/* * Copyright (c) 2021, kleines Filmröllchen * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Audio { FlacLoaderPlugin::FlacLoaderPlugin(StringView path) : LoaderPlugin(path) { } FlacLoaderPlugin::FlacLoaderPlugin(Bytes buffer) : LoaderPlugin(buffer) { } MaybeLoaderError FlacLoaderPlugin::initialize() { LOADER_TRY(LoaderPlugin::initialize()); TRY(parse_header()); TRY(reset()); return {}; } // 11.5 STREAM MaybeLoaderError FlacLoaderPlugin::parse_header() { auto bit_input = LOADER_TRY(BigEndianInputBitStream::construct(*m_stream)); // A mixture of VERIFY and the non-crashing TRY(). #define FLAC_VERIFY(check, category, msg) \ do { \ if (!(check)) { \ return LoaderError { category, static_cast(m_data_start_location), String::formatted("FLAC header: {}", msg) }; \ } \ } while (0) // Magic number u32 flac = LOADER_TRY(bit_input->read_bits(32)); m_data_start_location += 4; FLAC_VERIFY(flac == 0x664C6143, LoaderError::Category::Format, "Magic number must be 'flaC'"); // "flaC" // Receive the streaminfo block auto streaminfo = TRY(next_meta_block(*bit_input)); FLAC_VERIFY(streaminfo.type == FlacMetadataBlockType::STREAMINFO, LoaderError::Category::Format, "First block must be STREAMINFO"); auto streaminfo_data_memory = LOADER_TRY(Core::Stream::MemoryStream::construct(streaminfo.data.bytes())); auto streaminfo_data = LOADER_TRY(BigEndianInputBitStream::construct(*streaminfo_data_memory)); // 11.10 METADATA_BLOCK_STREAMINFO m_min_block_size = LOADER_TRY(streaminfo_data->read_bits(16)); FLAC_VERIFY(m_min_block_size >= 16, LoaderError::Category::Format, "Minimum block size must be 16"); m_max_block_size = LOADER_TRY(streaminfo_data->read_bits(16)); FLAC_VERIFY(m_max_block_size >= 16, LoaderError::Category::Format, "Maximum block size"); m_min_frame_size = LOADER_TRY(streaminfo_data->read_bits(24)); m_max_frame_size = LOADER_TRY(streaminfo_data->read_bits(24)); m_sample_rate = LOADER_TRY(streaminfo_data->read_bits(20)); FLAC_VERIFY(m_sample_rate <= 655350, LoaderError::Category::Format, "Sample rate"); m_num_channels = LOADER_TRY(streaminfo_data->read_bits(3)) + 1; // 0 = one channel u8 bits_per_sample = LOADER_TRY(streaminfo_data->read_bits(5)) + 1; if (bits_per_sample == 8) { // FIXME: Signed/Unsigned issues? m_sample_format = PcmSampleFormat::Uint8; } else if (bits_per_sample == 16) { m_sample_format = PcmSampleFormat::Int16; } else if (bits_per_sample == 24) { m_sample_format = PcmSampleFormat::Int24; } else if (bits_per_sample == 32) { m_sample_format = PcmSampleFormat::Int32; } else { FLAC_VERIFY(false, LoaderError::Category::Format, "Sample bit depth invalid"); } m_total_samples = LOADER_TRY(streaminfo_data->read_bits(36)); FLAC_VERIFY(m_total_samples > 0, LoaderError::Category::Format, "Number of samples is zero"); // Parse checksum into a buffer first [[maybe_unused]] u128 md5_checksum; VERIFY(streaminfo_data->is_aligned_to_byte_boundary()); auto md5_bytes_read = LOADER_TRY(streaminfo_data->read(md5_checksum.bytes())); FLAC_VERIFY(md5_bytes_read.size() == md5_checksum.my_size(), LoaderError::Category::IO, "MD5 Checksum size"); md5_checksum.bytes().copy_to({ m_md5_checksum, sizeof(m_md5_checksum) }); // Parse other blocks [[maybe_unused]] u16 meta_blocks_parsed = 1; [[maybe_unused]] u16 total_meta_blocks = meta_blocks_parsed; FlacRawMetadataBlock block = streaminfo; while (!block.is_last_block) { block = TRY(next_meta_block(*bit_input)); switch (block.type) { case (FlacMetadataBlockType::SEEKTABLE): TRY(load_seektable(block)); break; default: // TODO: Parse the remaining metadata block types. // Currently only STREAMINFO and SEEKTABLE are handled. break; } ++total_meta_blocks; } dbgln_if(AFLACLOADER_DEBUG, "Parsed FLAC header: blocksize {}-{}{}, framesize {}-{}, {}Hz, {}bit, {} channels, {} samples total ({:.2f}s), MD5 {}, data start at {:x} bytes, {} headers total (skipped {})", m_min_block_size, m_max_block_size, is_fixed_blocksize_stream() ? " (constant)" : "", m_min_frame_size, m_max_frame_size, m_sample_rate, pcm_bits_per_sample(m_sample_format), m_num_channels, m_total_samples, static_cast(m_total_samples) / static_cast(m_sample_rate), md5_checksum, m_data_start_location, total_meta_blocks, total_meta_blocks - meta_blocks_parsed); return {}; } // 11.13. METADATA_BLOCK_SEEKTABLE MaybeLoaderError FlacLoaderPlugin::load_seektable(FlacRawMetadataBlock& block) { auto memory_stream = LOADER_TRY(Core::Stream::MemoryStream::construct(block.data.bytes())); auto seektable_bytes = LOADER_TRY(BigEndianInputBitStream::construct(*memory_stream)); for (size_t i = 0; i < block.length / 18; ++i) { // 11.14. SEEKPOINT FlacSeekPoint seekpoint { .sample_index = LOADER_TRY(seektable_bytes->read_bits(64)), .byte_offset = LOADER_TRY(seektable_bytes->read_bits(64)), .num_samples = LOADER_TRY(seektable_bytes->read_bits(16)) }; m_seektable.append(seekpoint); } dbgln_if(AFLACLOADER_DEBUG, "Loaded seektable of size {}", m_seektable.size()); return {}; } // 11.6 METADATA_BLOCK ErrorOr FlacLoaderPlugin::next_meta_block(BigEndianInputBitStream& bit_input) { // 11.7 METADATA_BLOCK_HEADER bool is_last_block = LOADER_TRY(bit_input.read_bit()); // The block type enum constants agree with the specification FlacMetadataBlockType type = (FlacMetadataBlockType)LOADER_TRY(bit_input.read_bits(7)); m_data_start_location += 1; FLAC_VERIFY(type != FlacMetadataBlockType::INVALID, LoaderError::Category::Format, "Invalid metadata block"); u32 block_length = LOADER_TRY(bit_input.read_bits(24)); m_data_start_location += 3; // Blocks can be zero-sized, which would trip up the raw data reader below. if (block_length == 0) return FlacRawMetadataBlock { .is_last_block = is_last_block, .type = type, .length = 0, .data = LOADER_TRY(ByteBuffer::create_uninitialized(0)) }; auto block_data_result = ByteBuffer::create_uninitialized(block_length); FLAC_VERIFY(!block_data_result.is_error(), LoaderError::Category::IO, "Out of memory"); auto block_data = block_data_result.release_value(); // Blocks might exceed our buffer size. auto bytes_left_to_read = block_data.bytes(); while (bytes_left_to_read.size()) { auto read_bytes = LOADER_TRY(bit_input.read(bytes_left_to_read)); bytes_left_to_read = bytes_left_to_read.slice(read_bytes.size()); } m_data_start_location += block_length; return FlacRawMetadataBlock { is_last_block, type, block_length, block_data, }; } #undef FLAC_VERIFY MaybeLoaderError FlacLoaderPlugin::reset() { TRY(seek(0)); m_current_frame.clear(); return {}; } MaybeLoaderError FlacLoaderPlugin::seek(int int_sample_index) { auto sample_index = static_cast(int_sample_index); if (sample_index == m_loaded_samples) return {}; auto maybe_target_seekpoint = m_seektable.last_matching([sample_index](auto& seekpoint) { return seekpoint.sample_index <= sample_index; }); // No seektable or no fitting entry: Perform normal forward read if (!maybe_target_seekpoint.has_value()) { if (sample_index < m_loaded_samples) { LOADER_TRY(m_stream->seek(m_data_start_location, Core::Stream::SeekMode::SetPosition)); m_loaded_samples = 0; } auto to_read = sample_index - m_loaded_samples; if (to_read == 0) return {}; dbgln_if(AFLACLOADER_DEBUG, "Seeking {} samples manually", to_read); (void)TRY(get_more_samples(to_read)); } else { auto target_seekpoint = maybe_target_seekpoint.release_value(); // When a small seek happens, we may already be closer to the target than the seekpoint. if (sample_index - target_seekpoint.sample_index > sample_index - m_loaded_samples) { dbgln_if(AFLACLOADER_DEBUG, "Close enough to target: seeking {} samples manually", sample_index - m_loaded_samples); (void)TRY(get_more_samples(sample_index - m_loaded_samples)); return {}; } dbgln_if(AFLACLOADER_DEBUG, "Seeking to seektable: sample index {}, byte offset {}, sample count {}", target_seekpoint.sample_index, target_seekpoint.byte_offset, target_seekpoint.num_samples); auto position = target_seekpoint.byte_offset + m_data_start_location; if (m_stream->seek(static_cast(position), Core::Stream::SeekMode::SetPosition).is_error()) return LoaderError { LoaderError::Category::IO, m_loaded_samples, String::formatted("Invalid seek position {}", position) }; auto remaining_samples_after_seekpoint = sample_index - m_data_start_location; if (remaining_samples_after_seekpoint > 0) (void)TRY(get_more_samples(remaining_samples_after_seekpoint)); m_loaded_samples = target_seekpoint.sample_index; } return {}; } LoaderSamples FlacLoaderPlugin::get_more_samples(size_t max_bytes_to_read_from_input) { ssize_t remaining_samples = static_cast(m_total_samples - m_loaded_samples); if (remaining_samples <= 0) return FixedArray {}; // FIXME: samples_to_read is calculated wrong, because when seeking not all samples are loaded. size_t samples_to_read = min(max_bytes_to_read_from_input, remaining_samples); auto samples = FixedArray::must_create_but_fixme_should_propagate_errors(samples_to_read); size_t sample_index = 0; if (m_unread_data.size() > 0) { size_t to_transfer = min(m_unread_data.size(), samples_to_read); dbgln_if(AFLACLOADER_DEBUG, "Reading {} samples from unread sample buffer (size {})", to_transfer, m_unread_data.size()); AK::TypedTransfer::move(samples.data(), m_unread_data.data(), to_transfer); if (to_transfer < m_unread_data.size()) m_unread_data.remove(0, to_transfer); else m_unread_data.clear_with_capacity(); sample_index += to_transfer; } while (sample_index < samples_to_read) { TRY(next_frame(samples.span().slice(sample_index))); sample_index += m_current_frame->sample_count; } m_loaded_samples += sample_index; return samples; } // 11.21. FRAME MaybeLoaderError FlacLoaderPlugin::next_frame(Span target_vector) { #define FLAC_VERIFY(check, category, msg) \ do { \ if (!(check)) { \ return LoaderError { category, static_cast(m_current_sample_or_frame), String::formatted("FLAC header: {}", msg) }; \ } \ } while (0) auto bit_stream = LOADER_TRY(BigEndianInputBitStream::construct(*m_stream)); // TODO: Check the CRC-16 checksum (and others) by keeping track of read data // 11.22. FRAME_HEADER u16 sync_code = LOADER_TRY(bit_stream->read_bits(14)); FLAC_VERIFY(sync_code == 0b11111111111110, LoaderError::Category::Format, "Sync code"); bool reserved_bit = LOADER_TRY(bit_stream->read_bit()); FLAC_VERIFY(reserved_bit == 0, LoaderError::Category::Format, "Reserved frame header bit"); // 11.22.2. BLOCKING STRATEGY [[maybe_unused]] bool blocking_strategy = LOADER_TRY(bit_stream->read_bit()); u32 sample_count = TRY(convert_sample_count_code(LOADER_TRY(bit_stream->read_bits(4)))); u32 frame_sample_rate = TRY(convert_sample_rate_code(LOADER_TRY(bit_stream->read_bits(4)))); u8 channel_type_num = LOADER_TRY(bit_stream->read_bits(4)); FLAC_VERIFY(channel_type_num < 0b1011, LoaderError::Category::Format, "Channel assignment"); FlacFrameChannelType channel_type = (FlacFrameChannelType)channel_type_num; PcmSampleFormat bit_depth = TRY(convert_bit_depth_code(LOADER_TRY(bit_stream->read_bits(3)))); reserved_bit = LOADER_TRY(bit_stream->read_bit()); FLAC_VERIFY(reserved_bit == 0, LoaderError::Category::Format, "Reserved frame header end bit"); // 11.22.8. CODED NUMBER // FIXME: sample number can be 8-56 bits, frame number can be 8-48 bits m_current_sample_or_frame = LOADER_TRY(read_utf8_char(*bit_stream)); // Conditional header variables // 11.22.9. BLOCK SIZE INT if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_8) { sample_count = LOADER_TRY(bit_stream->read_bits(8)) + 1; } else if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_16) { sample_count = LOADER_TRY(bit_stream->read_bits(16)) + 1; } // 11.22.10. SAMPLE RATE INT if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_8) { frame_sample_rate = LOADER_TRY(bit_stream->read_bits(8)) * 1000; } else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16) { frame_sample_rate = LOADER_TRY(bit_stream->read_bits(16)); } else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10) { frame_sample_rate = LOADER_TRY(bit_stream->read_bits(16)) * 10; } // 11.22.11. FRAME CRC // TODO: check header checksum, see above [[maybe_unused]] u8 checksum = LOADER_TRY(bit_stream->read_bits(8)); dbgln_if(AFLACLOADER_DEBUG, "Frame: {} samples, {}bit {}Hz, channeltype {:x}, {} number {}, header checksum {}", sample_count, pcm_bits_per_sample(bit_depth), frame_sample_rate, channel_type_num, blocking_strategy ? "sample" : "frame", m_current_sample_or_frame, checksum); m_current_frame = FlacFrameHeader { sample_count, frame_sample_rate, channel_type, bit_depth, }; u8 subframe_count = frame_channel_type_to_channel_count(channel_type); Vector> current_subframes; current_subframes.ensure_capacity(subframe_count); for (u8 i = 0; i < subframe_count; ++i) { FlacSubframeHeader new_subframe = TRY(next_subframe_header(*bit_stream, i)); Vector subframe_samples = TRY(parse_subframe(new_subframe, *bit_stream)); current_subframes.unchecked_append(move(subframe_samples)); } // 11.2. Overview ("The audio data is composed of...") bit_stream->align_to_byte_boundary(); // 11.23. FRAME_FOOTER // TODO: check checksum, see above [[maybe_unused]] u16 footer_checksum = LOADER_TRY(bit_stream->read_bits(16)); dbgln_if(AFLACLOADER_DEBUG, "Subframe footer checksum: {}", footer_checksum); Vector left; Vector right; switch (channel_type) { case FlacFrameChannelType::Mono: left = right = current_subframes[0]; break; case FlacFrameChannelType::Stereo: // TODO mix together surround channels on each side? case FlacFrameChannelType::StereoCenter: case FlacFrameChannelType::Surround4p0: case FlacFrameChannelType::Surround5p0: case FlacFrameChannelType::Surround5p1: case FlacFrameChannelType::Surround6p1: case FlacFrameChannelType::Surround7p1: left = current_subframes[0]; right = current_subframes[1]; break; case FlacFrameChannelType::LeftSideStereo: // channels are left (0) and side (1) left = current_subframes[0]; right.ensure_capacity(left.size()); for (size_t i = 0; i < left.size(); ++i) { // right = left - side right.unchecked_append(left[i] - current_subframes[1][i]); } break; case FlacFrameChannelType::RightSideStereo: // channels are side (0) and right (1) right = current_subframes[1]; left.ensure_capacity(right.size()); for (size_t i = 0; i < right.size(); ++i) { // left = right + side left.unchecked_append(right[i] + current_subframes[0][i]); } break; case FlacFrameChannelType::MidSideStereo: // channels are mid (0) and side (1) left.ensure_capacity(current_subframes[0].size()); right.ensure_capacity(current_subframes[0].size()); for (size_t i = 0; i < current_subframes[0].size(); ++i) { i64 mid = current_subframes[0][i]; i64 side = current_subframes[1][i]; mid *= 2; // prevent integer division errors left.unchecked_append(static_cast((mid + side) / 2)); right.unchecked_append(static_cast((mid - side) / 2)); } break; } VERIFY(left.size() == right.size() && left.size() == m_current_frame->sample_count); float sample_rescale = static_cast(1 << (pcm_bits_per_sample(m_current_frame->bit_depth) - 1)); dbgln_if(AFLACLOADER_DEBUG, "Sample rescaled from {} bits: factor {:.1f}", pcm_bits_per_sample(m_current_frame->bit_depth), sample_rescale); // zip together channels auto samples_to_directly_copy = min(target_vector.size(), m_current_frame->sample_count); for (size_t i = 0; i < samples_to_directly_copy; ++i) { Sample frame = { left[i] / sample_rescale, right[i] / sample_rescale }; target_vector[i] = frame; } // move superfluous data into the class buffer instead auto result = m_unread_data.try_grow_capacity(m_current_frame->sample_count - samples_to_directly_copy); if (result.is_error()) return LoaderError { LoaderError::Category::Internal, static_cast(samples_to_directly_copy + m_current_sample_or_frame), "Couldn't allocate sample buffer for superfluous data" }; for (size_t i = samples_to_directly_copy; i < m_current_frame->sample_count; ++i) { Sample frame = { left[i] / sample_rescale, right[i] / sample_rescale }; m_unread_data.unchecked_append(frame); } return {}; #undef FLAC_VERIFY } // 11.22.3. INTERCHANNEL SAMPLE BLOCK SIZE ErrorOr FlacLoaderPlugin::convert_sample_count_code(u8 sample_count_code) { // single codes switch (sample_count_code) { case 0: return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), "Reserved block size" }; case 1: return 192; case 6: return FLAC_BLOCKSIZE_AT_END_OF_HEADER_8; case 7: return FLAC_BLOCKSIZE_AT_END_OF_HEADER_16; } if (sample_count_code >= 2 && sample_count_code <= 5) { return 576 * AK::exp2(sample_count_code - 2); } return 256 * AK::exp2(sample_count_code - 8); } // 11.22.4. SAMPLE RATE ErrorOr FlacLoaderPlugin::convert_sample_rate_code(u8 sample_rate_code) { switch (sample_rate_code) { case 0: return m_sample_rate; case 1: return 88200; case 2: return 176400; case 3: return 192000; case 4: return 8000; case 5: return 16000; case 6: return 22050; case 7: return 24000; case 8: return 32000; case 9: return 44100; case 10: return 48000; case 11: return 96000; case 12: return FLAC_SAMPLERATE_AT_END_OF_HEADER_8; case 13: return FLAC_SAMPLERATE_AT_END_OF_HEADER_16; case 14: return FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10; default: return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), "Invalid sample rate code" }; } } // 11.22.6. SAMPLE SIZE ErrorOr FlacLoaderPlugin::convert_bit_depth_code(u8 bit_depth_code) { switch (bit_depth_code) { case 0: return m_sample_format; case 1: return PcmSampleFormat::Uint8; case 4: return PcmSampleFormat::Int16; case 6: return PcmSampleFormat::Int24; case 3: case 7: return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), "Reserved sample size" }; default: return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), String::formatted("Unsupported sample size {}", bit_depth_code) }; } } // 11.22.5. CHANNEL ASSIGNMENT u8 frame_channel_type_to_channel_count(FlacFrameChannelType channel_type) { if (channel_type <= FlacFrameChannelType::Surround7p1) return to_underlying(channel_type) + 1; return 2; } // 11.25. SUBFRAME_HEADER ErrorOr FlacLoaderPlugin::next_subframe_header(BigEndianInputBitStream& bit_stream, u8 channel_index) { u8 bits_per_sample = static_cast(pcm_bits_per_sample(m_current_frame->bit_depth)); // For inter-channel correlation, the side channel needs an extra bit for its samples switch (m_current_frame->channels) { case FlacFrameChannelType::LeftSideStereo: case FlacFrameChannelType::MidSideStereo: if (channel_index == 1) { ++bits_per_sample; } break; case FlacFrameChannelType::RightSideStereo: if (channel_index == 0) { ++bits_per_sample; } break; // "normal" channel types default: break; } // zero-bit padding if (LOADER_TRY(bit_stream.read_bit()) != 0) return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), "Zero bit padding" }; // 11.25.1. SUBFRAME TYPE u8 subframe_code = LOADER_TRY(bit_stream.read_bits(6)); if ((subframe_code >= 0b000010 && subframe_code <= 0b000111) || (subframe_code > 0b001100 && subframe_code < 0b100000)) return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), "Subframe type" }; FlacSubframeType subframe_type; u8 order = 0; // LPC has the highest bit set if ((subframe_code & 0b100000) > 0) { subframe_type = FlacSubframeType::LPC; order = (subframe_code & 0b011111) + 1; } else if ((subframe_code & 0b001000) > 0) { // Fixed has the third-highest bit set subframe_type = FlacSubframeType::Fixed; order = (subframe_code & 0b000111); } else { subframe_type = (FlacSubframeType)subframe_code; } // 11.25.2. WASTED BITS PER SAMPLE FLAG bool has_wasted_bits = LOADER_TRY(bit_stream.read_bit()); u8 k = 0; if (has_wasted_bits) { bool current_k_bit = 0; do { current_k_bit = LOADER_TRY(bit_stream.read_bit()); ++k; } while (current_k_bit != 1); } return FlacSubframeHeader { subframe_type, order, k, bits_per_sample }; } ErrorOr, LoaderError> FlacLoaderPlugin::parse_subframe(FlacSubframeHeader& subframe_header, BigEndianInputBitStream& bit_input) { Vector samples; switch (subframe_header.type) { case FlacSubframeType::Constant: { // 11.26. SUBFRAME_CONSTANT u64 constant_value = LOADER_TRY(bit_input.read_bits(subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample)); dbgln_if(AFLACLOADER_DEBUG, "Constant subframe: {}", constant_value); samples.ensure_capacity(m_current_frame->sample_count); VERIFY(subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample != 0); i32 constant = sign_extend(static_cast(constant_value), subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample); for (u32 i = 0; i < m_current_frame->sample_count; ++i) { samples.unchecked_append(constant); } break; } case FlacSubframeType::Fixed: { dbgln_if(AFLACLOADER_DEBUG, "Fixed LPC subframe order {}", subframe_header.order); samples = TRY(decode_fixed_lpc(subframe_header, bit_input)); break; } case FlacSubframeType::Verbatim: { dbgln_if(AFLACLOADER_DEBUG, "Verbatim subframe"); samples = TRY(decode_verbatim(subframe_header, bit_input)); break; } case FlacSubframeType::LPC: { dbgln_if(AFLACLOADER_DEBUG, "Custom LPC subframe order {}", subframe_header.order); samples = TRY(decode_custom_lpc(subframe_header, bit_input)); break; } default: return LoaderError { LoaderError::Category::Unimplemented, static_cast(m_current_sample_or_frame), "Unhandled FLAC subframe type" }; } for (size_t i = 0; i < samples.size(); ++i) { samples[i] <<= subframe_header.wasted_bits_per_sample; } ResampleHelper resampler(m_current_frame->sample_rate, m_sample_rate); return resampler.resample(samples); } // 11.29. SUBFRAME_VERBATIM // Decode a subframe that isn't actually encoded, usually seen in random data ErrorOr, LoaderError> FlacLoaderPlugin::decode_verbatim(FlacSubframeHeader& subframe, BigEndianInputBitStream& bit_input) { Vector decoded; decoded.ensure_capacity(m_current_frame->sample_count); VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0); for (size_t i = 0; i < m_current_frame->sample_count; ++i) { decoded.unchecked_append(sign_extend( LOADER_TRY(bit_input.read_bits(subframe.bits_per_sample - subframe.wasted_bits_per_sample)), subframe.bits_per_sample - subframe.wasted_bits_per_sample)); } return decoded; } // 11.28. SUBFRAME_LPC // Decode a subframe encoded with a custom linear predictor coding, i.e. the subframe provides the polynomial order and coefficients ErrorOr, LoaderError> FlacLoaderPlugin::decode_custom_lpc(FlacSubframeHeader& subframe, BigEndianInputBitStream& bit_input) { Vector decoded; decoded.ensure_capacity(m_current_frame->sample_count); VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0); // warm-up samples for (auto i = 0; i < subframe.order; ++i) { decoded.unchecked_append(sign_extend( LOADER_TRY(bit_input.read_bits(subframe.bits_per_sample - subframe.wasted_bits_per_sample)), subframe.bits_per_sample - subframe.wasted_bits_per_sample)); } // precision of the coefficients u8 lpc_precision = LOADER_TRY(bit_input.read_bits(4)); if (lpc_precision == 0b1111) return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), "Invalid linear predictor coefficient precision" }; lpc_precision += 1; // shift needed on the data (signed!) i8 lpc_shift = sign_extend(LOADER_TRY(bit_input.read_bits(5)), 5); Vector coefficients; coefficients.ensure_capacity(subframe.order); // read coefficients for (auto i = 0; i < subframe.order; ++i) { u32 raw_coefficient = LOADER_TRY(bit_input.read_bits(lpc_precision)); i32 coefficient = static_cast(sign_extend(raw_coefficient, lpc_precision)); coefficients.unchecked_append(coefficient); } dbgln_if(AFLACLOADER_DEBUG, "{}-bit {} shift coefficients: {}", lpc_precision, lpc_shift, coefficients); TRY(decode_residual(decoded, subframe, bit_input)); // approximate the waveform with the predictor for (size_t i = subframe.order; i < m_current_frame->sample_count; ++i) { // (see below) i64 sample = 0; for (size_t t = 0; t < subframe.order; ++t) { // It's really important that we compute in 64-bit land here. // Even though FLAC operates at a maximum bit depth of 32 bits, modern encoders use super-large coefficients for maximum compression. // These will easily overflow 32 bits and cause strange white noise that abruptly stops intermittently (at the end of a frame). // The simple fix of course is to do intermediate computations in 64 bits. // These considerations are not in the original FLAC spec, but have been added to the IETF standard: https://datatracker.ietf.org/doc/html/draft-ietf-cellar-flac-03#appendix-A.3 sample += static_cast(coefficients[t]) * static_cast(decoded[i - t - 1]); } decoded[i] += sample >> lpc_shift; } return decoded; } // 11.27. SUBFRAME_FIXED // Decode a subframe encoded with one of the fixed linear predictor codings ErrorOr, LoaderError> FlacLoaderPlugin::decode_fixed_lpc(FlacSubframeHeader& subframe, BigEndianInputBitStream& bit_input) { Vector decoded; decoded.ensure_capacity(m_current_frame->sample_count); VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0); // warm-up samples for (auto i = 0; i < subframe.order; ++i) { decoded.unchecked_append(sign_extend( LOADER_TRY(bit_input.read_bits(subframe.bits_per_sample - subframe.wasted_bits_per_sample)), subframe.bits_per_sample - subframe.wasted_bits_per_sample)); } TRY(decode_residual(decoded, subframe, bit_input)); dbgln_if(AFLACLOADER_DEBUG, "decoded length {}, {} order predictor", decoded.size(), subframe.order); // Skip these comments if you don't care about the neat math behind fixed LPC :^) // These coefficients for the recursive prediction formula are the only ones that can be resolved to polynomial predictor functions. // The order equals the degree of the polynomial - 1, so the second-order predictor has an underlying polynomial of degree 1, a straight line. // More specifically, the closest approximation to a polynomial is used, and the degree depends on how many previous values are available. // This makes use of a very neat property of polynomials, which is that they are entirely characterized by their finitely many derivatives. // (Mathematically speaking, the infinite Taylor series of any polynomial equals the polynomial itself.) // Now remember that derivation is just the slope of the function, which is the same as the difference of two close-by values. // Therefore, with two samples we can calculate the first derivative at a sample via the difference, which gives us a polynomial of degree 1. // With three samples, we can do the same but also calculate the second derivative via the difference in the first derivatives. // This gives us a polynomial of degree 2, as it has two "proper" (non-constant) derivatives. // This can be continued for higher-order derivatives when we have more coefficients, giving us higher-order polynomials. // In essence, it's akin to a Lagrangian polynomial interpolation for every sample (but already pre-solved). // The coefficients for orders 0-3 originate from the SHORTEN codec: // http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/robinson_tr156.pdf page 4 // The coefficients for order 4 are undocumented in the original FLAC specification(s), but can now be found in // https://datatracker.ietf.org/doc/html/draft-ietf-cellar-flac-03#section-10.2.5 switch (subframe.order) { case 0: // s_0(t) = 0 for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i) decoded[i] += 0; break; case 1: // s_1(t) = s(t-1) for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i) decoded[i] += decoded[i - 1]; break; case 2: // s_2(t) = 2s(t-1) - s(t-2) for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i) decoded[i] += 2 * decoded[i - 1] - decoded[i - 2]; break; case 3: // s_3(t) = 3s(t-1) - 3s(t-2) + s(t-3) for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i) decoded[i] += 3 * decoded[i - 1] - 3 * decoded[i - 2] + decoded[i - 3]; break; case 4: // s_4(t) = 4s(t-1) - 6s(t-2) + 4s(t-3) - s(t-4) for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i) decoded[i] += 4 * decoded[i - 1] - 6 * decoded[i - 2] + 4 * decoded[i - 3] - decoded[i - 4]; break; default: return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), String::formatted("Unrecognized predictor order {}", subframe.order) }; } return decoded; } // 11.30. RESIDUAL // Decode the residual, the "error" between the function approximation and the actual audio data MaybeLoaderError FlacLoaderPlugin::decode_residual(Vector& decoded, FlacSubframeHeader& subframe, BigEndianInputBitStream& bit_input) { // 11.30.1. RESIDUAL_CODING_METHOD auto residual_mode = static_cast(LOADER_TRY(bit_input.read_bits(2))); u8 partition_order = LOADER_TRY(bit_input.read_bits(4)); size_t partitions = 1 << partition_order; if (residual_mode == FlacResidualMode::Rice4Bit) { // 11.30.2. RESIDUAL_CODING_METHOD_PARTITIONED_EXP_GOLOMB // decode a single Rice partition with four bits for the order k for (size_t i = 0; i < partitions; ++i) { auto rice_partition = TRY(decode_rice_partition(4, partitions, i, subframe, bit_input)); decoded.extend(move(rice_partition)); } } else if (residual_mode == FlacResidualMode::Rice5Bit) { // 11.30.3. RESIDUAL_CODING_METHOD_PARTITIONED_EXP_GOLOMB2 // five bits equivalent for (size_t i = 0; i < partitions; ++i) { auto rice_partition = TRY(decode_rice_partition(5, partitions, i, subframe, bit_input)); decoded.extend(move(rice_partition)); } } else return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), "Reserved residual coding method" }; return {}; } // 11.30.2.1. EXP_GOLOMB_PARTITION and 11.30.3.1. EXP_GOLOMB2_PARTITION // Decode a single Rice partition as part of the residual, every partition can have its own Rice parameter k ALWAYS_INLINE ErrorOr, LoaderError> FlacLoaderPlugin::decode_rice_partition(u8 partition_type, u32 partitions, u32 partition_index, FlacSubframeHeader& subframe, BigEndianInputBitStream& bit_input) { // 11.30.2.2. EXP GOLOMB PARTITION ENCODING PARAMETER and 11.30.3.2. EXP-GOLOMB2 PARTITION ENCODING PARAMETER u8 k = LOADER_TRY(bit_input.read_bits(partition_type)); u32 residual_sample_count; if (partitions == 0) residual_sample_count = m_current_frame->sample_count - subframe.order; else residual_sample_count = m_current_frame->sample_count / partitions; if (partition_index == 0) residual_sample_count -= subframe.order; Vector rice_partition; rice_partition.resize(residual_sample_count); // escape code for unencoded binary partition if (k == (1 << partition_type) - 1) { u8 unencoded_bps = LOADER_TRY(bit_input.read_bits(5)); for (size_t r = 0; r < residual_sample_count; ++r) { rice_partition[r] = LOADER_TRY(bit_input.read_bits(unencoded_bps)); } } else { for (size_t r = 0; r < residual_sample_count; ++r) { rice_partition[r] = LOADER_TRY(decode_unsigned_exp_golomb(k, bit_input)); } } return rice_partition; } // Decode a single number encoded with Rice/Exponential-Golomb encoding (the unsigned variant) ALWAYS_INLINE ErrorOr decode_unsigned_exp_golomb(u8 k, BigEndianInputBitStream& bit_input) { u8 q = 0; while (TRY(bit_input.read_bit()) == 0) ++q; // least significant bits (remainder) u32 rem = TRY(bit_input.read_bits(k)); u32 value = q << k | rem; return rice_to_signed(value); } ErrorOr read_utf8_char(BigEndianInputBitStream& input) { u64 character; u8 buffer = 0; Bytes buffer_bytes { &buffer, 1 }; TRY(input.read(buffer_bytes)); u8 start_byte = buffer_bytes[0]; // Signal byte is zero: ASCII character if ((start_byte & 0b10000000) == 0) { return start_byte; } else if ((start_byte & 0b11000000) == 0b10000000) { return Error::from_string_literal("Illegal continuation byte"); } // This algorithm is too good and supports the theoretical max 0xFF start byte u8 length = 1; while (((start_byte << length) & 0b10000000) == 0b10000000) ++length; u8 bits_from_start_byte = 8 - (length + 1); u8 start_byte_bitmask = AK::exp2(bits_from_start_byte) - 1; character = start_byte_bitmask & start_byte; for (u8 i = length - 1; i > 0; --i) { TRY(input.read(buffer_bytes)); u8 current_byte = buffer_bytes[0]; character = (character << 6) | (current_byte & 0b00111111); } return character; } i64 sign_extend(u32 n, u8 size) { // negative if ((n & (1 << (size - 1))) > 0) { return static_cast(n | (0xffffffff << size)); } // positive return n; } i32 rice_to_signed(u32 x) { // positive numbers are even, negative numbers are odd // bitmask for conditionally inverting the entire number, thereby "negating" it i32 sign = -static_cast(x & 1); // copies the sign's sign onto the actual magnitude of x return static_cast(sign ^ (x >> 1)); } }