/* * Copyright (c) 2021, kleines Filmröllchen * * SPDX-License-Identifier: BSD-2-Clause */ #include "AK/StdLibExtras.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Audio { FlacLoaderPlugin::FlacLoaderPlugin(StringView path) : m_file(Core::File::construct(path)) { if (!m_file->open(Core::OpenMode::ReadOnly)) { m_error = LoaderError { String::formatted("Can't open file: {}", m_file->error_string()) }; return; } auto maybe_stream = Core::InputFileStream::open_buffered(path); if (maybe_stream.is_error()) { m_error = LoaderError { "Can't open file stream" }; return; } m_stream = make(maybe_stream.release_value()); if (!m_stream) m_error = LoaderError { "Can't open file stream" }; } FlacLoaderPlugin::FlacLoaderPlugin(const ByteBuffer& buffer) { m_stream = make(InputMemoryStream(buffer)); if (!m_stream) m_error = LoaderError { "Can't open memory stream" }; } MaybeLoaderError FlacLoaderPlugin::initialize() { if (m_error.has_value()) return m_error.release_value(); TRY(parse_header()); TRY(reset()); return {}; } MaybeLoaderError FlacLoaderPlugin::parse_header() { InputBitStream bit_input = [&]() -> InputBitStream { if (m_file) { return InputBitStream(m_stream->get>()); } return InputBitStream(m_stream->get()); }(); ScopeGuard handle_all_errors([&bit_input, this] { m_stream->handle_any_error(); bit_input.handle_any_error(); }); // A mixture of VERIFY and the non-crashing TRY(). #define FLAC_VERIFY(check, category, msg) \ do { \ if (!(check)) { \ return LoaderError { category, static_cast(m_data_start_location), String::formatted("FLAC header: {}", msg) }; \ } \ } while (0) // Magic number u32 flac = static_cast(bit_input.read_bits_big_endian(32)); m_data_start_location += 4; FLAC_VERIFY(flac == 0x664C6143, LoaderError::Category::Format, "Magic number must be 'flaC'"); // "flaC" // Receive the streaminfo block auto streaminfo = TRY(next_meta_block(bit_input)); FLAC_VERIFY(streaminfo.type == FlacMetadataBlockType::STREAMINFO, LoaderError::Category::Format, "First block must be STREAMINFO"); InputMemoryStream streaminfo_data_memory(streaminfo.data.bytes()); InputBitStream streaminfo_data(streaminfo_data_memory); ScopeGuard clear_streaminfo_errors([&streaminfo_data] { streaminfo_data.handle_any_error(); }); // STREAMINFO block m_min_block_size = static_cast(streaminfo_data.read_bits_big_endian(16)); FLAC_VERIFY(m_min_block_size >= 16, LoaderError::Category::Format, "Minimum block size must be 16"); m_max_block_size = static_cast(streaminfo_data.read_bits_big_endian(16)); FLAC_VERIFY(m_max_block_size >= 16, LoaderError::Category::Format, "Maximum block size"); m_min_frame_size = static_cast(streaminfo_data.read_bits_big_endian(24)); m_max_frame_size = static_cast(streaminfo_data.read_bits_big_endian(24)); m_sample_rate = static_cast(streaminfo_data.read_bits_big_endian(20)); FLAC_VERIFY(m_sample_rate <= 655350, LoaderError::Category::Format, "Sample rate"); m_num_channels = static_cast(streaminfo_data.read_bits_big_endian(3)) + 1; // 0 = one channel u8 bits_per_sample = static_cast(streaminfo_data.read_bits_big_endian(5)) + 1; if (bits_per_sample == 8) { // FIXME: Signed/Unsigned issues? m_sample_format = PcmSampleFormat::Uint8; } else if (bits_per_sample == 16) { m_sample_format = PcmSampleFormat::Int16; } else if (bits_per_sample == 24) { m_sample_format = PcmSampleFormat::Int24; } else if (bits_per_sample == 32) { m_sample_format = PcmSampleFormat::Int32; } else { FLAC_VERIFY(false, LoaderError::Category::Format, "Sample bit depth invalid"); } m_total_samples = static_cast(streaminfo_data.read_bits_big_endian(36)); FLAC_VERIFY(m_total_samples > 0, LoaderError::Category::Format, "Number of samples is zero"); // Parse checksum into a buffer first [[maybe_unused]] u128 md5_checksum; auto md5_bytes_read = streaminfo_data.read(md5_checksum.bytes()); FLAC_VERIFY(md5_bytes_read == md5_checksum.my_size(), LoaderError::Category::IO, "MD5 Checksum size"); md5_checksum.bytes().copy_to({ m_md5_checksum, sizeof(m_md5_checksum) }); // Parse other blocks // TODO: For a simple first implementation, all other blocks are skipped as allowed by the FLAC specification. // Especially the SEEKTABLE block may become useful in a more sophisticated version. [[maybe_unused]] u16 meta_blocks_parsed = 1; [[maybe_unused]] u16 total_meta_blocks = meta_blocks_parsed; FlacRawMetadataBlock block = streaminfo; while (!block.is_last_block) { block = TRY(next_meta_block(bit_input)); ++total_meta_blocks; } FLAC_VERIFY(!m_stream->handle_any_error(), LoaderError::Category::IO, "Stream"); dbgln_if(AFLACLOADER_DEBUG, "Parsed FLAC header: blocksize {}-{}{}, framesize {}-{}, {}Hz, {}bit, {} channels, {} samples total ({:.2f}s), MD5 {}, data start at {:x} bytes, {} headers total (skipped {})", m_min_block_size, m_max_block_size, is_fixed_blocksize_stream() ? " (constant)" : "", m_min_frame_size, m_max_frame_size, m_sample_rate, pcm_bits_per_sample(m_sample_format), m_num_channels, m_total_samples, static_cast(m_total_samples) / static_cast(m_sample_rate), md5_checksum, m_data_start_location, total_meta_blocks, total_meta_blocks - meta_blocks_parsed); return {}; } ErrorOr FlacLoaderPlugin::next_meta_block(InputBitStream& bit_input) { #define CHECK_IO_ERROR() \ do { \ if (bit_input.handle_any_error()) \ return LoaderError { LoaderError::Category::IO, "Read error" }; \ } while (0) bool is_last_block = bit_input.read_bit_big_endian(); CHECK_IO_ERROR(); // The block type enum constants agree with the specification FlacMetadataBlockType type = (FlacMetadataBlockType)bit_input.read_bits_big_endian(7); CHECK_IO_ERROR(); m_data_start_location += 1; FLAC_VERIFY(type != FlacMetadataBlockType::INVALID, LoaderError::Category::Format, "Invalid metadata block"); u32 block_length = static_cast(bit_input.read_bits_big_endian(24)); m_data_start_location += 3; CHECK_IO_ERROR(); auto block_data_result = ByteBuffer::create_uninitialized(block_length); FLAC_VERIFY(block_data_result.has_value(), LoaderError::Category::IO, "Out of memory"); auto block_data = block_data_result.release_value(); // Reads exactly the bytes necessary into the Bytes container bit_input.read(block_data); m_data_start_location += block_length; CHECK_IO_ERROR(); return FlacRawMetadataBlock { is_last_block, type, block_length, block_data, }; #undef CHECK_IO_ERROR } #undef FLAC_VERIFY MaybeLoaderError FlacLoaderPlugin::reset() { TRY(seek(m_data_start_location)); m_current_frame.clear(); return {}; } MaybeLoaderError FlacLoaderPlugin::seek(const int position) { if (!m_stream->seek(position)) return LoaderError { LoaderError::IO, m_loaded_samples, String::formatted("Invalid seek position {}", position) }; return {}; } LoaderSamples FlacLoaderPlugin::get_more_samples(size_t max_bytes_to_read_from_input) { Vector samples; ssize_t remaining_samples = static_cast(m_total_samples - m_loaded_samples); if (remaining_samples <= 0) return Buffer::create_empty(); size_t samples_to_read = min(max_bytes_to_read_from_input, remaining_samples); samples.ensure_capacity(samples_to_read); while (samples_to_read > 0) { if (!m_current_frame.has_value()) TRY(next_frame()); // Do a full vector extend if possible if (m_current_frame_data.size() <= samples_to_read) { samples_to_read -= m_current_frame_data.size(); samples.extend(move(m_current_frame_data)); m_current_frame_data.clear(); m_current_frame.clear(); } else { samples.unchecked_append(m_current_frame_data.data(), samples_to_read); m_current_frame_data.remove(0, samples_to_read); if (m_current_frame_data.size() == 0) { m_current_frame.clear(); } samples_to_read = 0; } } m_loaded_samples += samples.size(); auto maybe_buffer = Buffer::create_with_samples(move(samples)); if (maybe_buffer.is_error()) return LoaderError { LoaderError::Category::Internal, m_loaded_samples, "Couldn't allocate sample buffer" }; return maybe_buffer.release_value(); } MaybeLoaderError FlacLoaderPlugin::next_frame() { #define FLAC_VERIFY(check, category, msg) \ do { \ if (!(check)) { \ return LoaderError { category, static_cast(m_current_sample_or_frame), String::formatted("FLAC header: {}", msg) }; \ } \ } while (0) InputBitStream bit_stream = m_stream->bit_stream(); // TODO: Check the CRC-16 checksum (and others) by keeping track of read data // FLAC frame sync code starts header u16 sync_code = static_cast(bit_stream.read_bits_big_endian(14)); FLAC_VERIFY(sync_code == 0b11111111111110, LoaderError::Category::Format, "Sync code"); bool reserved_bit = bit_stream.read_bit_big_endian(); FLAC_VERIFY(reserved_bit == 0, LoaderError::Category::Format, "Reserved frame header bit"); [[maybe_unused]] bool blocking_strategy = bit_stream.read_bit_big_endian(); u32 sample_count = TRY(convert_sample_count_code(static_cast(bit_stream.read_bits_big_endian(4)))); u32 frame_sample_rate = TRY(convert_sample_rate_code(static_cast(bit_stream.read_bits_big_endian(4)))); u8 channel_type_num = static_cast(bit_stream.read_bits_big_endian(4)); FLAC_VERIFY(channel_type_num < 0b1011, LoaderError::Format, "Channel assignment"); FlacFrameChannelType channel_type = (FlacFrameChannelType)channel_type_num; PcmSampleFormat bit_depth = TRY(convert_bit_depth_code(static_cast(bit_stream.read_bits_big_endian(3)))); reserved_bit = bit_stream.read_bit_big_endian(); FLAC_VERIFY(reserved_bit == 0, LoaderError::Category::Format, "Reserved frame header end bit"); // FIXME: sample number can be 8-56 bits, frame number can be 8-48 bits m_current_sample_or_frame = read_utf8_char(bit_stream); // Conditional header variables if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_8) { sample_count = static_cast(bit_stream.read_bits_big_endian(8)) + 1; } else if (sample_count == FLAC_BLOCKSIZE_AT_END_OF_HEADER_16) { sample_count = static_cast(bit_stream.read_bits_big_endian(16)) + 1; } if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_8) { frame_sample_rate = static_cast(bit_stream.read_bits_big_endian(8)) * 1000; } else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16) { frame_sample_rate = static_cast(bit_stream.read_bits_big_endian(16)); } else if (frame_sample_rate == FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10) { frame_sample_rate = static_cast(bit_stream.read_bits_big_endian(16)) * 10; } // TODO: check header checksum, see above [[maybe_unused]] u8 checksum = static_cast(bit_stream.read_bits(8)); dbgln_if(AFLACLOADER_DEBUG, "Frame: {} samples, {}bit {}Hz, channeltype {:x}, {} number {}, header checksum {}", sample_count, pcm_bits_per_sample(bit_depth), frame_sample_rate, channel_type_num, blocking_strategy ? "sample" : "frame", m_current_sample_or_frame, checksum); m_current_frame = FlacFrameHeader { sample_count, frame_sample_rate, channel_type, bit_depth, }; u8 subframe_count = frame_channel_type_to_channel_count(channel_type); Vector> current_subframes; current_subframes.ensure_capacity(subframe_count); for (u8 i = 0; i < subframe_count; ++i) { FlacSubframeHeader new_subframe = TRY(next_subframe_header(bit_stream, i)); Vector subframe_samples = TRY(parse_subframe(new_subframe, bit_stream)); current_subframes.append(move(subframe_samples)); } bit_stream.align_to_byte_boundary(); // TODO: check checksum, see above [[maybe_unused]] u16 footer_checksum = static_cast(bit_stream.read_bits_big_endian(16)); Vector left; Vector right; switch (channel_type) { case FlacFrameChannelType::Mono: left = right = current_subframes[0]; break; case FlacFrameChannelType::Stereo: // TODO mix together surround channels on each side? case FlacFrameChannelType::StereoCenter: case FlacFrameChannelType::Surround4p0: case FlacFrameChannelType::Surround5p0: case FlacFrameChannelType::Surround5p1: case FlacFrameChannelType::Surround6p1: case FlacFrameChannelType::Surround7p1: left = current_subframes[0]; right = current_subframes[1]; break; case FlacFrameChannelType::LeftSideStereo: // channels are left (0) and side (1) left = current_subframes[0]; right.ensure_capacity(left.size()); for (size_t i = 0; i < left.size(); ++i) { // right = left - side right.unchecked_append(left[i] - current_subframes[1][i]); } break; case FlacFrameChannelType::RightSideStereo: // channels are side (0) and right (1) right = current_subframes[1]; left.ensure_capacity(right.size()); for (size_t i = 0; i < right.size(); ++i) { // left = right + side left.unchecked_append(right[i] + current_subframes[0][i]); } break; case FlacFrameChannelType::MidSideStereo: // channels are mid (0) and side (1) left.ensure_capacity(current_subframes[0].size()); right.ensure_capacity(current_subframes[0].size()); for (size_t i = 0; i < current_subframes[0].size(); ++i) { i64 mid = current_subframes[0][i]; i64 side = current_subframes[1][i]; mid *= 2; // prevent integer division errors left.unchecked_append(static_cast((mid + side) / 2)); right.unchecked_append(static_cast((mid - side) / 2)); } break; } VERIFY(left.size() == right.size()); double sample_rescale = static_cast(1 << (pcm_bits_per_sample(m_current_frame->bit_depth) - 1)); dbgln_if(AFLACLOADER_DEBUG, "Sample rescaled from {} bits: factor {:.1f}", pcm_bits_per_sample(m_current_frame->bit_depth), sample_rescale); m_current_frame_data.clear_with_capacity(); m_current_frame_data.ensure_capacity(left.size()); // zip together channels for (size_t i = 0; i < left.size(); ++i) { Sample frame = { left[i] / sample_rescale, right[i] / sample_rescale }; m_current_frame_data.unchecked_append(frame); } return {}; #undef FLAC_VERIFY } ErrorOr FlacLoaderPlugin::convert_sample_count_code(u8 sample_count_code) { // single codes switch (sample_count_code) { case 0: return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), "Reserved block size" }; case 1: return 192; case 6: return FLAC_BLOCKSIZE_AT_END_OF_HEADER_8; case 7: return FLAC_BLOCKSIZE_AT_END_OF_HEADER_16; } if (sample_count_code >= 2 && sample_count_code <= 5) { return 576 * AK::exp2(sample_count_code - 2); } return 256 * AK::exp2(sample_count_code - 8); } ErrorOr FlacLoaderPlugin::convert_sample_rate_code(u8 sample_rate_code) { switch (sample_rate_code) { case 0: return m_sample_rate; case 1: return 88200; case 2: return 176400; case 3: return 192000; case 4: return 8000; case 5: return 16000; case 6: return 22050; case 7: return 24000; case 8: return 32000; case 9: return 44100; case 10: return 48000; case 11: return 96000; case 12: return FLAC_SAMPLERATE_AT_END_OF_HEADER_8; case 13: return FLAC_SAMPLERATE_AT_END_OF_HEADER_16; case 14: return FLAC_SAMPLERATE_AT_END_OF_HEADER_16X10; default: return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), "Invalid sample rate code" }; } } ErrorOr FlacLoaderPlugin::convert_bit_depth_code(u8 bit_depth_code) { switch (bit_depth_code) { case 0: return m_sample_format; case 1: return PcmSampleFormat::Uint8; case 4: return PcmSampleFormat::Int16; case 6: return PcmSampleFormat::Int24; case 3: case 7: return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), "Reserved sample size" }; default: return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), String::formatted("Unsupported sample size {}", bit_depth_code) }; } } u8 frame_channel_type_to_channel_count(FlacFrameChannelType channel_type) { if (channel_type <= 7) return channel_type + 1; return 2; } ErrorOr FlacLoaderPlugin::next_subframe_header(InputBitStream& bit_stream, u8 channel_index) { u8 bits_per_sample = static_cast(pcm_bits_per_sample(m_current_frame->bit_depth)); // For inter-channel correlation, the side channel needs an extra bit for its samples switch (m_current_frame->channels) { case LeftSideStereo: case MidSideStereo: if (channel_index == 1) { ++bits_per_sample; } break; case RightSideStereo: if (channel_index == 0) { ++bits_per_sample; } break; // "normal" channel types default: break; } // zero-bit padding if (bit_stream.read_bit_big_endian() != 0) return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), "Zero bit padding" }; // subframe type (encoding) u8 subframe_code = static_cast(bit_stream.read_bits_big_endian(6)); if ((subframe_code >= 0b000010 && subframe_code <= 0b000111) || (subframe_code > 0b001100 && subframe_code < 0b100000)) return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), "Subframe type" }; FlacSubframeType subframe_type; u8 order = 0; // LPC has the highest bit set if ((subframe_code & 0b100000) > 0) { subframe_type = FlacSubframeType::LPC; order = (subframe_code & 0b011111) + 1; } else if ((subframe_code & 0b001000) > 0) { // Fixed has the third-highest bit set subframe_type = FlacSubframeType::Fixed; order = (subframe_code & 0b000111); } else { subframe_type = (FlacSubframeType)subframe_code; } // wasted bits per sample (unary encoding) bool has_wasted_bits = bit_stream.read_bit_big_endian(); u8 k = 0; if (has_wasted_bits) { bool current_k_bit = 0; do { current_k_bit = bit_stream.read_bit_big_endian(); ++k; } while (current_k_bit != 1); } return FlacSubframeHeader { subframe_type, order, k, bits_per_sample }; } ErrorOr, LoaderError> FlacLoaderPlugin::parse_subframe(FlacSubframeHeader& subframe_header, InputBitStream& bit_input) { Vector samples; switch (subframe_header.type) { case FlacSubframeType::Constant: { u64 constant_value = bit_input.read_bits_big_endian(subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample); dbgln_if(AFLACLOADER_DEBUG, "Constant subframe: {}", constant_value); samples.ensure_capacity(m_current_frame->sample_count); VERIFY(subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample != 0); i32 constant = sign_extend(static_cast(constant_value), subframe_header.bits_per_sample - subframe_header.wasted_bits_per_sample); for (u32 i = 0; i < m_current_frame->sample_count; ++i) { samples.unchecked_append(constant); } break; } case FlacSubframeType::Fixed: { dbgln_if(AFLACLOADER_DEBUG, "Fixed LPC subframe order {}", subframe_header.order); samples = TRY(decode_fixed_lpc(subframe_header, bit_input)); break; } case FlacSubframeType::Verbatim: { dbgln_if(AFLACLOADER_DEBUG, "Verbatim subframe"); samples = TRY(decode_verbatim(subframe_header, bit_input)); break; } case FlacSubframeType::LPC: { dbgln_if(AFLACLOADER_DEBUG, "Custom LPC subframe order {}", subframe_header.order); samples = TRY(decode_custom_lpc(subframe_header, bit_input)); break; } default: return LoaderError { LoaderError::Category::Unimplemented, static_cast(m_current_sample_or_frame), "Unhandled FLAC subframe type" }; } for (size_t i = 0; i < samples.size(); ++i) { samples[i] <<= subframe_header.wasted_bits_per_sample; } ResampleHelper resampler(m_current_frame->sample_rate, m_sample_rate); return resampler.resample(samples); } // Decode a subframe that isn't actually encoded, usually seen in random data ErrorOr, LoaderError> FlacLoaderPlugin::decode_verbatim(FlacSubframeHeader& subframe, InputBitStream& bit_input) { Vector decoded; decoded.ensure_capacity(m_current_frame->sample_count); VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0); for (size_t i = 0; i < m_current_frame->sample_count; ++i) { decoded.unchecked_append(sign_extend( static_cast(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample)), subframe.bits_per_sample - subframe.wasted_bits_per_sample)); } return decoded; } // Decode a subframe encoded with a custom linear predictor coding, i.e. the subframe provides the polynomial order and coefficients ErrorOr, LoaderError> FlacLoaderPlugin::decode_custom_lpc(FlacSubframeHeader& subframe, InputBitStream& bit_input) { Vector decoded; decoded.ensure_capacity(m_current_frame->sample_count); VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0); // warm-up samples for (auto i = 0; i < subframe.order; ++i) { decoded.unchecked_append(sign_extend( static_cast(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample)), subframe.bits_per_sample - subframe.wasted_bits_per_sample)); } // precision of the coefficients u8 lpc_precision = static_cast(bit_input.read_bits_big_endian(4)); if (lpc_precision == 0b1111) return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), "Invalid linear predictor coefficient precision" }; lpc_precision += 1; // shift needed on the data (signed!) i8 lpc_shift = sign_extend(static_cast(bit_input.read_bits_big_endian(5)), 5); Vector coefficients; coefficients.ensure_capacity(subframe.order); // read coefficients for (auto i = 0; i < subframe.order; ++i) { u32 raw_coefficient = static_cast(bit_input.read_bits_big_endian(lpc_precision)); i32 coefficient = static_cast(sign_extend(raw_coefficient, lpc_precision)); coefficients.unchecked_append(coefficient); } dbgln_if(AFLACLOADER_DEBUG, "{}-bit {} shift coefficients: {}", lpc_precision, lpc_shift, coefficients); // decode residual decoded = TRY(decode_residual(decoded, subframe, bit_input)); // approximate the waveform with the predictor for (size_t i = subframe.order; i < m_current_frame->sample_count; ++i) { // (see below) i64 sample = 0; for (size_t t = 0; t < subframe.order; ++t) { // It's really important that we compute in 64-bit land here. // Even though FLAC operates at a maximum bit depth of 32 bits, modern encoders use super-large coefficients for maximum compression. // These will easily overflow 32 bits and cause strange white noise that apruptly stops intermittently (at the end of a frame). // The simple fix of course is to do intermediate computations in 64 bits. sample += static_cast(coefficients[t]) * static_cast(decoded[i - t - 1]); } decoded[i] += sample >> lpc_shift; } return decoded; } // Decode a subframe encoded with one of the fixed linear predictor codings ErrorOr, LoaderError> FlacLoaderPlugin::decode_fixed_lpc(FlacSubframeHeader& subframe, InputBitStream& bit_input) { Vector decoded; decoded.ensure_capacity(m_current_frame->sample_count); VERIFY(subframe.bits_per_sample - subframe.wasted_bits_per_sample != 0); // warm-up samples for (auto i = 0; i < subframe.order; ++i) { decoded.unchecked_append(sign_extend( static_cast(bit_input.read_bits_big_endian(subframe.bits_per_sample - subframe.wasted_bits_per_sample)), subframe.bits_per_sample - subframe.wasted_bits_per_sample)); } TRY(decode_residual(decoded, subframe, bit_input)); dbgln_if(AFLACLOADER_DEBUG, "decoded length {}, {} order predictor", decoded.size(), subframe.order); switch (subframe.order) { case 0: // s_0(t) = 0 for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i) decoded[i] += 0; break; case 1: // s_1(t) = s(t-1) for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i) decoded[i] += decoded[i - 1]; break; case 2: // s_2(t) = 2s(t-1) - s(t-2) for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i) decoded[i] += 2 * decoded[i - 1] - decoded[i - 2]; break; case 3: // s_3(t) = 3s(t-1) - 3s(t-2) + s(t-3) for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i) decoded[i] += 3 * decoded[i - 1] - 3 * decoded[i - 2] + decoded[i - 3]; break; case 4: // s_4(t) = 4s(t-1) - 6s(t-2) + 4s(t-3) - s(t-4) for (u32 i = subframe.order; i < m_current_frame->sample_count; ++i) decoded[i] += 4 * decoded[i - 1] - 6 * decoded[i - 2] + 4 * decoded[i - 3] - decoded[i - 4]; break; default: return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), String::formatted("Unrecognized predictor order {}", subframe.order) }; } return decoded; } // Decode the residual, the "error" between the function approximation and the actual audio data ErrorOr, LoaderError> FlacLoaderPlugin::decode_residual(Vector& decoded, FlacSubframeHeader& subframe, InputBitStream& bit_input) { u8 residual_mode = static_cast(bit_input.read_bits_big_endian(2)); u8 partition_order = static_cast(bit_input.read_bits_big_endian(4)); size_t partitions = 1 << partition_order; if (residual_mode == FlacResidualMode::Rice4Bit) { // decode a single Rice partition with four bits for the order k for (size_t i = 0; i < partitions; ++i) { auto rice_partition = decode_rice_partition(4, partitions, i, subframe, bit_input); decoded.extend(move(rice_partition)); } } else if (residual_mode == FlacResidualMode::Rice5Bit) { // five bits equivalent for (size_t i = 0; i < partitions; ++i) { auto rice_partition = decode_rice_partition(5, partitions, i, subframe, bit_input); decoded.extend(move(rice_partition)); } } else return LoaderError { LoaderError::Category::Format, static_cast(m_current_sample_or_frame), "Reserved residual coding method" }; return decoded; } // Decode a single Rice partition as part of the residual, every partition can have its own Rice parameter k ALWAYS_INLINE Vector FlacLoaderPlugin::decode_rice_partition(u8 partition_type, u32 partitions, u32 partition_index, FlacSubframeHeader& subframe, InputBitStream& bit_input) { // Rice parameter / Exp-Golomb order u8 k = static_cast(bit_input.read_bits_big_endian(partition_type)); u32 residual_sample_count; if (partitions == 0) residual_sample_count = m_current_frame->sample_count - subframe.order; else residual_sample_count = m_current_frame->sample_count / partitions; if (partition_index == 0) residual_sample_count -= subframe.order; Vector rice_partition; rice_partition.resize(residual_sample_count); // escape code for unencoded binary partition if (k == (1 << partition_type) - 1) { u8 unencoded_bps = static_cast(bit_input.read_bits_big_endian(5)); for (size_t r = 0; r < residual_sample_count; ++r) { rice_partition[r] = static_cast(bit_input.read_bits_big_endian(unencoded_bps)); } } else { for (size_t r = 0; r < residual_sample_count; ++r) { rice_partition[r] = decode_unsigned_exp_golomb(k, bit_input); } } return rice_partition; } // Decode a single number encoded with Rice/Exponential-Golomb encoding (the unsigned variant) ALWAYS_INLINE i32 decode_unsigned_exp_golomb(u8 k, InputBitStream& bit_input) { u8 q = 0; while (bit_input.read_bit_big_endian() == 0) ++q; // least significant bits (remainder) u32 rem = static_cast(bit_input.read_bits_big_endian(k)); u32 value = q << k | rem; return rice_to_signed(value); } u64 read_utf8_char(InputStream& input) { u64 character; u8 buffer = 0; Bytes buffer_bytes { &buffer, 1 }; input.read(buffer_bytes); u8 start_byte = buffer_bytes[0]; // Signal byte is zero: ASCII character if ((start_byte & 0b10000000) == 0) { return start_byte; } else if ((start_byte & 0b11000000) == 0b10000000) { // illegal continuation byte return 0; } // This algorithm is too good and supports the theoretical max 0xFF start byte u8 length = 1; while (((start_byte << length) & 0b10000000) == 0b10000000) ++length; u8 bits_from_start_byte = 8 - (length + 1); u8 start_byte_bitmask = AK::exp2(bits_from_start_byte) - 1; character = start_byte_bitmask & start_byte; for (u8 i = length - 1; i > 0; --i) { input.read(buffer_bytes); u8 current_byte = buffer_bytes[0]; character = (character << 6) | (current_byte & 0b00111111); } return character; } i64 sign_extend(u32 n, u8 size) { // negative if ((n & (1 << (size - 1))) > 0) { return static_cast(n | (0xffffffff << size)); } // positive return n; } i32 rice_to_signed(u32 x) { // positive numbers are even, negative numbers are odd // bitmask for conditionally inverting the entire number, thereby "negating" it i32 sign = -static_cast(x & 1); // copies the sign's sign onto the actual magnitude of x return static_cast(sign ^ (x >> 1)); } }