/* * Copyright (c) 2021, kleines Filmröllchen * * SPDX-License-Identifier: BSD-2-Clause */ #include "FlacLoader.h" #include "Buffer.h" #include #include #include #include #include #include #include #include #include #include #include namespace Audio { FlacLoaderPlugin::FlacLoaderPlugin(const StringView& path) : m_file(Core::File::construct(path)) { if (!m_file->open(Core::OpenMode::ReadOnly)) { m_error_string = String::formatted("Can't open file: {}", m_file->error_string()); return; } m_stream = make(Core::InputFileStream(*m_file)); if (!m_stream) { m_error_string = String::formatted("Can't open memory stream"); return; } m_valid = parse_header(); if (!m_valid) return; reset(); if (!m_valid) return; m_resampler = make>(m_sample_rate, 44100); } FlacLoaderPlugin::FlacLoaderPlugin(const ByteBuffer& buffer) { m_stream = make(InputMemoryStream(buffer)); if (!m_stream) { m_error_string = String::formatted("Can't open memory stream"); return; } m_valid = parse_header(); if (!m_valid) return; reset(); if (!m_valid) return; m_resampler = make>(m_sample_rate, 44100); } bool FlacLoaderPlugin::sniff() { return m_valid; } bool FlacLoaderPlugin::parse_header() { bool ok = true; InputBitStream bit_input = [&]() -> InputBitStream { if (m_file) { return InputBitStream(m_stream->get()); } return InputBitStream(m_stream->get()); }(); ScopeGuard clear_bit_input_errors([&bit_input] { bit_input.handle_any_error(); }); #define CHECK_OK(msg) \ do { \ if (!ok) { \ m_stream->handle_any_error(); \ m_error_string = String::formatted("Parsing failed: {}", msg); \ return {}; \ } \ } while (0) // Magic number u32 flac = bit_input.read_bits_big_endian(32); m_data_start_location += 4; ok = ok && flac == 0x664C6143; // "flaC" CHECK_OK("FLAC magic number"); // Receive the streaminfo block FlacRawMetadataBlock streaminfo = next_meta_block(bit_input); // next_meta_block sets the error string if something goes wrong ok = ok && m_error_string.is_empty(); CHECK_OK(m_error_string); ok = ok && (streaminfo.type == FlacMetadataBlockType::STREAMINFO); CHECK_OK("First block type"); InputMemoryStream streaminfo_data_memory(streaminfo.data.bytes()); InputBitStream streaminfo_data(streaminfo_data_memory); ScopeGuard clear_streaminfo_errors([&streaminfo_data] { streaminfo_data.handle_any_error(); }); // STREAMINFO block m_min_block_size = streaminfo_data.read_bits_big_endian(16); ok = ok && (m_min_block_size >= 16); CHECK_OK("Minimum block size"); m_max_block_size = streaminfo_data.read_bits_big_endian(16); ok = ok && (m_max_block_size >= 16); CHECK_OK("Maximum block size"); m_min_frame_size = streaminfo_data.read_bits_big_endian(24); m_max_frame_size = streaminfo_data.read_bits_big_endian(24); m_sample_rate = streaminfo_data.read_bits_big_endian(20); ok = ok && (m_sample_rate <= 655350); CHECK_OK("Sample rate"); m_num_channels = streaminfo_data.read_bits_big_endian(3) + 1; // 0 ^= one channel u8 bits_per_sample = streaminfo_data.read_bits_big_endian(5) + 1; if (bits_per_sample == 8) { // FIXME: Signed/Unsigned issues? m_sample_format = PcmSampleFormat::Uint8; } else if (bits_per_sample == 16) { m_sample_format = PcmSampleFormat::Int16; } else if (bits_per_sample == 24) { m_sample_format = PcmSampleFormat::Int24; } else if (bits_per_sample == 32) { m_sample_format = PcmSampleFormat::Int32; } else { ok = false; CHECK_OK("Sample bit depth"); } m_total_samples = streaminfo_data.read_bits_big_endian(36); ok = ok && (m_total_samples > 0); CHECK_OK("Number of samples"); // Parse checksum into a buffer first ByteBuffer md5_checksum = ByteBuffer::create_uninitialized(128 / 8); auto md5_bytes_read = streaminfo_data.read(md5_checksum); ok = ok && (md5_bytes_read == md5_checksum.size()); CHECK_OK("MD5 Checksum"); md5_checksum.bytes().copy_to({ m_md5_checksum, sizeof(m_md5_checksum) }); // Parse other blocks // TODO: For a simple first implementation, all other blocks are skipped as allowed by the FLAC specification. // Especially the SEEKTABLE block may become useful in a more sophisticated version. [[maybe_unused]] u16 meta_blocks_parsed = 1; [[maybe_unused]] u16 total_meta_blocks = meta_blocks_parsed; FlacRawMetadataBlock block = streaminfo; while (!block.is_last_block) { block = next_meta_block(bit_input); ++total_meta_blocks; ok = ok && m_error_string.is_empty(); CHECK_OK(m_error_string); } if (m_stream->handle_any_error()) { m_error_string = "Parsing failed: Stream"; return false; } if constexpr (AFLACLOADER_DEBUG) { // HACK: u128 should be able to format itself StringBuilder checksum_string; for (unsigned int i = 0; i < md5_checksum.size(); ++i) { checksum_string.appendff("{:0X}", md5_checksum[i]); } dbgln("Parsed FLAC header: blocksize {}-{}{}, framesize {}-{}, {}Hz, {}bit, {} channels, {} samples total ({:.2f}s), MD5 {}, data start at {:x} bytes, {} headers total (skipped {})", m_min_block_size, m_max_block_size, is_fixed_blocksize_stream() ? " (constant)" : "", m_min_frame_size, m_max_frame_size, m_sample_rate, pcm_bits_per_sample(m_sample_format), m_num_channels, m_total_samples, m_total_samples / static_cast(m_sample_rate), checksum_string.to_string(), m_data_start_location, total_meta_blocks, total_meta_blocks - meta_blocks_parsed); } return true; #undef CHECK_OK } FlacRawMetadataBlock FlacLoaderPlugin::next_meta_block(InputBitStream& bit_input) { #define CHECK_IO_ERROR() \ do { \ if (bit_input.handle_any_error()) { \ m_error_string = "Read error"; \ return FlacRawMetadataBlock {}; \ } \ } while (0) bool is_last_block = bit_input.read_bit_big_endian(); CHECK_IO_ERROR(); // The block type enum constants agree with the specification FlacMetadataBlockType type = (FlacMetadataBlockType)bit_input.read_bits_big_endian(7); CHECK_IO_ERROR(); if (type == FlacMetadataBlockType::INVALID) { m_error_string = "Invalid metadata block"; return FlacRawMetadataBlock {}; } m_data_start_location += 1; u32 block_length = bit_input.read_bits_big_endian(24); m_data_start_location += 3; CHECK_IO_ERROR(); ByteBuffer block_data = ByteBuffer::create_uninitialized(block_length); // Reads exactly the bytes necessary into the Bytes container bit_input.read(block_data); m_data_start_location += block_length; CHECK_IO_ERROR(); return FlacRawMetadataBlock { is_last_block, type, block_length, block_data, }; #undef CHECK_IO_ERROR } void FlacLoaderPlugin::reset() { seek(m_data_start_location); m_current_frame.clear(); } void FlacLoaderPlugin::seek(const int position) { if (!m_stream->seek(position)) { m_error_string = String::formatted("Invalid seek position {}", position); m_valid = false; } } RefPtr FlacLoaderPlugin::get_more_samples(size_t max_bytes_to_read_from_input) { Vector samples; ssize_t remaining_samples = m_total_samples - m_loaded_samples; if (remaining_samples <= 0) { return nullptr; } size_t samples_to_read = min(max_bytes_to_read_from_input, remaining_samples); while (samples_to_read > 0) { if (!m_current_frame.has_value()) { next_frame(); if (!m_error_string.is_empty()) { m_error_string = String::formatted("Frame parsing error: {}", m_error_string); return nullptr; } } samples.append(m_current_frame_data.take_first()); if (m_current_frame_data.size() == 0) { m_current_frame.clear(); } --samples_to_read; } m_loaded_samples += samples.size(); return Buffer::create_with_samples(move(samples)); } void FlacLoaderPlugin::next_frame() { bool ok = true; InputBitStream bit_stream = m_stream->bit_stream(); #define CHECK_OK(msg) \ do { \ if (!ok) { \ m_error_string = String::formatted("Frame parsing failed: {}", msg); \ bit_stream.align_to_byte_boundary(); \ bit_stream.handle_any_error(); \ dbgln_if(AFLACLOADER_DEBUG, "Crash in FLAC loader: next bytes are {:x}", bit_stream.read_bits_big_endian(32)); \ return; \ } \ } while (0) #define CHECK_ERROR_STRING \ do { \ if (!m_error_string.is_null() && !m_error_string.is_empty()) { \ ok = false; \ CHECK_OK(m_error_string); \ } \ } while (0) // TODO: Check the CRC-16 checksum (and others) by keeping track of read data // FLAC frame sync code starts header u16 sync_code = bit_stream.read_bits_big_endian(14); ok = ok && (sync_code == 0b11111111111110); CHECK_OK("Sync code"); bool reserved_bit = bit_stream.read_bit_big_endian(); ok = ok && (reserved_bit == 0); CHECK_OK("Reserved frame header bit"); [[maybe_unused]] bool blocking_strategy = bit_stream.read_bit_big_endian(); u32 sample_count = convert_sample_count_code(bit_stream.read_bits_big_endian(4)); CHECK_ERROR_STRING; u32 frame_sample_rate = convert_sample_rate_code(bit_stream.read_bits_big_endian(4)); CHECK_ERROR_STRING; u8 channel_type_num = bit_stream.read_bits_big_endian(4); if (channel_type_num >= 0b1011) { ok = false; CHECK_OK("Channel assignment"); } FlacFrameChannelType channel_type = (FlacFrameChannelType)channel_type_num; PcmSampleFormat bit_depth = convert_bit_depth_code(bit_stream.read_bits_big_endian(3)); CHECK_ERROR_STRING; reserved_bit = bit_stream.read_bit_big_endian(); ok = ok && (reserved_bit == 0); CHECK_OK("Reserved frame header end bit"); // FIXME: sample number can be 8-56 bits, frame number can be 8-48 bits m_current_sample_or_frame = read_utf8_char(bit_stream); // Conditional header variables if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_8) { sample_count = bit_stream.read_bits_big_endian(8) + 1; } else if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_16) { sample_count = bit_stream.read_bits_big_endian(16) + 1; } if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_8) { frame_sample_rate = bit_stream.read_bits_big_endian(8) * 1000; } else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16) { frame_sample_rate = bit_stream.read_bits_big_endian(16); } else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10) { frame_sample_rate = bit_stream.read_bits_big_endian(16) * 10; } // TODO: check header checksum, see above [[maybe_unused]] u8 checksum = bit_stream.read_bits(8); dbgln_if(AFLACLOADER_DEBUG, "Frame: {} samples, {}bit {}Hz, channeltype {:x}, {} number {}, header checksum {}", sample_count, pcm_bits_per_sample(bit_depth), frame_sample_rate, channel_type_num, blocking_strategy ? "sample" : "frame", m_current_sample_or_frame, checksum); m_current_frame = FlacFrameHeader { sample_count, frame_sample_rate, channel_type, bit_depth, }; u8 subframe_count = frame_channel_type_to_channel_count(channel_type); Vector> current_subframes; current_subframes.ensure_capacity(subframe_count); for (u8 i = 0; i < subframe_count; ++i) { FlacSubframeHeader new_subframe = next_subframe_header(bit_stream, i); CHECK_ERROR_STRING; Vector subframe_samples = parse_subframe(new_subframe, bit_stream); m_resampler->reset(); subframe_samples = m_resampler->resample(subframe_samples); CHECK_ERROR_STRING; current_subframes.append(move(subframe_samples)); } bit_stream.align_to_byte_boundary(); // TODO: check checksum, see above [[maybe_unused]] u16 footer_checksum = bit_stream.read_bits_big_endian(16); Vector left, right; switch (channel_type) { case FlacFrameChannelType::Mono: left = right = current_subframes[0]; break; case FlacFrameChannelType::Stereo: // TODO mix together surround channels on each side? case FlacFrameChannelType::StereoCenter: case FlacFrameChannelType::Surround4p0: case FlacFrameChannelType::Surround5p0: case FlacFrameChannelType::Surround5p1: case FlacFrameChannelType::Surround6p1: case FlacFrameChannelType::Surround7p1: left = current_subframes[0]; right = current_subframes[1]; break; case FlacFrameChannelType::LeftSideStereo: // channels are left (0) and side (1) left = current_subframes[0]; right.ensure_capacity(left.size()); for (size_t i = 0; i < left.size(); ++i) { // right = left - side right.unchecked_append(left[i] - current_subframes[1][i]); } break; case FlacFrameChannelType::RightSideStereo: // channels are side (0) and right (1) right = current_subframes[1]; left.ensure_capacity(right.size()); for (size_t i = 0; i < right.size(); ++i) { // left = right + side left.unchecked_append(right[i] + current_subframes[0][i]); } break; case FlacFrameChannelType::MidSideStereo: // channels are mid (0) and side (1) left.ensure_capacity(current_subframes[0].size()); right.ensure_capacity(current_subframes[0].size()); for (size_t i = 0; i < current_subframes[0].size(); ++i) { i64 mid = current_subframes[0][i]; i64 side = current_subframes[1][i]; mid *= 2; // prevent integer division errors left.unchecked_append(static_cast((mid + side) / 2)); right.unchecked_append(static_cast((mid - side) / 2)); } break; } VERIFY(left.size() == right.size()); double sample_rescale = static_cast(1 << (pcm_bits_per_sample(m_current_frame->bit_depth) - 1)); dbgln_if(AFLACLOADER_DEBUG, "Sample rescaled from {} bits: factor {:.1f}", pcm_bits_per_sample(m_current_frame->bit_depth), sample_rescale); m_current_frame_data.clear_with_capacity(); m_current_frame_data.ensure_capacity(left.size()); // zip together channels for (size_t i = 0; i < left.size(); ++i) { Frame frame = { left[i] / sample_rescale, right[i] / sample_rescale }; m_current_frame_data.unchecked_append(frame); } #undef CHECK_OK #undef CHECK_ERROR_STRING } u32 FlacLoaderPlugin::convert_sample_count_code(u8 sample_count_code) { // single codes switch (sample_count_code) { case 0: m_error_string = "Reserved block size"; return 0; case 1: return 192; case 6: return FLAC_BLOCKSIZE_AT_END_OF_HEADER_8; case 7: return FLAC_BLOCKSIZE_AT_END_OF_HEADER_16; } if (sample_count_code >= 2 && sample_count_code <= 5) { return 576 * AK::exp2(sample_count_code - 2); } return 256 * AK::exp2(sample_count_code - 8); } u32 FlacLoaderPlugin::convert_sample_rate_code(u8 sample_rate_code) { switch (sample_rate_code) { case 0: return m_sample_rate; case 1: return 88200; case 2: return 176400; case 3: return 192000; case 4: return 8000; case 5: return 16000; case 6: return 22050; case 7: return 24000; case 8: return 32000; case 9: return 44100; case 10: return 48000; case 11: return 96000; case 12: return FLAC_SAMPLERATE_AT_END_OF_HEADER_8; case 13: return FLAC_SAMPLERATE_AT_END_OF_HEADER_16; case 14: return FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10; default: m_error_string = "Invalid sample rate code"; return 0; } } PcmSampleFormat FlacLoaderPlugin::convert_bit_depth_code(u8 bit_depth_code) { switch (bit_depth_code) { case 0: return m_sample_format; case 1: return PcmSampleFormat::Uint8; case 4: return PcmSampleFormat::Int16; case 6: return PcmSampleFormat::Int24; case 3: case 7: m_error_string = "Reserved sample size"; return PcmSampleFormat::Float64; default: m_error_string = String::formatted("Unsupported sample size {}", bit_depth_code); return PcmSampleFormat::Float64; } } u8 frame_channel_type_to_channel_count(FlacFrameChannelType channel_type) { if (channel_type <= 7) return channel_type + 1; return 2; } FlacSubframeHeader FlacLoaderPlugin::next_subframe_header(InputBitStream& bit_stream, u8 channel_index) { u8 bits_per_sample = pcm_bits_per_sample(m_current_frame->bit_depth); // For inter-channel correlation, the side channel needs an extra bit for its samples switch (m_current_frame->channels) { case LeftSideStereo: case MidSideStereo: if (channel_index == 1) { ++bits_per_sample; } break; case RightSideStereo: if (channel_index == 0) { ++bits_per_sample; } break; // "normal" channel types default: break; } // zero-bit padding if (bit_stream.read_bit_big_endian() != 0) { m_error_string = "Zero bit padding"; return {}; }; // subframe type (encoding) u8 subframe_code = bit_stream.read_bits_big_endian(6); if ((subframe_code >= 0b000010 && subframe_code <= 0b000111) || (subframe_code > 0b001100 && subframe_code < 0b100000)) { m_error_string = "Subframe type"; return {}; } FlacSubframeType subframe_type; u8 order = 0; //LPC has the highest bit set if ((subframe_code & 0b100000) > 0) { subframe_type = FlacSubframeType::LPC; order = (subframe_code & 0b011111) + 1; } else if ((subframe_code & 0b001000) > 0) { // Fixed has the third-highest bit set subframe_type = FlacSubframeType::Fixed; order = (subframe_code & 0b000111); } else { subframe_type = (FlacSubframeType)subframe_code; } // wasted bits per sample (unary encoding) bool has_wasted_bits = bit_stream.read_bit_big_endian(); u8 k = 0; if (has_wasted_bits) { bool current_k_bit = 0; do { current_k_bit = bit_stream.read_bit_big_endian(); ++k; } while (current_k_bit != 1); } return FlacSubframeHeader { subframe_type, order, k, bits_per_sample }; } Vector FlacLoaderPlugin::parse_subframe(FlacSubframeHeader& subframe_header, InputBitStream& bit_input) { Vector samples; switch (subframe_header.type) { case FlacSubframeType::Constant: { u64 constant_value = bit_input.read_bits_big_endian(subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample); dbgln_if(AFLACLOADER_DEBUG, "Constant subframe: {}", constant_value); samples.ensure_capacity(m_current_frame->sample_count); for (u32 i = 0; i < m_current_frame->sample_count; ++i) { samples.unchecked_append(sign_extend(constant_value, subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample)); } break; } case FlacSubframeType::Fixed: { dbgln_if(AFLACLOADER_DEBUG, "Fixed LPC subframe order {}", subframe_header.order); samples = decode_fixed_lpc(subframe_header, bit_input); break; } case FlacSubframeType::Verbatim: { dbgln_if(AFLACLOADER_DEBUG, "Verbatim subframe"); samples = decode_verbatim(subframe_header, bit_input); break; } case FlacSubframeType::LPC: { dbgln_if(AFLACLOADER_DEBUG, "Custom LPC subframe order {}", subframe_header.order); samples = decode_custom_lpc(subframe_header, bit_input); break; } default: m_error_string = "Unhandled FLAC subframe type"; return {}; } if (!m_error_string.is_empty()) { return {}; } for (size_t i = 0; i < samples.size(); ++i) { samples[i] <<= subframe_header.wasted_bits_per_sample; } ResampleHelper resampler(m_current_frame->sample_rate, m_sample_rate); return resampler.resample(samples); } // Decode a subframe that isn't actually encoded Vector FlacLoaderPlugin::decode_verbatim([[maybe_unused]] FlacSubframeHeader& subframe, [[maybe_unused]] InputBitStream& bit_input) { TODO(); } // Decode a subframe encoded with a custom linear predictor coding, i.e. the subframe provides the polynomial order and coefficients Vector FlacLoaderPlugin::decode_custom_lpc(FlacSubframeHeader& subframe, InputBitStream& bit_input) { Vector decoded; decoded.ensure_capacity(m_current_frame->sample_count); // warm-up samples for (auto i = 0; i < subframe.order; ++i) { decoded.unchecked_append(sign_extend(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample), subframe.bits_per_sample - subframe.wasted_bits_per_sample)); } // precision of the coefficients u8 lpc_precision = bit_input.read_bits_big_endian(4); if (lpc_precision == 0b1111) { m_error_string = "Invalid linear predictor coefficient precision"; return {}; } lpc_precision += 1; // shift needed on the data (signed!) i8 lpc_shift = sign_extend(bit_input.read_bits_big_endian(5), 5); Vector coefficients; coefficients.ensure_capacity(subframe.order); // read coefficients for (auto i = 0; i < subframe.order; ++i) { u32 raw_coefficient = bit_input.read_bits_big_endian(lpc_precision); i32 coefficient = sign_extend(raw_coefficient, lpc_precision); coefficients.unchecked_append(coefficient); } dbgln_if(AFLACLOADER_DEBUG, "{}-bit {} shift coefficients: {}", lpc_precision, lpc_shift, coefficients); // decode residual // FIXME: This order may be incorrect, the LPC is applied to the residual, probably leading to incorrect results. decoded = decode_residual(decoded, subframe, bit_input); // approximate the waveform with the predictor for (size_t i = subframe.order; i < m_current_frame->sample_count; ++i) { i64 sample = 0; for (size_t t = 0; t < subframe.order; ++t) { sample += static_cast(coefficients[t]) * static_cast(decoded[i - t - 1]); } decoded[i] += sample >> lpc_shift; } return decoded; } // Decode a subframe encoded with one of the fixed linear predictor codings Vector FlacLoaderPlugin::decode_fixed_lpc(FlacSubframeHeader& subframe, InputBitStream& bit_input) { Vector decoded; decoded.ensure_capacity(m_current_frame->sample_count); // warm-up samples for (auto i = 0; i < subframe.order; ++i) { decoded.unchecked_append(sign_extend(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample), subframe.bits_per_sample - subframe.wasted_bits_per_sample)); } decode_residual(decoded, subframe, bit_input); if (!m_error_string.is_empty()) return {}; dbgln_if(AFLACLOADER_DEBUG, "decoded length {}, {} order predictor", decoded.size(), subframe.order); switch (subframe.order) { case 0: // s_0(t) = 0 for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i) decoded[i] += 0; break; case 1: // s_1(t) = s(t-1) for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i) decoded[i] += decoded[i - 1]; break; case 2: // s_2(t) = 2s(t-1) - s(t-2) for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i) decoded[i] += 2 * decoded[i - 1] - decoded[i - 2]; break; case 3: // s_3(t) = 3s(t-1) - 3s(t-2) + s(t-3) for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i) decoded[i] += 3 * decoded[i - 1] - 3 * decoded[i - 2] + decoded[i - 3]; break; case 4: // s_4(t) = 4s(t-1) - 6s(t-2) + 4s(t-3) - s(t-4) for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i) decoded[i] += 4 * decoded[i - 1] - 6 * decoded[i - 2] + 4 * decoded[i - 3] - decoded[i - 4]; break; default: m_error_string = String::formatted("Unrecognized predictor order {}", subframe.order); break; } return decoded; } // Decode the residual, the "error" between the function approximation and the actual audio data Vector FlacLoaderPlugin::decode_residual(Vector& decoded, FlacSubframeHeader& subframe, InputBitStream& bit_input) { u8 residual_mode = bit_input.read_bits_big_endian(2); u8 partition_order = bit_input.read_bits_big_endian(4); size_t partitions = 1 << partition_order; if (residual_mode == FlacResidualMode::Rice4Bit) { // decode a single Rice partition with four bits for the order k for (size_t i = 0; i < partitions; ++i) { auto rice_partition = decode_rice_partition(4, partitions, i, subframe, bit_input); decoded.extend(move(rice_partition)); } } else if (residual_mode == FlacResidualMode::Rice5Bit) { // five bits equivalent for (size_t i = 0; i < partitions; ++i) { auto rice_partition = decode_rice_partition(5, partitions, i, subframe, bit_input); decoded.extend(move(rice_partition)); } } else { m_error_string = "Reserved residual coding method"; return {}; } return decoded; } // Decode a single Rice partition as part of the residual, every partition can have its own Rice parameter k ALWAYS_INLINE Vector FlacLoaderPlugin::decode_rice_partition(u8 partition_type, u32 partitions, u32 partition_index, FlacSubframeHeader& subframe, InputBitStream& bit_input) { // Rice parameter / Exp-Golomb order u8 k = bit_input.read_bits_big_endian(partition_type); u32 residual_sample_count; if (partitions == 0) residual_sample_count = m_current_frame->sample_count - subframe.order; else residual_sample_count = m_current_frame->sample_count / partitions; if (partition_index == 0) residual_sample_count -= subframe.order; Vector rice_partition; rice_partition.resize(residual_sample_count); // escape code for unencoded binary partition if (k == (1 << partition_type) - 1) { u8 unencoded_bps = bit_input.read_bits_big_endian(5); for (size_t r = 0; r < residual_sample_count; ++r) { rice_partition[r] = bit_input.read_bits_big_endian(unencoded_bps); } } else { for (size_t r = 0; r < residual_sample_count; ++r) { rice_partition[r] = decode_unsigned_exp_golomb(k, bit_input); } } return rice_partition; } // Decode a single number encoded with Rice/Exponential-Golomb encoding (the unsigned variant) ALWAYS_INLINE i32 decode_unsigned_exp_golomb(u8 k, InputBitStream& bit_input) { u8 q = 0; while (bit_input.read_bit_big_endian() == 0) ++q; // least significant bits (remainder) u32 rem = bit_input.read_bits_big_endian(k); u32 value = (u32)(q << k | rem); return rice_to_signed(value); } u64 read_utf8_char(InputStream& input) { u64 character; ByteBuffer single_byte_buffer = ByteBuffer::create_uninitialized(1); input.read(single_byte_buffer); u8 start_byte = single_byte_buffer[0]; // Signal byte is zero: ASCII character if ((start_byte & 0b10000000) == 0) { return start_byte; } else if ((start_byte & 0b11000000) == 0b10000000) { // illegal continuation byte return 0; } // This algorithm is too good and supports the theoretical max 0xFF start byte u8 length = 1; while (((start_byte << length) & 0b10000000) == 0b10000000) ++length; u8 bits_from_start_byte = 8 - (length + 1); u8 start_byte_bitmask = AK::exp2(bits_from_start_byte) - 1; character = start_byte_bitmask & start_byte; for (u8 i = length - 1; i > 0; --i) { input.read(single_byte_buffer); u8 current_byte = single_byte_buffer[0]; character = (character << 6) | (current_byte & 0b00111111); } return character; } i64 sign_extend(u32 n, u8 size) { // negative if ((n & (1 << (size - 1))) > 0) { return static_cast(n | (0xffffffff << size)); } // positive return n; } i32 rice_to_signed(u32 x) { // positive numbers are even, negative numbers are odd // bitmask for conditionally inverting the entire number, thereby "negating" it i32 sign = -(x & 1); // copies the sign's sign onto the actual magnitude of x return (i32)(sign ^ (x >> 1)); } }