #else int rc = pipe(s_wake_pipe_fds); fcntl(s_wake_pipe_fds[0], F_SETFD, FD_CLOEXEC); fcntl(s_wake_pipe_fds[1], F_SETFD, FD_CLOEXEC); #endif VERIFY(rc == 0); s_wake_pipe_initialized = true; } } bool EventLoop::has_been_instantiated() { return s_event_loop_stack != nullptr && !s_event_loop_stack->is_empty(); } class SignalHandlers : public RefCounted { AK_MAKE_NONCOPYABLE(SignalHandlers); AK_MAKE_NONMOVABLE(SignalHandlers); public: SignalHandlers(int signo, void (*handle_signal)(int)); ~SignalHandlers(); void dispatch(); int add(Function&& handler); bool remove(int handler_id); bool is_empty() const { if (m_calling_handlers) { for (auto& handler : m_handlers_pending) { if (handler.value) return false; // an add is pending } } return m_handlers.is_empty(); } bool have(int handler_id) const { if (m_calling_handlers) { auto it = m_handlers_pending.find(handler_id); if (it != m_handlers_pending.end()) { if (!it->value) return false; // a deletion is pending } } return m_handlers.contains(handler_id); } int m_signo; void (*m_original_handler)(int); // TODO: can't use sighandler_t? HashMap> m_handlers; HashMap> m_handlers_pending; bool m_calling_handlers { false }; }; struct SignalHandlersInfo { HashMap> signal_handlers; int next_signal_id { 0 }; }; static Singleton s_signals; template inline SignalHandlersInfo* signals_info() { return s_signals.ptr(); } pid_t EventLoop::s_pid; class InspectorServerConnection : public Object { C_OBJECT(InspectorServerConnection) private: explicit InspectorServerConnection(NonnullOwnPtr socket) : m_socket(move(socket)) , m_client_id(s_id_allocator.with_locked([](auto& allocator) { return allocator->allocate(); })) { #ifdef AK_OS_SERENITY m_socket->on_ready_to_read = [this] { u32 length; auto maybe_bytes_read = m_socket->read_some({ (u8*)&length, sizeof(length) }); if (maybe_bytes_read.is_error()) { dbgln("InspectorServerConnection: Failed to read message length from inspector server connection: {}", maybe_bytes_read.error()); shutdown(); return; } auto bytes_read = maybe_bytes_read.release_value(); if (bytes_read.is_empty()) { dbgln_if(EVENTLOOP_DEBUG, "RPC client disconnected"); shutdown(); return; } VERIFY(bytes_read.size() == sizeof(length)); auto request_buffer = ByteBuffer::create_uninitialized(length).release_value(); maybe_bytes_read = m_socket->read_some(request_buffer.bytes()); if (maybe_bytes_read.is_error()) { dbgln("InspectorServerConnection: Failed to read message content from inspector server connection: {}", maybe_bytes_read.error()); shutdown(); return; } bytes_read = maybe_bytes_read.release_value(); auto request_json = JsonValue::from_string(request_buffer); if (request_json.is_error() || !request_json.value().is_object()) { dbgln("RPC client sent invalid request"); shutdown(); return; } handle_request(request_json.value().as_object()); }; #else warnln("RPC Client constructed outside serenity, this is very likely a bug!"); #endif } virtual ~InspectorServerConnection() override { if (auto inspected_object = m_inspected_object.strong_ref()) inspected_object->decrement_inspector_count({}); } public: void send_response(JsonObject const& response) { auto serialized = response.to_deprecated_string(); auto bytes_to_send = serialized.bytes(); u32 length = bytes_to_send.size(); // FIXME: Propagate errors MUST(m_socket->write_value(length)); while (!bytes_to_send.is_empty()) { size_t bytes_sent = MUST(m_socket->write_some(bytes_to_send)); bytes_to_send = bytes_to_send.slice(bytes_sent); } } void handle_request(JsonObject const& request) { auto type = request.get_deprecated_string("type"sv); if (!type.has_value()) { dbgln("RPC client sent request without type field"); return; } if (type == "Identify") { JsonObject response; response.set("type", type.value()); response.set("pid", getpid()); #ifdef AK_OS_SERENITY char buffer[1024]; if (get_process_name(buffer, sizeof(buffer)) >= 0) { response.set("process_name", buffer); } else { response.set("process_name", JsonValue()); } #endif send_response(response); return; } if (type == "GetAllObjects") { JsonObject response; response.set("type", type.value()); JsonArray objects; for (auto& object : Object::all_objects()) { JsonObject json_object; object.save_to(json_object); objects.must_append(move(json_object)); } response.set("objects", move(objects)); send_response(response); return; } if (type == "SetInspectedObject") { auto address = request.get_addr("address"sv); for (auto& object : Object::all_objects()) { if ((FlatPtr)&object == address) { if (auto inspected_object = m_inspected_object.strong_ref()) inspected_object->decrement_inspector_count({}); m_inspected_object = object; object.increment_inspector_count({}); break; } } return; } if (type == "SetProperty") { auto address = request.get_addr("address"sv); for (auto& object : Object::all_objects()) { if ((FlatPtr)&object == address) { bool success = object.set_property(request.get_deprecated_string("name"sv).value(), request.get("value"sv).value()); JsonObject response; response.set("type", "SetProperty"); response.set("success", success); send_response(response); break; } } return; } if (type == "Disconnect") { shutdown(); return; } } void shutdown() { s_id_allocator.with_locked([this](auto& allocator) { allocator->deallocate(m_client_id); }); } private: NonnullOwnPtr m_socket; WeakPtr m_inspected_object; int m_client_id { -1 }; }; EventLoop::EventLoop([[maybe_unused]] MakeInspectable make_inspectable) : m_wake_pipe_fds(&s_wake_pipe_fds) , m_private(make()) { #ifdef AK_OS_SERENITY if (!s_global_initializers_ran) { // NOTE: Trying to have an event loop as a global variable will lead to initialization-order fiascos, // as the event loop constructor accesses and/or sets other global variables. // Therefore, we crash the program before ASAN catches us. // If you came here because of the assertion failure, please redesign your program to not have global event loops. // The common practice is to initialize the main event loop in the main function, and if necessary, // pass event loop references around or access them with EventLoop::with_main_locked() and EventLoop::current(). VERIFY_NOT_REACHED(); } #endif if (!s_event_loop_stack) { s_event_loop_stack = new Vector; s_timers = new HashMap>; s_notifiers = new HashTable; } if (s_event_loop_stack->is_empty()) { s_pid = getpid(); s_event_loop_stack->append(*this); #ifdef AK_OS_SERENITY if (getuid() != 0) { if (getenv("MAKE_INSPECTABLE") == "1"sv) make_inspectable = Core::EventLoop::MakeInspectable::Yes; if (make_inspectable == MakeInspectable::Yes && !s_inspector_server_connection.with_locked([](auto inspector_server_connection) { return inspector_server_connection; })) { if (!connect_to_inspector_server()) dbgln("Core::EventLoop: Failed to connect to InspectorServer"); } } #endif } initialize_wake_pipes(); dbgln_if(EVENTLOOP_DEBUG, "{} Core::EventLoop constructed :)", getpid()); } EventLoop::~EventLoop() { if (!s_event_loop_stack->is_empty() && &s_event_loop_stack->last() == this) s_event_loop_stack->take_last(); } bool connect_to_inspector_server() { #ifdef AK_OS_SERENITY auto maybe_path = SessionManagement::parse_path_with_sid("/tmp/session/%sid/portal/inspectables"sv); if (maybe_path.is_error()) { dbgln("connect_to_inspector_server: {}", maybe_path.error()); return false; } auto inspector_server_path = maybe_path.value(); auto maybe_socket = LocalSocket::connect(inspector_server_path, Socket::PreventSIGPIPE::Yes); if (maybe_socket.is_error()) { dbgln("connect_to_inspector_server: Failed to connect: {}", maybe_socket.error()); return false; } s_inspector_server_connection.with_locked([&](auto& inspector_server_connection) { inspector_server_connection = InspectorServerConnection::construct(maybe_socket.release_value()); }); return true; #else VERIFY_NOT_REACHED(); #endif } #define VERIFY_EVENT_LOOP_INITIALIZED() \ do { \ if (!s_event_loop_stack) { \ warnln("EventLoop static API was called without prior EventLoop init!"); \ VERIFY_NOT_REACHED(); \ } \ } while (0) EventLoop& EventLoop::current() { VERIFY_EVENT_LOOP_INITIALIZED(); return s_event_loop_stack->last(); } void EventLoop::quit(int code) { dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::quit({})", code); m_exit_requested = true; m_exit_code = code; } void EventLoop::unquit() { dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop::unquit()"); m_exit_requested = false; m_exit_code = 0; } struct EventLoopPusher { public: EventLoopPusher(EventLoop& event_loop) : m_event_loop(event_loop) { if (EventLoop::has_been_instantiated()) { s_event_loop_stack->append(event_loop); } } ~EventLoopPusher() { if (EventLoop::has_been_instantiated()) { s_event_loop_stack->take_last(); } } private: EventLoop& m_event_loop; }; int EventLoop::exec() { EventLoopPusher pusher(*this); for (;;) { if (m_exit_requested) return m_exit_code; pump(); } VERIFY_NOT_REACHED(); } void EventLoop::spin_until(Function goal_condition) { EventLoopPusher pusher(*this); while (!goal_condition()) pump(); } size_t EventLoop::pump(WaitMode mode) { // Pumping the event loop from another thread is not allowed. VERIFY(&m_private->thread_event_queue == &ThreadEventQueue::current()); wait_for_event(mode); return m_private->thread_event_queue.process(); } void EventLoop::post_event(Object& receiver, NonnullOwnPtr&& event) { m_private->thread_event_queue.post_event(receiver, move(event)); } void EventLoop::add_job(NonnullRefPtr>> job_promise) { ThreadEventQueue::current().add_job(move(job_promise)); } SignalHandlers::SignalHandlers(int signo, void (*handle_signal)(int)) : m_signo(signo) , m_original_handler(signal(signo, handle_signal)) { dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Registered handler for signal {}", m_signo); } SignalHandlers::~SignalHandlers() { dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Unregistering handler for signal {}", m_signo); signal(m_signo, m_original_handler); } void SignalHandlers::dispatch() { TemporaryChange change(m_calling_handlers, true); for (auto& handler : m_handlers) handler.value(m_signo); if (!m_handlers_pending.is_empty()) { // Apply pending adds/removes for (auto& handler : m_handlers_pending) { if (handler.value) { auto result = m_handlers.set(handler.key, move(handler.value)); VERIFY(result == AK::HashSetResult::InsertedNewEntry); } else { m_handlers.remove(handler.key); } } m_handlers_pending.clear(); } } int SignalHandlers::add(Function&& handler) { int id = ++signals_info()->next_signal_id; // TODO: worry about wrapping and duplicates? if (m_calling_handlers) m_handlers_pending.set(id, move(handler)); else m_handlers.set(id, move(handler)); return id; } bool SignalHandlers::remove(int handler_id) { VERIFY(handler_id != 0); if (m_calling_handlers) { auto it = m_handlers.find(handler_id); if (it != m_handlers.end()) { // Mark pending remove m_handlers_pending.set(handler_id, {}); return true; } it = m_handlers_pending.find(handler_id); if (it != m_handlers_pending.end()) { if (!it->value) return false; // already was marked as deleted it->value = nullptr; return true; } return false; } return m_handlers.remove(handler_id); } void EventLoop::dispatch_signal(int signo) { auto& info = *signals_info(); auto handlers = info.signal_handlers.find(signo); if (handlers != info.signal_handlers.end()) { // Make sure we bump the ref count while dispatching the handlers! // This allows a handler to unregister/register while the handlers // are being called! auto handler = handlers->value; dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: dispatching signal {}", signo); handler->dispatch(); } } void EventLoop::handle_signal(int signo) { VERIFY(signo != 0); // We MUST check if the current pid still matches, because there // is a window between fork() and exec() where a signal delivered // to our fork could be inadvertently routed to the parent process! if (getpid() == s_pid) { int nwritten = write(s_wake_pipe_fds[1], &signo, sizeof(signo)); if (nwritten < 0) { perror("EventLoop::register_signal: write"); VERIFY_NOT_REACHED(); } } else { // We're a fork who received a signal, reset s_pid s_pid = 0; } } int EventLoop::register_signal(int signo, Function handler) { VERIFY(signo != 0); auto& info = *signals_info(); auto handlers = info.signal_handlers.find(signo); if (handlers == info.signal_handlers.end()) { auto signal_handlers = adopt_ref(*new SignalHandlers(signo, EventLoop::handle_signal)); auto handler_id = signal_handlers->add(move(handler)); info.signal_handlers.set(signo, move(signal_handlers)); return handler_id; } else { return handlers->value->add(move(handler)); } } void EventLoop::unregister_signal(int handler_id) { VERIFY(handler_id != 0); int remove_signo = 0; auto& info = *signals_info(); for (auto& h : info.signal_handlers) { auto& handlers = *h.value; if (handlers.remove(handler_id)) { if (handlers.is_empty()) remove_signo = handlers.m_signo; break; } } if (remove_signo != 0) info.signal_handlers.remove(remove_signo); } void EventLoop::notify_forked(ForkEvent event) { VERIFY_EVENT_LOOP_INITIALIZED(); switch (event) { case ForkEvent::Child: s_event_loop_stack->clear(); s_timers->clear(); s_notifiers->clear(); s_wake_pipe_initialized = false; initialize_wake_pipes(); if (auto* info = signals_info()) { info->signal_handlers.clear(); info->next_signal_id = 0; } s_pid = 0; return; } VERIFY_NOT_REACHED(); } void EventLoop::wait_for_event(WaitMode mode) { fd_set rfds; fd_set wfds; retry: // Set up the file descriptors for select(). // Basically, we translate high-level event information into low-level selectable file descriptors. FD_ZERO(&rfds); FD_ZERO(&wfds); int max_fd = 0; auto add_fd_to_set = [&max_fd](int fd, fd_set& set) { FD_SET(fd, &set); if (fd > max_fd) max_fd = fd; }; int max_fd_added = -1; // The wake pipe informs us of POSIX signals as well as manual calls to wake() add_fd_to_set(s_wake_pipe_fds[0], rfds); max_fd = max(max_fd, max_fd_added); for (auto& notifier : *s_notifiers) { if (notifier->type() == Notifier::Type::Read) add_fd_to_set(notifier->fd(), rfds); if (notifier->type() == Notifier::Type::Write) add_fd_to_set(notifier->fd(), wfds); if (notifier->type() == Notifier::Type::Exceptional) VERIFY_NOT_REACHED(); } bool has_pending_events = m_private->thread_event_queue.has_pending_events(); // Figure out how long to wait at maximum. // This mainly depends on the WaitMode and whether we have pending events, but also the next expiring timer. Time now; struct timeval timeout = { 0, 0 }; bool should_wait_forever = false; if (mode == WaitMode::WaitForEvents && !has_pending_events) { auto next_timer_expiration = get_next_timer_expiration(); if (next_timer_expiration.has_value()) { now = Time::now_monotonic_coarse(); auto computed_timeout = next_timer_expiration.value() - now; if (computed_timeout.is_negative()) computed_timeout = Time::zero(); timeout = computed_timeout.to_timeval(); } else { should_wait_forever = true; } } try_select_again: // select() and wait for file system events, calls to wake(), POSIX signals, or timer expirations. int marked_fd_count = select(max_fd + 1, &rfds, &wfds, nullptr, should_wait_forever ? nullptr : &timeout); // Because POSIX, we might spuriously return from select() with EINTR; just select again. if (marked_fd_count < 0) { int saved_errno = errno; if (saved_errno == EINTR) { if (m_exit_requested) return; goto try_select_again; } dbgln("Core::EventLoop::wait_for_event: {} ({}: {})", marked_fd_count, saved_errno, strerror(saved_errno)); VERIFY_NOT_REACHED(); } // We woke up due to a call to wake() or a POSIX signal. // Handle signals and see whether we need to handle events as well. if (FD_ISSET(s_wake_pipe_fds[0], &rfds)) { int wake_events[8]; ssize_t nread; // We might receive another signal while read()ing here. The signal will go to the handle_signal properly, // but we get interrupted. Therefore, just retry while we were interrupted. do { errno = 0; nread = read(s_wake_pipe_fds[0], wake_events, sizeof(wake_events)); if (nread == 0) break; } while (nread < 0 && errno == EINTR); if (nread < 0) { perror("Core::EventLoop::wait_for_event: read from wake pipe"); VERIFY_NOT_REACHED(); } VERIFY(nread > 0); bool wake_requested = false; int event_count = nread / sizeof(wake_events[0]); for (int i = 0; i < event_count; i++) { if (wake_events[i] != 0) dispatch_signal(wake_events[i]); else wake_requested = true; } if (!wake_requested && nread == sizeof(wake_events)) goto retry; } if (!s_timers->is_empty()) { now = Time::now_monotonic_coarse(); } // Handle expired timers. for (auto& it : *s_timers) { auto& timer = *it.value; if (!timer.has_expired(now)) continue; auto owner = timer.owner.strong_ref(); if (timer.fire_when_not_visible == TimerShouldFireWhenNotVisible::No && owner && !owner->is_visible_for_timer_purposes()) { continue; } dbgln_if(EVENTLOOP_DEBUG, "Core::EventLoop: Timer {} has expired, sending Core::TimerEvent to {}", timer.timer_id, *owner); if (owner) post_event(*owner, make(timer.timer_id)); if (timer.should_reload) { timer.reload(now); } else { // FIXME: Support removing expired timers that don't want to reload. VERIFY_NOT_REACHED(); } } if (!marked_fd_count) return; // Handle file system notifiers by making them normal events. for (auto& notifier : *s_notifiers) { if (notifier->type() == Notifier::Type::Read && FD_ISSET(notifier->fd(), &rfds)) { post_event(*notifier, make(notifier->fd())); } if (notifier->type() == Notifier::Type::Write && FD_ISSET(notifier->fd(), &wfds)) { post_event(*notifier, make(notifier->fd())); } } } bool EventLoopTimer::has_expired(Time const& now) const { return now > fire_time; } void EventLoopTimer::reload(Time const& now) { fire_time = now + interval; } Optional