/* * Copyright (c) 2018-2020, Andreas Kling * Copyright (c) 2021, kleines Filmröllchen * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include namespace Audio { static constexpr size_t maximum_wav_size = 1 * GiB; // FIXME: is there a more appropriate size limit? WavLoaderPlugin::WavLoaderPlugin(const StringView& path) : m_file(Core::File::construct(path)) { if (!m_file->open(Core::OpenMode::ReadOnly)) { m_error_string = String::formatted("Can't open file: {}", m_file->error_string()); return; } m_stream = make(*m_file); valid = parse_header(); if (!valid) return; m_resampler = make(m_sample_rate, m_device_sample_rate); } WavLoaderPlugin::WavLoaderPlugin(const ByteBuffer& buffer) { m_stream = make(buffer); if (!m_stream) { m_error_string = String::formatted("Can't open memory stream"); return; } m_memory_stream = static_cast(m_stream.ptr()); valid = parse_header(); if (!valid) return; m_resampler = make(m_sample_rate, m_device_sample_rate); } RefPtr WavLoaderPlugin::get_more_samples(size_t max_bytes_to_read_from_input) { if (!m_stream) return nullptr; int remaining_samples = m_total_samples - m_loaded_samples; if (remaining_samples <= 0) { return nullptr; } // One "sample" contains data from all channels. // In the Wave spec, this is also called a block. size_t bytes_per_sample = m_num_channels * pcm_bits_per_sample(m_sample_format) / 8; // Might truncate if not evenly divisible by the sample size int max_samples_to_read = static_cast(max_bytes_to_read_from_input) / bytes_per_sample; int samples_to_read = min(max_samples_to_read, remaining_samples); size_t bytes_to_read = samples_to_read * bytes_per_sample; dbgln_if(AWAVLOADER_DEBUG, "Read {} bytes WAV with num_channels {} sample rate {}, " "bits per sample {}, sample format {}", bytes_to_read, m_num_channels, m_sample_rate, pcm_bits_per_sample(m_sample_format), sample_format_name(m_sample_format)); ByteBuffer sample_data = ByteBuffer::create_zeroed(bytes_to_read); m_stream->read_or_error(sample_data.bytes()); if (m_stream->handle_any_error()) { return nullptr; } RefPtr buffer = Buffer::from_pcm_data( sample_data.bytes(), *m_resampler, m_num_channels, m_sample_format); // m_loaded_samples should contain the amount of actually loaded samples m_loaded_samples += samples_to_read; return buffer; } void WavLoaderPlugin::seek(const int sample_index) { dbgln_if(AWAVLOADER_DEBUG, "seek sample_index {}", sample_index); if (sample_index < 0 || sample_index >= m_total_samples) return; size_t sample_offset = m_byte_offset_of_data_samples + (sample_index * m_num_channels * (pcm_bits_per_sample(m_sample_format) / 8)); // AK::InputStream does not define seek, hence the special-cases for file and stream. if (m_file) { m_file->seek(sample_offset); } else { m_memory_stream->seek(sample_offset); } m_loaded_samples = sample_index; } // Specification reference: http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html bool WavLoaderPlugin::parse_header() { if (!m_stream) return false; bool ok = true; size_t bytes_read = 0; auto read_u8 = [&]() -> u8 { u8 value; *m_stream >> value; if (m_stream->handle_any_error()) ok = false; bytes_read += 1; return value; }; auto read_u16 = [&]() -> u16 { u16 value; *m_stream >> value; if (m_stream->handle_any_error()) ok = false; bytes_read += 2; return value; }; auto read_u32 = [&]() -> u32 { u32 value; *m_stream >> value; if (m_stream->handle_any_error()) ok = false; bytes_read += 4; return value; }; #define CHECK_OK(msg) \ do { \ if (!ok) { \ m_error_string = String::formatted("Parsing failed: {}", msg); \ dbgln_if(AWAVLOADER_DEBUG, m_error_string); \ return {}; \ } \ } while (0) u32 riff = read_u32(); ok = ok && riff == 0x46464952; // "RIFF" CHECK_OK("RIFF header"); u32 sz = read_u32(); ok = ok && sz < maximum_wav_size; CHECK_OK("File size"); u32 wave = read_u32(); ok = ok && wave == 0x45564157; // "WAVE" CHECK_OK("WAVE header"); u32 fmt_id = read_u32(); ok = ok && fmt_id == 0x20746D66; // "fmt " CHECK_OK("FMT header"); u32 fmt_size = read_u32(); ok = ok && (fmt_size == 16 || fmt_size == 18 || fmt_size == 40); CHECK_OK("FMT size"); u16 audio_format = read_u16(); CHECK_OK("Audio format"); // incomplete read check ok = ok && (audio_format == WAVE_FORMAT_PCM || audio_format == WAVE_FORMAT_IEEE_FLOAT || audio_format == WAVE_FORMAT_EXTENSIBLE); CHECK_OK("Audio format PCM/Float"); // value check m_num_channels = read_u16(); ok = ok && (m_num_channels == 1 || m_num_channels == 2); CHECK_OK("Channel count"); m_sample_rate = read_u32(); CHECK_OK("Sample rate"); read_u32(); CHECK_OK("Data rate"); u16 block_size_bytes = read_u16(); CHECK_OK("Block size"); u16 bits_per_sample = read_u16(); CHECK_OK("Bits per sample"); if (audio_format == WAVE_FORMAT_EXTENSIBLE) { ok = ok && (fmt_size == 40); CHECK_OK("Extensible fmt size"); // value check // Discard everything until the GUID. // We've already read 16 bytes from the stream. The GUID starts in another 8 bytes. read_u32(); read_u32(); CHECK_OK("Discard until GUID"); // Get the underlying audio format from the first two bytes of GUID u16 guid_subformat = read_u16(); ok = ok && (guid_subformat == WAVE_FORMAT_PCM || guid_subformat == WAVE_FORMAT_IEEE_FLOAT); CHECK_OK("GUID SubFormat"); audio_format = guid_subformat; } if (audio_format == WAVE_FORMAT_PCM) { ok = ok && (bits_per_sample == 8 || bits_per_sample == 16 || bits_per_sample == 24); CHECK_OK("Bits per sample (PCM)"); // value check // We only support 8-24 bit audio right now because other formats are uncommon if (bits_per_sample == 8) { m_sample_format = PcmSampleFormat::Uint8; } else if (bits_per_sample == 16) { m_sample_format = PcmSampleFormat::Int16; } else if (bits_per_sample == 24) { m_sample_format = PcmSampleFormat::Int24; } } else if (audio_format == WAVE_FORMAT_IEEE_FLOAT) { ok = ok && (bits_per_sample == 32 || bits_per_sample == 64); CHECK_OK("Bits per sample (Float)"); // value check // Again, only the common 32 and 64 bit if (bits_per_sample == 32) { m_sample_format = PcmSampleFormat::Float32; } else if (bits_per_sample == 64) { m_sample_format = PcmSampleFormat::Float64; } } ok = ok && (block_size_bytes == (m_num_channels * (bits_per_sample / 8))); CHECK_OK("Block size sanity check"); dbgln_if(AWAVLOADER_DEBUG, "WAV format {} at {} bit, {} channels, rate {}Hz ", sample_format_name(m_sample_format), pcm_bits_per_sample(m_sample_format), m_num_channels, m_sample_rate); // Read chunks until we find DATA bool found_data = false; u32 data_sz = 0; u8 search_byte = 0; while (true) { search_byte = read_u8(); CHECK_OK("Reading byte searching for data"); if (search_byte != 0x64) //D continue; search_byte = read_u8(); CHECK_OK("Reading next byte searching for data"); if (search_byte != 0x61) //A continue; u16 search_remaining = read_u16(); CHECK_OK("Reading remaining bytes searching for data"); if (search_remaining != 0x6174) //TA continue; data_sz = read_u32(); found_data = true; break; } ok = ok && found_data; CHECK_OK("Found no data chunk"); ok = ok && data_sz < maximum_wav_size; CHECK_OK("Data was too large"); m_total_samples = data_sz / block_size_bytes; dbgln_if(AWAVLOADER_DEBUG, "WAV data size {}, bytes per sample {}, total samples {}", data_sz, block_size_bytes, m_total_samples); m_byte_offset_of_data_samples = bytes_read; return true; } ResampleHelper::ResampleHelper(double source, double target) : m_ratio(source / target) { } void ResampleHelper::process_sample(double sample_l, double sample_r) { m_last_sample_l = sample_l; m_last_sample_r = sample_r; m_current_ratio += 1; } bool ResampleHelper::read_sample(double& next_l, double& next_r) { if (m_current_ratio > 0) { m_current_ratio -= m_ratio; next_l = m_last_sample_l; next_r = m_last_sample_r; return true; } return false; } }