/* * Copyright (c) 2020, Andreas Kling * Copyright (c) 2021, Leon Albrecht * * SPDX-License-Identifier: BSD-2-Clause */ #include "SoftCPU.h" #include "Emulator.h" #include #include #include #include #include #include #include #if defined(AK_COMPILER_GCC) # pragma GCC optimize("O3") #endif #define TODO_INSN() \ do { \ reportln("\n=={}== Unimplemented instruction: {}\n"sv, getpid(), __FUNCTION__); \ m_emulator.dump_backtrace(); \ _exit(0); \ } while (0) #define FPU_INSTRUCTION(name) \ void SoftCPU::name(const X86::Instruction& insn) \ { \ m_fpu.name(insn); \ } #define VPU_INSTRUCTION(name) \ void SoftCPU::name(const X86::Instruction& insn) \ { \ m_vpu.name(insn); \ } #define DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(mnemonic, op) \ void SoftCPU::mnemonic##_RM8_1(const X86::Instruction& insn) \ { \ generic_RM8_1(op>, insn); \ } \ void SoftCPU::mnemonic##_RM8_CL(const X86::Instruction& insn) \ { \ generic_RM8_CL(op>, insn); \ } \ void SoftCPU::mnemonic##_RM8_imm8(const X86::Instruction& insn) \ { \ generic_RM8_imm8(op>, insn); \ } \ void SoftCPU::mnemonic##_RM16_1(const X86::Instruction& insn) \ { \ generic_RM16_1(op>, insn); \ } \ void SoftCPU::mnemonic##_RM16_CL(const X86::Instruction& insn) \ { \ generic_RM16_CL(op>, insn); \ } \ void SoftCPU::mnemonic##_RM16_imm8(const X86::Instruction& insn) \ { \ generic_RM16_unsigned_imm8(op>, insn); \ } \ void SoftCPU::mnemonic##_RM32_1(const X86::Instruction& insn) \ { \ generic_RM32_1(op>, insn); \ } \ void SoftCPU::mnemonic##_RM32_CL(const X86::Instruction& insn) \ { \ generic_RM32_CL(op>, insn); \ } \ void SoftCPU::mnemonic##_RM32_imm8(const X86::Instruction& insn) \ { \ generic_RM32_unsigned_imm8(op>, insn); \ } namespace UserspaceEmulator { template ALWAYS_INLINE void warn_if_uninitialized(T value_with_shadow, char const* message) { if (value_with_shadow.is_uninitialized()) [[unlikely]] { reportln("\033[31;1mWarning! Use of uninitialized value: {}\033[0m\n"sv, message); Emulator::the().dump_backtrace(); } } ALWAYS_INLINE void SoftCPU::warn_if_flags_tainted(char const* message) const { if (m_flags_tainted) [[unlikely]] { reportln("\n=={}== \033[31;1mConditional depends on uninitialized data\033[0m ({})\n"sv, getpid(), message); Emulator::the().dump_backtrace(); } } template constexpr T sign_extended_to(U value) { if (!(value & X86::TypeTrivia::sign_bit)) return value; return (X86::TypeTrivia::mask & ~X86::TypeTrivia::mask) | value; } SoftCPU::SoftCPU(Emulator& emulator) : m_emulator(emulator) , m_fpu(emulator, *this) , m_vpu(emulator, *this) { PartAddressableRegister empty_reg; explicit_bzero(&empty_reg, sizeof(empty_reg)); for (auto& gpr : m_gpr) gpr = ValueWithShadow::create_initialized(empty_reg); m_segment[(int)X86::SegmentRegister::CS] = 0x1b; m_segment[(int)X86::SegmentRegister::DS] = 0x23; m_segment[(int)X86::SegmentRegister::ES] = 0x23; m_segment[(int)X86::SegmentRegister::SS] = 0x23; m_segment[(int)X86::SegmentRegister::FS] = 0x23; m_segment[(int)X86::SegmentRegister::GS] = 0x2b; } void SoftCPU::dump() const { outln(" eax={:p} ebx={:p} ecx={:p} edx={:p} ebp={:p} esp={:p} esi={:p} edi={:p} o={:d} s={:d} z={:d} a={:d} p={:d} c={:d}", eax(), ebx(), ecx(), edx(), ebp(), esp(), esi(), edi(), of(), sf(), zf(), af(), pf(), cf()); outln("#eax={:hex-dump} #ebx={:hex-dump} #ecx={:hex-dump} #edx={:hex-dump} #ebhex-dump={:hex-dump} #eshex-dump={:hex-dump} #esi={:hex-dump} #edi={:hex-dump} #f={}", eax().shadow().span(), ebx().shadow().span(), ecx().shadow().span(), edx().shadow().span(), ebp().shadow().span(), esp().shadow().span(), esi().shadow().span(), edi().shadow().span(), m_flags_tainted); fflush(stdout); } void SoftCPU::update_code_cache() { auto* region = m_emulator.mmu().find_region({ cs(), eip() }); VERIFY(region); if (!region->is_executable()) { reportln("SoftCPU::update_code_cache: Non-executable region @ {:p}"sv, eip()); Emulator::the().dump_backtrace(); TODO(); } // FIXME: This cache needs to be invalidated if the code region is ever unmapped. m_cached_code_region = region; m_cached_code_base_ptr = region->data(); } ValueWithShadow SoftCPU::read_memory8(X86::LogicalAddress address) { VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b); auto value = m_emulator.mmu().read8(address); outln_if(MEMORY_DEBUG, "\033[36;1mread_memory8: @{:#04x}:{:p} -> {:#02x} ({:#02x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value()); return value; } ValueWithShadow SoftCPU::read_memory16(X86::LogicalAddress address) { VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b); auto value = m_emulator.mmu().read16(address); outln_if(MEMORY_DEBUG, "\033[36;1mread_memory16: @{:#04x}:{:p} -> {:#04x} ({:#04x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value()); return value; } ValueWithShadow SoftCPU::read_memory32(X86::LogicalAddress address) { VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b); auto value = m_emulator.mmu().read32(address); outln_if(MEMORY_DEBUG, "\033[36;1mread_memory32: @{:#04x}:{:p} -> {:#08x} ({:#08x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value()); return value; } ValueWithShadow SoftCPU::read_memory64(X86::LogicalAddress address) { VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b); auto value = m_emulator.mmu().read64(address); outln_if(MEMORY_DEBUG, "\033[36;1mread_memory64: @{:#04x}:{:p} -> {:#016x} ({:#016x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value()); return value; } ValueWithShadow SoftCPU::read_memory128(X86::LogicalAddress address) { VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b); auto value = m_emulator.mmu().read128(address); outln_if(MEMORY_DEBUG, "\033[36;1mread_memory128: @{:#04x}:{:p} -> {:#032x} ({:#032x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value()); return value; } ValueWithShadow SoftCPU::read_memory256(X86::LogicalAddress address) { VERIFY(address.selector() == 0x1b || address.selector() == 0x23 || address.selector() == 0x2b); auto value = m_emulator.mmu().read256(address); outln_if(MEMORY_DEBUG, "\033[36;1mread_memory256: @{:#04x}:{:p} -> {:#064x} ({:#064x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value()); return value; } void SoftCPU::write_memory8(X86::LogicalAddress address, ValueWithShadow value) { VERIFY(address.selector() == 0x23 || address.selector() == 0x2b); outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory8: @{:#04x}:{:p} <- {:#02x} ({:#02x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value()); m_emulator.mmu().write8(address, value); } void SoftCPU::write_memory16(X86::LogicalAddress address, ValueWithShadow value) { VERIFY(address.selector() == 0x23 || address.selector() == 0x2b); outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory16: @{:#04x}:{:p} <- {:#04x} ({:#04x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value()); m_emulator.mmu().write16(address, value); } void SoftCPU::write_memory32(X86::LogicalAddress address, ValueWithShadow value) { VERIFY(address.selector() == 0x23 || address.selector() == 0x2b); outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory32: @{:#04x}:{:p} <- {:#08x} ({:#08x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value()); m_emulator.mmu().write32(address, value); } void SoftCPU::write_memory64(X86::LogicalAddress address, ValueWithShadow value) { VERIFY(address.selector() == 0x23 || address.selector() == 0x2b); outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory64: @{:#04x}:{:p} <- {:#016x} ({:#016x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value()); m_emulator.mmu().write64(address, value); } void SoftCPU::write_memory128(X86::LogicalAddress address, ValueWithShadow value) { VERIFY(address.selector() == 0x23 || address.selector() == 0x2b); outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory128: @{:#04x}:{:p} <- {:#032x} ({:#032x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value()); m_emulator.mmu().write128(address, value); } void SoftCPU::write_memory256(X86::LogicalAddress address, ValueWithShadow value) { VERIFY(address.selector() == 0x23 || address.selector() == 0x2b); outln_if(MEMORY_DEBUG, "\033[36;1mwrite_memory256: @{:#04x}:{:p} <- {:#064x} ({:#064x})\033[0m", address.selector(), address.offset(), value, value.shadow_as_value()); m_emulator.mmu().write256(address, value); } void SoftCPU::push_string(StringView string) { u32 space_to_allocate = round_up_to_power_of_two(string.length() + 1, 16); set_esp({ esp().value() - space_to_allocate, esp().shadow() }); m_emulator.mmu().copy_to_vm(esp().value(), string.characters_without_null_termination(), string.length()); m_emulator.mmu().write8({ 0x23, esp().value() + string.length() }, shadow_wrap_as_initialized((u8)'\0')); } void SoftCPU::push_buffer(u8 const* data, size_t size) { set_esp({ esp().value() - size, esp().shadow() }); warn_if_uninitialized(esp(), "push_buffer"); m_emulator.mmu().copy_to_vm(esp().value(), data, size); } void SoftCPU::push32(ValueWithShadow value) { set_esp({ esp().value() - sizeof(u32), esp().shadow() }); warn_if_uninitialized(esp(), "push32"); write_memory32({ ss(), esp().value() }, value); } ValueWithShadow SoftCPU::pop32() { warn_if_uninitialized(esp(), "pop32"); auto value = read_memory32({ ss(), esp().value() }); set_esp({ esp().value() + sizeof(u32), esp().shadow() }); return value; } void SoftCPU::push16(ValueWithShadow value) { warn_if_uninitialized(esp(), "push16"); set_esp({ esp().value() - sizeof(u16), esp().shadow() }); write_memory16({ ss(), esp().value() }, value); } ValueWithShadow SoftCPU::pop16() { warn_if_uninitialized(esp(), "pop16"); auto value = read_memory16({ ss(), esp().value() }); set_esp({ esp().value() + sizeof(u16), esp().shadow() }); return value; } template void SoftCPU::do_once_or_repeat(const X86::Instruction& insn, Callback callback) { if (!insn.has_rep_prefix()) return callback(); while (loop_index(insn.address_size()).value()) { callback(); decrement_loop_index(insn.address_size()); if constexpr (check_zf) { warn_if_flags_tainted("repz/repnz"); if (insn.rep_prefix() == X86::Prefix::REPZ && !zf()) break; if (insn.rep_prefix() == X86::Prefix::REPNZ && zf()) break; } } } template ALWAYS_INLINE static T op_inc(SoftCPU& cpu, T data) { typename T::ValueType result; u32 new_flags = 0; if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("incl %%eax\n" : "=a"(result) : "a"(data.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("incw %%ax\n" : "=a"(result) : "a"(data.value())); } else if constexpr (sizeof(typename T::ValueType) == 1) { asm volatile("incb %%al\n" : "=a"(result) : "a"(data.value())); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oszap(new_flags); cpu.taint_flags_from(data); return shadow_wrap_with_taint_from(result, data); } template ALWAYS_INLINE static T op_dec(SoftCPU& cpu, T data) { typename T::ValueType result; u32 new_flags = 0; if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("decl %%eax\n" : "=a"(result) : "a"(data.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("decw %%ax\n" : "=a"(result) : "a"(data.value())); } else if constexpr (sizeof(typename T::ValueType) == 1) { asm volatile("decb %%al\n" : "=a"(result) : "a"(data.value())); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oszap(new_flags); cpu.taint_flags_from(data); return shadow_wrap_with_taint_from(result, data); } template ALWAYS_INLINE static T op_xor(SoftCPU& cpu, T const& dest, T const& src) { typename T::ValueType result; u32 new_flags = 0; if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("xorl %%ecx, %%eax\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("xor %%cx, %%ax\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else if constexpr (sizeof(typename T::ValueType) == 1) { asm volatile("xorb %%cl, %%al\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else { VERIFY_NOT_REACHED(); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oszpc(new_flags); cpu.taint_flags_from(dest, src); return shadow_wrap_with_taint_from(result, dest, src); } template ALWAYS_INLINE static T op_or(SoftCPU& cpu, T const& dest, T const& src) { typename T::ValueType result = 0; u32 new_flags = 0; if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("orl %%ecx, %%eax\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("or %%cx, %%ax\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else if constexpr (sizeof(typename T::ValueType) == 1) { asm volatile("orb %%cl, %%al\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else { VERIFY_NOT_REACHED(); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oszpc(new_flags); cpu.taint_flags_from(dest, src); return shadow_wrap_with_taint_from(result, dest, src); } template ALWAYS_INLINE static T op_sub(SoftCPU& cpu, T const& dest, T const& src) { typename T::ValueType result = 0; u32 new_flags = 0; if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("subl %%ecx, %%eax\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("subw %%cx, %%ax\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else if constexpr (sizeof(typename T::ValueType) == 1) { asm volatile("subb %%cl, %%al\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else { VERIFY_NOT_REACHED(); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oszapc(new_flags); cpu.taint_flags_from(dest, src); return shadow_wrap_with_taint_from(result, dest, src); } template ALWAYS_INLINE static T op_sbb_impl(SoftCPU& cpu, T const& dest, T const& src) { typename T::ValueType result = 0; u32 new_flags = 0; if constexpr (cf) asm volatile("stc"); else asm volatile("clc"); if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("sbbl %%ecx, %%eax\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("sbbw %%cx, %%ax\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else if constexpr (sizeof(typename T::ValueType) == 1) { asm volatile("sbbb %%cl, %%al\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else { VERIFY_NOT_REACHED(); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oszapc(new_flags); cpu.taint_flags_from(dest, src); return shadow_wrap_with_taint_from(result, dest, src); } template ALWAYS_INLINE static T op_sbb(SoftCPU& cpu, T& dest, T const& src) { cpu.warn_if_flags_tainted("sbb"); if (cpu.cf()) return op_sbb_impl(cpu, dest, src); return op_sbb_impl(cpu, dest, src); } template ALWAYS_INLINE static T op_add(SoftCPU& cpu, T& dest, T const& src) { typename T::ValueType result = 0; u32 new_flags = 0; if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("addl %%ecx, %%eax\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("addw %%cx, %%ax\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else if constexpr (sizeof(typename T::ValueType) == 1) { asm volatile("addb %%cl, %%al\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else { VERIFY_NOT_REACHED(); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oszapc(new_flags); cpu.taint_flags_from(dest, src); return shadow_wrap_with_taint_from(result, dest, src); } template ALWAYS_INLINE static T op_adc_impl(SoftCPU& cpu, T& dest, T const& src) { typename T::ValueType result = 0; u32 new_flags = 0; if constexpr (cf) asm volatile("stc"); else asm volatile("clc"); if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("adcl %%ecx, %%eax\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("adcw %%cx, %%ax\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else if constexpr (sizeof(typename T::ValueType) == 1) { asm volatile("adcb %%cl, %%al\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else { VERIFY_NOT_REACHED(); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oszapc(new_flags); cpu.taint_flags_from(dest, src); return shadow_wrap_with_taint_from(result, dest, src); } template ALWAYS_INLINE static T op_adc(SoftCPU& cpu, T& dest, T const& src) { cpu.warn_if_flags_tainted("adc"); if (cpu.cf()) return op_adc_impl(cpu, dest, src); return op_adc_impl(cpu, dest, src); } template ALWAYS_INLINE static T op_and(SoftCPU& cpu, T const& dest, T const& src) { typename T::ValueType result = 0; u32 new_flags = 0; if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("andl %%ecx, %%eax\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("andw %%cx, %%ax\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else if constexpr (sizeof(typename T::ValueType) == 1) { asm volatile("andb %%cl, %%al\n" : "=a"(result) : "a"(dest.value()), "c"(src.value())); } else { VERIFY_NOT_REACHED(); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oszpc(new_flags); cpu.taint_flags_from(dest, src); return shadow_wrap_with_taint_from(result, dest, src); } template ALWAYS_INLINE static void op_imul(SoftCPU& cpu, T const& dest, T const& src, T& result_high, T& result_low) { bool did_overflow = false; if constexpr (sizeof(T) == 4) { i64 result = (i64)src * (i64)dest; result_low = result & 0xffffffff; result_high = result >> 32; did_overflow = (result > NumericLimits::max() || result < NumericLimits::min()); } else if constexpr (sizeof(T) == 2) { i32 result = (i32)src * (i32)dest; result_low = result & 0xffff; result_high = result >> 16; did_overflow = (result > NumericLimits::max() || result < NumericLimits::min()); } else if constexpr (sizeof(T) == 1) { i16 result = (i16)src * (i16)dest; result_low = result & 0xff; result_high = result >> 8; did_overflow = (result > NumericLimits::max() || result < NumericLimits::min()); } if (did_overflow) { cpu.set_cf(true); cpu.set_of(true); } else { cpu.set_cf(false); cpu.set_of(false); } } template ALWAYS_INLINE static T op_shr(SoftCPU& cpu, T data, ValueWithShadow steps) { if (steps.value() == 0) return shadow_wrap_with_taint_from(data.value(), data, steps); u32 result = 0; u32 new_flags = 0; if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("shrl %%cl, %%eax\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("shrw %%cl, %%ax\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } else if constexpr (sizeof(typename T::ValueType) == 1) { asm volatile("shrb %%cl, %%al\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oszapc(new_flags); cpu.taint_flags_from(data, steps); return shadow_wrap_with_taint_from(result, data, steps); } template ALWAYS_INLINE static T op_shl(SoftCPU& cpu, T data, ValueWithShadow steps) { if (steps.value() == 0) return shadow_wrap_with_taint_from(data.value(), data, steps); u32 result = 0; u32 new_flags = 0; if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("shll %%cl, %%eax\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("shlw %%cl, %%ax\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } else if constexpr (sizeof(typename T::ValueType) == 1) { asm volatile("shlb %%cl, %%al\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oszapc(new_flags); cpu.taint_flags_from(data, steps); return shadow_wrap_with_taint_from(result, data, steps); } template ALWAYS_INLINE static T op_shrd(SoftCPU& cpu, T data, T extra_bits, ValueWithShadow steps) { if (steps.value() == 0) return shadow_wrap_with_taint_from(data.value(), data, steps); u32 result = 0; u32 new_flags = 0; if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("shrd %%cl, %%edx, %%eax\n" : "=a"(result) : "a"(data.value()), "d"(extra_bits.value()), "c"(steps.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("shrd %%cl, %%dx, %%ax\n" : "=a"(result) : "a"(data.value()), "d"(extra_bits.value()), "c"(steps.value())); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oszapc(new_flags); cpu.taint_flags_from(data, steps); return shadow_wrap_with_taint_from(result, data, steps); } template ALWAYS_INLINE static T op_shld(SoftCPU& cpu, T data, T extra_bits, ValueWithShadow steps) { if (steps.value() == 0) return shadow_wrap_with_taint_from(data.value(), data, steps); u32 result = 0; u32 new_flags = 0; if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("shld %%cl, %%edx, %%eax\n" : "=a"(result) : "a"(data.value()), "d"(extra_bits.value()), "c"(steps.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("shld %%cl, %%dx, %%ax\n" : "=a"(result) : "a"(data.value()), "d"(extra_bits.value()), "c"(steps.value())); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oszapc(new_flags); cpu.taint_flags_from(data, steps); return shadow_wrap_with_taint_from(result, data, steps); } template ALWAYS_INLINE void SoftCPU::generic_AL_imm8(Op op, const X86::Instruction& insn) { auto dest = al(); auto src = shadow_wrap_as_initialized(insn.imm8()); auto result = op(*this, dest, src); if (is_or && insn.imm8() == 0xff) result.set_initialized(); if (update_dest) set_al(result); } template ALWAYS_INLINE void SoftCPU::generic_AX_imm16(Op op, const X86::Instruction& insn) { auto dest = ax(); auto src = shadow_wrap_as_initialized(insn.imm16()); auto result = op(*this, dest, src); if (is_or && insn.imm16() == 0xffff) result.set_initialized(); if (update_dest) set_ax(result); } template ALWAYS_INLINE void SoftCPU::generic_EAX_imm32(Op op, const X86::Instruction& insn) { auto dest = eax(); auto src = shadow_wrap_as_initialized(insn.imm32()); auto result = op(*this, dest, src); if (is_or && insn.imm32() == 0xffffffff) result.set_initialized(); if (update_dest) set_eax(result); } template ALWAYS_INLINE void SoftCPU::generic_RM16_imm16(Op op, const X86::Instruction& insn) { auto dest = insn.modrm().read16(*this, insn); auto src = shadow_wrap_as_initialized(insn.imm16()); auto result = op(*this, dest, src); if (is_or && insn.imm16() == 0xffff) result.set_initialized(); if (update_dest) insn.modrm().write16(*this, insn, result); } template ALWAYS_INLINE void SoftCPU::generic_RM16_imm8(Op op, const X86::Instruction& insn) { auto dest = insn.modrm().read16(*this, insn); auto src = shadow_wrap_as_initialized(sign_extended_to(insn.imm8())); auto result = op(*this, dest, src); if (is_or && src.value() == 0xffff) result.set_initialized(); if (update_dest) insn.modrm().write16(*this, insn, result); } template ALWAYS_INLINE void SoftCPU::generic_RM16_unsigned_imm8(Op op, const X86::Instruction& insn) { auto dest = insn.modrm().read16(*this, insn); auto src = shadow_wrap_as_initialized(insn.imm8()); auto result = op(*this, dest, src); if (update_dest) insn.modrm().write16(*this, insn, result); } template ALWAYS_INLINE void SoftCPU::generic_RM16_reg16(Op op, const X86::Instruction& insn) { auto dest = insn.modrm().read16(*this, insn); auto src = const_gpr16(insn.reg16()); auto result = op(*this, dest, src); if (dont_taint_for_same_operand && insn.modrm().is_register() && insn.modrm().register_index() == insn.register_index()) { result.set_initialized(); m_flags_tainted = false; } if (update_dest) insn.modrm().write16(*this, insn, result); } template ALWAYS_INLINE void SoftCPU::generic_RM32_imm32(Op op, const X86::Instruction& insn) { auto dest = insn.modrm().read32(*this, insn); auto src = insn.imm32(); auto result = op(*this, dest, shadow_wrap_as_initialized(src)); if (is_or && src == 0xffffffff) result.set_initialized(); if (update_dest) insn.modrm().write32(*this, insn, result); } template ALWAYS_INLINE void SoftCPU::generic_RM32_imm8(Op op, const X86::Instruction& insn) { auto dest = insn.modrm().read32(*this, insn); auto src = sign_extended_to(insn.imm8()); auto result = op(*this, dest, shadow_wrap_as_initialized(src)); if (is_or && src == 0xffffffff) result.set_initialized(); if (update_dest) insn.modrm().write32(*this, insn, result); } template ALWAYS_INLINE void SoftCPU::generic_RM32_unsigned_imm8(Op op, const X86::Instruction& insn) { auto dest = insn.modrm().read32(*this, insn); auto src = shadow_wrap_as_initialized(insn.imm8()); auto result = op(*this, dest, src); if (update_dest) insn.modrm().write32(*this, insn, result); } template ALWAYS_INLINE void SoftCPU::generic_RM32_reg32(Op op, const X86::Instruction& insn) { auto dest = insn.modrm().read32(*this, insn); auto src = const_gpr32(insn.reg32()); auto result = op(*this, dest, src); if (dont_taint_for_same_operand && insn.modrm().is_register() && insn.modrm().register_index() == insn.register_index()) { result.set_initialized(); m_flags_tainted = false; } if (update_dest) insn.modrm().write32(*this, insn, result); } template ALWAYS_INLINE void SoftCPU::generic_RM8_imm8(Op op, const X86::Instruction& insn) { auto dest = insn.modrm().read8(*this, insn); auto src = insn.imm8(); auto result = op(*this, dest, shadow_wrap_as_initialized(src)); if (is_or && src == 0xff) result.set_initialized(); if (update_dest) insn.modrm().write8(*this, insn, result); } template ALWAYS_INLINE void SoftCPU::generic_RM8_reg8(Op op, const X86::Instruction& insn) { auto dest = insn.modrm().read8(*this, insn); auto src = const_gpr8(insn.reg8()); auto result = op(*this, dest, src); if (dont_taint_for_same_operand && insn.modrm().is_register() && insn.modrm().register_index() == insn.register_index()) { result.set_initialized(); m_flags_tainted = false; } if (update_dest) insn.modrm().write8(*this, insn, result); } template ALWAYS_INLINE void SoftCPU::generic_reg16_RM16(Op op, const X86::Instruction& insn) { auto dest = const_gpr16(insn.reg16()); auto src = insn.modrm().read16(*this, insn); auto result = op(*this, dest, src); if (dont_taint_for_same_operand && insn.modrm().is_register() && insn.modrm().register_index() == insn.register_index()) { result.set_initialized(); m_flags_tainted = false; } if (update_dest) gpr16(insn.reg16()) = result; } template ALWAYS_INLINE void SoftCPU::generic_reg32_RM32(Op op, const X86::Instruction& insn) { auto dest = const_gpr32(insn.reg32()); auto src = insn.modrm().read32(*this, insn); auto result = op(*this, dest, src); if (dont_taint_for_same_operand && insn.modrm().is_register() && insn.modrm().register_index() == insn.register_index()) { result.set_initialized(); m_flags_tainted = false; } if (update_dest) gpr32(insn.reg32()) = result; } template ALWAYS_INLINE void SoftCPU::generic_reg8_RM8(Op op, const X86::Instruction& insn) { auto dest = const_gpr8(insn.reg8()); auto src = insn.modrm().read8(*this, insn); auto result = op(*this, dest, src); if (dont_taint_for_same_operand && insn.modrm().is_register() && insn.modrm().register_index() == insn.register_index()) { result.set_initialized(); m_flags_tainted = false; } if (update_dest) gpr8(insn.reg8()) = result; } template ALWAYS_INLINE void SoftCPU::generic_RM8_1(Op op, const X86::Instruction& insn) { auto data = insn.modrm().read8(*this, insn); insn.modrm().write8(*this, insn, op(*this, data, shadow_wrap_as_initialized(1))); } template ALWAYS_INLINE void SoftCPU::generic_RM8_CL(Op op, const X86::Instruction& insn) { auto data = insn.modrm().read8(*this, insn); insn.modrm().write8(*this, insn, op(*this, data, cl())); } template ALWAYS_INLINE void SoftCPU::generic_RM16_1(Op op, const X86::Instruction& insn) { auto data = insn.modrm().read16(*this, insn); insn.modrm().write16(*this, insn, op(*this, data, shadow_wrap_as_initialized(1))); } template ALWAYS_INLINE void SoftCPU::generic_RM16_CL(Op op, const X86::Instruction& insn) { auto data = insn.modrm().read16(*this, insn); insn.modrm().write16(*this, insn, op(*this, data, cl())); } template ALWAYS_INLINE void SoftCPU::generic_RM32_1(Op op, const X86::Instruction& insn) { auto data = insn.modrm().read32(*this, insn); insn.modrm().write32(*this, insn, op(*this, data, shadow_wrap_as_initialized(1))); } template ALWAYS_INLINE void SoftCPU::generic_RM32_CL(Op op, const X86::Instruction& insn) { auto data = insn.modrm().read32(*this, insn); insn.modrm().write32(*this, insn, op(*this, data, cl())); } void SoftCPU::AAA(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::AAD(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::AAM(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::AAS(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::ARPL(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::BOUND(const X86::Instruction&) { TODO_INSN(); } template ALWAYS_INLINE static T op_bsf(SoftCPU&, T value) { return { (typename T::ValueType)bit_scan_forward(value.value()), value.shadow() }; } template ALWAYS_INLINE static T op_bsr(SoftCPU&, T value) { typename T::ValueType bit_index = 0; if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("bsrl %%eax, %%edx" : "=d"(bit_index) : "a"(value.value())); } if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("bsrw %%ax, %%dx" : "=d"(bit_index) : "a"(value.value())); } return shadow_wrap_with_taint_from(bit_index, value); } void SoftCPU::BSF_reg16_RM16(const X86::Instruction& insn) { auto src = insn.modrm().read16(*this, insn); set_zf(!src.value()); if (src.value()) gpr16(insn.reg16()) = op_bsf(*this, src); taint_flags_from(src); } void SoftCPU::BSF_reg32_RM32(const X86::Instruction& insn) { auto src = insn.modrm().read32(*this, insn); set_zf(!src.value()); if (src.value()) { gpr32(insn.reg32()) = op_bsf(*this, src); taint_flags_from(src); } } void SoftCPU::BSR_reg16_RM16(const X86::Instruction& insn) { auto src = insn.modrm().read16(*this, insn); set_zf(!src.value()); if (src.value()) { gpr16(insn.reg16()) = op_bsr(*this, src); taint_flags_from(src); } } void SoftCPU::BSR_reg32_RM32(const X86::Instruction& insn) { auto src = insn.modrm().read32(*this, insn); set_zf(!src.value()); if (src.value()) { gpr32(insn.reg32()) = op_bsr(*this, src); taint_flags_from(src); } } void SoftCPU::BSWAP_reg32(const X86::Instruction& insn) { gpr32(insn.reg32()) = { __builtin_bswap32(gpr32(insn.reg32()).value()), __builtin_bswap32(gpr32(insn.reg32()).shadow_as_value()) }; } template ALWAYS_INLINE static T op_bt(T value, T) { return value; } template ALWAYS_INLINE static T op_bts(T value, T bit_mask) { return value | bit_mask; } template ALWAYS_INLINE static T op_btr(T value, T bit_mask) { return value & ~bit_mask; } template ALWAYS_INLINE static T op_btc(T value, T bit_mask) { return value ^ bit_mask; } template ALWAYS_INLINE void BTx_RM16_reg16(SoftCPU& cpu, const X86::Instruction& insn, Op op) { if (insn.modrm().is_register()) { unsigned bit_index = cpu.const_gpr16(insn.reg16()).value() & (X86::TypeTrivia::bits - 1); auto original = insn.modrm().read16(cpu, insn); u16 bit_mask = 1 << bit_index; u16 result = op(original.value(), bit_mask); cpu.set_cf((original.value() & bit_mask) != 0); cpu.taint_flags_from(cpu.gpr16(insn.reg16()), original); if (should_update) insn.modrm().write16(cpu, insn, shadow_wrap_with_taint_from(result, cpu.gpr16(insn.reg16()), original)); return; } // FIXME: Is this supposed to perform a full 16-bit read/modify/write? unsigned bit_offset_in_array = cpu.const_gpr16(insn.reg16()).value() / 8; unsigned bit_offset_in_byte = cpu.const_gpr16(insn.reg16()).value() & 7; auto address = insn.modrm().resolve(cpu, insn); address.set_offset(address.offset() + bit_offset_in_array); auto dest = cpu.read_memory8(address); u8 bit_mask = 1 << bit_offset_in_byte; u8 result = op(dest.value(), bit_mask); cpu.set_cf((dest.value() & bit_mask) != 0); cpu.taint_flags_from(cpu.gpr16(insn.reg16()), dest); if (should_update) cpu.write_memory8(address, shadow_wrap_with_taint_from(result, cpu.gpr16(insn.reg16()), dest)); } template ALWAYS_INLINE void BTx_RM32_reg32(SoftCPU& cpu, const X86::Instruction& insn, Op op) { if (insn.modrm().is_register()) { unsigned bit_index = cpu.const_gpr32(insn.reg32()).value() & (X86::TypeTrivia::bits - 1); auto original = insn.modrm().read32(cpu, insn); u32 bit_mask = 1 << bit_index; u32 result = op(original.value(), bit_mask); cpu.set_cf((original.value() & bit_mask) != 0); cpu.taint_flags_from(cpu.gpr32(insn.reg32()), original); if (should_update) insn.modrm().write32(cpu, insn, shadow_wrap_with_taint_from(result, cpu.gpr32(insn.reg32()), original)); return; } // FIXME: Is this supposed to perform a full 32-bit read/modify/write? unsigned bit_offset_in_array = cpu.const_gpr32(insn.reg32()).value() / 8; unsigned bit_offset_in_byte = cpu.const_gpr32(insn.reg32()).value() & 7; auto address = insn.modrm().resolve(cpu, insn); address.set_offset(address.offset() + bit_offset_in_array); auto dest = cpu.read_memory8(address); u8 bit_mask = 1 << bit_offset_in_byte; u8 result = op(dest.value(), bit_mask); cpu.set_cf((dest.value() & bit_mask) != 0); cpu.taint_flags_from(cpu.gpr32(insn.reg32()), dest); if (should_update) cpu.write_memory8(address, shadow_wrap_with_taint_from(result, cpu.gpr32(insn.reg32()), dest)); } template ALWAYS_INLINE void BTx_RM16_imm8(SoftCPU& cpu, const X86::Instruction& insn, Op op) { unsigned bit_index = insn.imm8() & (X86::TypeTrivia::mask); // FIXME: Support higher bit indices VERIFY(bit_index < 16); auto original = insn.modrm().read16(cpu, insn); u16 bit_mask = 1 << bit_index; auto result = op(original.value(), bit_mask); cpu.set_cf((original.value() & bit_mask) != 0); cpu.taint_flags_from(original); if (should_update) insn.modrm().write16(cpu, insn, shadow_wrap_with_taint_from(result, original)); } template ALWAYS_INLINE void BTx_RM32_imm8(SoftCPU& cpu, const X86::Instruction& insn, Op op) { unsigned bit_index = insn.imm8() & (X86::TypeTrivia::mask); // FIXME: Support higher bit indices VERIFY(bit_index < 32); auto original = insn.modrm().read32(cpu, insn); u32 bit_mask = 1 << bit_index; auto result = op(original.value(), bit_mask); cpu.set_cf((original.value() & bit_mask) != 0); cpu.taint_flags_from(original); if (should_update) insn.modrm().write32(cpu, insn, shadow_wrap_with_taint_from(result, original)); } #define DEFINE_GENERIC_BTx_INSN_HANDLERS(mnemonic, op, update_dest) \ void SoftCPU::mnemonic##_RM32_reg32(const X86::Instruction& insn) \ { \ BTx_RM32_reg32(*this, insn, op); \ } \ void SoftCPU::mnemonic##_RM16_reg16(const X86::Instruction& insn) \ { \ BTx_RM16_reg16(*this, insn, op); \ } \ void SoftCPU::mnemonic##_RM32_imm8(const X86::Instruction& insn) \ { \ BTx_RM32_imm8(*this, insn, op); \ } \ void SoftCPU::mnemonic##_RM16_imm8(const X86::Instruction& insn) \ { \ BTx_RM16_imm8(*this, insn, op); \ } DEFINE_GENERIC_BTx_INSN_HANDLERS(BTS, op_bts, true); DEFINE_GENERIC_BTx_INSN_HANDLERS(BTR, op_btr, true); DEFINE_GENERIC_BTx_INSN_HANDLERS(BTC, op_btc, true); DEFINE_GENERIC_BTx_INSN_HANDLERS(BT, op_bt, false); void SoftCPU::CALL_FAR_mem16(const X86::Instruction&) { TODO(); } void SoftCPU::CALL_FAR_mem32(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::CALL_RM16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::CALL_RM32(const X86::Instruction& insn) { auto address = insn.modrm().read32(*this, insn); push32(shadow_wrap_as_initialized(eip())); warn_if_uninitialized(address, "call rm32"); set_eip(address.value()); // FIXME: this won't catch at the moment due to us not having a way to set // the watch point m_emulator.call_callback(address.value()); } void SoftCPU::CALL_imm16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::CALL_imm16_imm16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::CALL_imm16_imm32(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::CALL_imm32(const X86::Instruction& insn) { push32(shadow_wrap_as_initialized(eip())); set_eip(eip() + (i32)insn.imm32()); // FIXME: this won't catch at the moment due to us not having a way to set // the watch point m_emulator.call_callback(eip() + (i32)insn.imm32()); } void SoftCPU::CBW(const X86::Instruction&) { set_ah(shadow_wrap_with_taint_from((al().value() & 0x80) ? 0xff : 0x00, al())); } void SoftCPU::CDQ(const X86::Instruction&) { if (eax().value() & 0x80000000) set_edx(shadow_wrap_with_taint_from(0xffffffff, eax())); else set_edx(shadow_wrap_with_taint_from(0, eax())); } void SoftCPU::CLC(const X86::Instruction&) { set_cf(false); } void SoftCPU::CLD(const X86::Instruction&) { set_df(false); } void SoftCPU::CLI(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::CLTS(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::CMC(const X86::Instruction&) { set_cf(!cf()); } void SoftCPU::CMOVcc_reg16_RM16(const X86::Instruction& insn) { warn_if_flags_tainted("cmovcc reg16, rm16"); if (evaluate_condition(insn.cc())) gpr16(insn.reg16()) = insn.modrm().read16(*this, insn); } void SoftCPU::CMOVcc_reg32_RM32(const X86::Instruction& insn) { warn_if_flags_tainted("cmovcc reg32, rm32"); if (evaluate_condition(insn.cc())) gpr32(insn.reg32()) = insn.modrm().read32(*this, insn); } template ALWAYS_INLINE static void do_cmps(SoftCPU& cpu, const X86::Instruction& insn) { auto src_segment = cpu.segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)); cpu.do_once_or_repeat(insn, [&] { auto src = cpu.read_memory({ src_segment, cpu.source_index(insn.address_size()).value() }); auto dest = cpu.read_memory({ cpu.es(), cpu.destination_index(insn.address_size()).value() }); op_sub(cpu, dest, src); cpu.step_source_index(insn.address_size(), sizeof(T)); cpu.step_destination_index(insn.address_size(), sizeof(T)); }); } void SoftCPU::CMPSB(const X86::Instruction& insn) { do_cmps(*this, insn); } void SoftCPU::CMPSD(const X86::Instruction& insn) { do_cmps(*this, insn); } void SoftCPU::CMPSW(const X86::Instruction& insn) { do_cmps(*this, insn); } void SoftCPU::CMPXCHG_RM16_reg16(const X86::Instruction& insn) { auto current = insn.modrm().read16(*this, insn); taint_flags_from(current, ax()); if (current.value() == ax().value()) { set_zf(true); insn.modrm().write16(*this, insn, const_gpr16(insn.reg16())); } else { set_zf(false); set_ax(current); } } void SoftCPU::CMPXCHG_RM32_reg32(const X86::Instruction& insn) { auto current = insn.modrm().read32(*this, insn); taint_flags_from(current, eax()); if (current.value() == eax().value()) { set_zf(true); insn.modrm().write32(*this, insn, const_gpr32(insn.reg32())); } else { set_zf(false); set_eax(current); } } void SoftCPU::CMPXCHG_RM8_reg8(const X86::Instruction& insn) { auto current = insn.modrm().read8(*this, insn); taint_flags_from(current, al()); if (current.value() == al().value()) { set_zf(true); insn.modrm().write8(*this, insn, const_gpr8(insn.reg8())); } else { set_zf(false); set_al(current); } } void SoftCPU::CPUID(const X86::Instruction&) { if (eax().value() == 0) { set_eax(shadow_wrap_as_initialized(1)); set_ebx(shadow_wrap_as_initialized(0x6c6c6548)); set_edx(shadow_wrap_as_initialized(0x6972466f)); set_ecx(shadow_wrap_as_initialized(0x73646e65)); return; } if (eax().value() == 1) { u32 stepping = 0; u32 model = 1; u32 family = 3; u32 type = 0; set_eax(shadow_wrap_as_initialized(stepping | (model << 4) | (family << 8) | (type << 12))); set_ebx(shadow_wrap_as_initialized(0)); set_edx(shadow_wrap_as_initialized((1 << 15))); // Features (CMOV) set_ecx(shadow_wrap_as_initialized(0)); return; } dbgln("Unhandled CPUID with eax={:p}", eax().value()); } void SoftCPU::CWD(const X86::Instruction&) { set_dx(shadow_wrap_with_taint_from((ax().value() & 0x8000) ? 0xffff : 0x0000, ax())); } void SoftCPU::CWDE(const X86::Instruction&) { set_eax(shadow_wrap_with_taint_from(sign_extended_to(ax().value()), ax())); } void SoftCPU::DAA(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::DAS(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::DEC_RM16(const X86::Instruction& insn) { insn.modrm().write16(*this, insn, op_dec(*this, insn.modrm().read16(*this, insn))); } void SoftCPU::DEC_RM32(const X86::Instruction& insn) { insn.modrm().write32(*this, insn, op_dec(*this, insn.modrm().read32(*this, insn))); } void SoftCPU::DEC_RM8(const X86::Instruction& insn) { insn.modrm().write8(*this, insn, op_dec(*this, insn.modrm().read8(*this, insn))); } void SoftCPU::DEC_reg16(const X86::Instruction& insn) { gpr16(insn.reg16()) = op_dec(*this, const_gpr16(insn.reg16())); } void SoftCPU::DEC_reg32(const X86::Instruction& insn) { gpr32(insn.reg32()) = op_dec(*this, const_gpr32(insn.reg32())); } void SoftCPU::DIV_RM16(const X86::Instruction& insn) { auto divisor = insn.modrm().read16(*this, insn); if (divisor.value() == 0) { reportln("Divide by zero"sv); TODO(); } u32 dividend = ((u32)dx().value() << 16) | ax().value(); auto quotient = dividend / divisor.value(); if (quotient > NumericLimits::max()) { reportln("Divide overflow"sv); TODO(); } auto remainder = dividend % divisor.value(); auto original_ax = ax(); set_ax(shadow_wrap_with_taint_from(quotient, original_ax, dx())); set_dx(shadow_wrap_with_taint_from(remainder, original_ax, dx())); } void SoftCPU::DIV_RM32(const X86::Instruction& insn) { auto divisor = insn.modrm().read32(*this, insn); if (divisor.value() == 0) { reportln("Divide by zero"sv); TODO(); } u64 dividend = ((u64)edx().value() << 32) | eax().value(); auto quotient = dividend / divisor.value(); if (quotient > NumericLimits::max()) { reportln("Divide overflow"sv); TODO(); } auto remainder = dividend % divisor.value(); auto original_eax = eax(); set_eax(shadow_wrap_with_taint_from(quotient, original_eax, edx(), divisor)); set_edx(shadow_wrap_with_taint_from(remainder, original_eax, edx(), divisor)); } void SoftCPU::DIV_RM8(const X86::Instruction& insn) { auto divisor = insn.modrm().read8(*this, insn); if (divisor.value() == 0) { reportln("Divide by zero"sv); TODO(); } u16 dividend = ax().value(); auto quotient = dividend / divisor.value(); if (quotient > NumericLimits::max()) { reportln("Divide overflow"sv); TODO(); } auto remainder = dividend % divisor.value(); auto original_ax = ax(); set_al(shadow_wrap_with_taint_from(quotient, original_ax, divisor)); set_ah(shadow_wrap_with_taint_from(remainder, original_ax, divisor)); } void SoftCPU::ENTER16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::ENTER32(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::ESCAPE(const X86::Instruction&) { reportln("FIXME: x87 floating-point support"sv); m_emulator.dump_backtrace(); TODO(); } FPU_INSTRUCTION(FADD_RM32); FPU_INSTRUCTION(FMUL_RM32); FPU_INSTRUCTION(FCOM_RM32); FPU_INSTRUCTION(FCOMP_RM32); FPU_INSTRUCTION(FSUB_RM32); FPU_INSTRUCTION(FSUBR_RM32); FPU_INSTRUCTION(FDIV_RM32); FPU_INSTRUCTION(FDIVR_RM32); FPU_INSTRUCTION(FLD_RM32); FPU_INSTRUCTION(FXCH); FPU_INSTRUCTION(FST_RM32); FPU_INSTRUCTION(FNOP); FPU_INSTRUCTION(FSTP_RM32); FPU_INSTRUCTION(FLDENV); FPU_INSTRUCTION(FCHS); FPU_INSTRUCTION(FABS); FPU_INSTRUCTION(FTST); FPU_INSTRUCTION(FXAM); FPU_INSTRUCTION(FLDCW); FPU_INSTRUCTION(FLD1); FPU_INSTRUCTION(FLDL2T); FPU_INSTRUCTION(FLDL2E); FPU_INSTRUCTION(FLDPI); FPU_INSTRUCTION(FLDLG2); FPU_INSTRUCTION(FLDLN2); FPU_INSTRUCTION(FLDZ); FPU_INSTRUCTION(FNSTENV); FPU_INSTRUCTION(F2XM1); FPU_INSTRUCTION(FYL2X); FPU_INSTRUCTION(FPTAN); FPU_INSTRUCTION(FPATAN); FPU_INSTRUCTION(FXTRACT); FPU_INSTRUCTION(FPREM1); FPU_INSTRUCTION(FDECSTP); FPU_INSTRUCTION(FINCSTP); FPU_INSTRUCTION(FNSTCW); FPU_INSTRUCTION(FPREM); FPU_INSTRUCTION(FYL2XP1); FPU_INSTRUCTION(FSQRT); FPU_INSTRUCTION(FSINCOS); FPU_INSTRUCTION(FRNDINT); FPU_INSTRUCTION(FSCALE); FPU_INSTRUCTION(FSIN); FPU_INSTRUCTION(FCOS); FPU_INSTRUCTION(FIADD_RM32); FPU_INSTRUCTION(FCMOVB); FPU_INSTRUCTION(FIMUL_RM32); FPU_INSTRUCTION(FCMOVE); FPU_INSTRUCTION(FICOM_RM32); FPU_INSTRUCTION(FCMOVBE); FPU_INSTRUCTION(FICOMP_RM32); FPU_INSTRUCTION(FCMOVU); FPU_INSTRUCTION(FISUB_RM32); FPU_INSTRUCTION(FISUBR_RM32); FPU_INSTRUCTION(FUCOMPP); FPU_INSTRUCTION(FIDIV_RM32); FPU_INSTRUCTION(FIDIVR_RM32); FPU_INSTRUCTION(FILD_RM32); FPU_INSTRUCTION(FCMOVNB); FPU_INSTRUCTION(FISTTP_RM32); FPU_INSTRUCTION(FCMOVNE); FPU_INSTRUCTION(FIST_RM32); FPU_INSTRUCTION(FCMOVNBE); FPU_INSTRUCTION(FISTP_RM32); FPU_INSTRUCTION(FCMOVNU); FPU_INSTRUCTION(FNENI); FPU_INSTRUCTION(FNDISI); FPU_INSTRUCTION(FNCLEX); FPU_INSTRUCTION(FNINIT); FPU_INSTRUCTION(FNSETPM); FPU_INSTRUCTION(FLD_RM80); FPU_INSTRUCTION(FUCOMI); FPU_INSTRUCTION(FCOMI); FPU_INSTRUCTION(FSTP_RM80); FPU_INSTRUCTION(FADD_RM64); FPU_INSTRUCTION(FMUL_RM64); FPU_INSTRUCTION(FCOM_RM64); FPU_INSTRUCTION(FCOMP_RM64); FPU_INSTRUCTION(FSUB_RM64); FPU_INSTRUCTION(FSUBR_RM64); FPU_INSTRUCTION(FDIV_RM64); FPU_INSTRUCTION(FDIVR_RM64); FPU_INSTRUCTION(FLD_RM64); FPU_INSTRUCTION(FFREE); FPU_INSTRUCTION(FISTTP_RM64); FPU_INSTRUCTION(FST_RM64); FPU_INSTRUCTION(FSTP_RM64); FPU_INSTRUCTION(FRSTOR); FPU_INSTRUCTION(FUCOM); FPU_INSTRUCTION(FUCOMP); FPU_INSTRUCTION(FNSAVE); FPU_INSTRUCTION(FNSTSW); FPU_INSTRUCTION(FIADD_RM16); FPU_INSTRUCTION(FADDP); FPU_INSTRUCTION(FIMUL_RM16); FPU_INSTRUCTION(FMULP); FPU_INSTRUCTION(FICOM_RM16); FPU_INSTRUCTION(FICOMP_RM16); FPU_INSTRUCTION(FCOMPP); FPU_INSTRUCTION(FISUB_RM16); FPU_INSTRUCTION(FSUBRP); FPU_INSTRUCTION(FISUBR_RM16); FPU_INSTRUCTION(FSUBP); FPU_INSTRUCTION(FIDIV_RM16); FPU_INSTRUCTION(FDIVRP); FPU_INSTRUCTION(FIDIVR_RM16); FPU_INSTRUCTION(FDIVP); FPU_INSTRUCTION(FILD_RM16); FPU_INSTRUCTION(FFREEP); FPU_INSTRUCTION(FISTTP_RM16); FPU_INSTRUCTION(FIST_RM16); FPU_INSTRUCTION(FISTP_RM16); FPU_INSTRUCTION(FBLD_M80); FPU_INSTRUCTION(FNSTSW_AX); FPU_INSTRUCTION(FILD_RM64); FPU_INSTRUCTION(FUCOMIP); FPU_INSTRUCTION(FBSTP_M80); FPU_INSTRUCTION(FCOMIP); FPU_INSTRUCTION(FISTP_RM64); void SoftCPU::HLT(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::IDIV_RM16(const X86::Instruction& insn) { auto divisor_with_shadow = insn.modrm().read16(*this, insn); auto divisor = (i16)divisor_with_shadow.value(); if (divisor == 0) { reportln("Divide by zero"sv); TODO(); } i32 dividend = (i32)(((u32)dx().value() << 16) | (u32)ax().value()); i32 result = dividend / divisor; if (result > NumericLimits::max() || result < NumericLimits::min()) { reportln("Divide overflow"sv); TODO(); } auto original_ax = ax(); set_ax(shadow_wrap_with_taint_from(result, original_ax, dx(), divisor_with_shadow)); set_dx(shadow_wrap_with_taint_from(dividend % divisor, original_ax, dx(), divisor_with_shadow)); } void SoftCPU::IDIV_RM32(const X86::Instruction& insn) { auto divisor_with_shadow = insn.modrm().read32(*this, insn); auto divisor = (i32)divisor_with_shadow.value(); if (divisor == 0) { reportln("Divide by zero"sv); TODO(); } i64 dividend = (i64)(((u64)edx().value() << 32) | (u64)eax().value()); i64 result = dividend / divisor; if (result > NumericLimits::max() || result < NumericLimits::min()) { reportln("Divide overflow"sv); TODO(); } auto original_eax = eax(); set_eax(shadow_wrap_with_taint_from(result, original_eax, edx(), divisor_with_shadow)); set_edx(shadow_wrap_with_taint_from(dividend % divisor, original_eax, edx(), divisor_with_shadow)); } void SoftCPU::IDIV_RM8(const X86::Instruction& insn) { auto divisor_with_shadow = insn.modrm().read8(*this, insn); auto divisor = (i8)divisor_with_shadow.value(); if (divisor == 0) { reportln("Divide by zero"sv); TODO(); } i16 dividend = ax().value(); i16 result = dividend / divisor; if (result > NumericLimits::max() || result < NumericLimits::min()) { reportln("Divide overflow"sv); TODO(); } auto original_ax = ax(); set_al(shadow_wrap_with_taint_from(result, divisor_with_shadow, original_ax)); set_ah(shadow_wrap_with_taint_from(dividend % divisor, divisor_with_shadow, original_ax)); } void SoftCPU::IMUL_RM16(const X86::Instruction& insn) { i16 result_high; i16 result_low; auto src = insn.modrm().read16(*this, insn); op_imul(*this, src.value(), ax().value(), result_high, result_low); gpr16(X86::RegisterDX) = shadow_wrap_with_taint_from(result_high, src, ax()); gpr16(X86::RegisterAX) = shadow_wrap_with_taint_from(result_low, src, ax()); } void SoftCPU::IMUL_RM32(const X86::Instruction& insn) { i32 result_high; i32 result_low; auto src = insn.modrm().read32(*this, insn); op_imul(*this, src.value(), eax().value(), result_high, result_low); gpr32(X86::RegisterEDX) = shadow_wrap_with_taint_from(result_high, src, eax()); gpr32(X86::RegisterEAX) = shadow_wrap_with_taint_from(result_low, src, eax()); } void SoftCPU::IMUL_RM8(const X86::Instruction& insn) { i8 result_high; i8 result_low; auto src = insn.modrm().read8(*this, insn); op_imul(*this, src.value(), al().value(), result_high, result_low); gpr8(X86::RegisterAH) = shadow_wrap_with_taint_from(result_high, src, al()); gpr8(X86::RegisterAL) = shadow_wrap_with_taint_from(result_low, src, al()); } void SoftCPU::IMUL_reg16_RM16(const X86::Instruction& insn) { i16 result_high; i16 result_low; auto src = insn.modrm().read16(*this, insn); op_imul(*this, gpr16(insn.reg16()).value(), src.value(), result_high, result_low); gpr16(insn.reg16()) = shadow_wrap_with_taint_from(result_low, src, gpr16(insn.reg16())); } void SoftCPU::IMUL_reg16_RM16_imm16(const X86::Instruction& insn) { i16 result_high; i16 result_low; auto src = insn.modrm().read16(*this, insn); op_imul(*this, src.value(), insn.imm16(), result_high, result_low); gpr16(insn.reg16()) = shadow_wrap_with_taint_from(result_low, src); } void SoftCPU::IMUL_reg16_RM16_imm8(const X86::Instruction& insn) { i16 result_high; i16 result_low; auto src = insn.modrm().read16(*this, insn); op_imul(*this, src.value(), sign_extended_to(insn.imm8()), result_high, result_low); gpr16(insn.reg16()) = shadow_wrap_with_taint_from(result_low, src); } void SoftCPU::IMUL_reg32_RM32(const X86::Instruction& insn) { i32 result_high; i32 result_low; auto src = insn.modrm().read32(*this, insn); op_imul(*this, gpr32(insn.reg32()).value(), src.value(), result_high, result_low); gpr32(insn.reg32()) = shadow_wrap_with_taint_from(result_low, src, gpr32(insn.reg32())); } void SoftCPU::IMUL_reg32_RM32_imm32(const X86::Instruction& insn) { i32 result_high; i32 result_low; auto src = insn.modrm().read32(*this, insn); op_imul(*this, src.value(), insn.imm32(), result_high, result_low); gpr32(insn.reg32()) = shadow_wrap_with_taint_from(result_low, src); } void SoftCPU::IMUL_reg32_RM32_imm8(const X86::Instruction& insn) { i32 result_high; i32 result_low; auto src = insn.modrm().read32(*this, insn); op_imul(*this, src.value(), sign_extended_to(insn.imm8()), result_high, result_low); gpr32(insn.reg32()) = shadow_wrap_with_taint_from(result_low, src); } void SoftCPU::INC_RM16(const X86::Instruction& insn) { insn.modrm().write16(*this, insn, op_inc(*this, insn.modrm().read16(*this, insn))); } void SoftCPU::INC_RM32(const X86::Instruction& insn) { insn.modrm().write32(*this, insn, op_inc(*this, insn.modrm().read32(*this, insn))); } void SoftCPU::INC_RM8(const X86::Instruction& insn) { insn.modrm().write8(*this, insn, op_inc(*this, insn.modrm().read8(*this, insn))); } void SoftCPU::INC_reg16(const X86::Instruction& insn) { gpr16(insn.reg16()) = op_inc(*this, const_gpr16(insn.reg16())); } void SoftCPU::INC_reg32(const X86::Instruction& insn) { gpr32(insn.reg32()) = op_inc(*this, const_gpr32(insn.reg32())); } void SoftCPU::INSB(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::INSD(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::INSW(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::INT1(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::INT3(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::INTO(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::INT_imm8(const X86::Instruction& insn) { VERIFY(insn.imm8() == 0x82); // FIXME: virt_syscall should take ValueWithShadow and whine about uninitialized arguments set_eax(shadow_wrap_as_initialized(m_emulator.virt_syscall(eax().value(), edx().value(), ecx().value(), ebx().value()))); } void SoftCPU::INVLPG(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::IN_AL_DX(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::IN_AL_imm8(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::IN_AX_DX(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::IN_AX_imm8(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::IN_EAX_DX(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::IN_EAX_imm8(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::IRET(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::JCXZ_imm8(const X86::Instruction& insn) { switch (insn.address_size()) { case X86::AddressSize::Size32: warn_if_uninitialized(ecx(), "jecxz imm8"); if (ecx().value() == 0) set_eip(eip() + (i8)insn.imm8()); break; case X86::AddressSize::Size16: warn_if_uninitialized(cx(), "jcxz imm8"); if (cx().value() == 0) set_eip(eip() + (i8)insn.imm8()); break; default: VERIFY_NOT_REACHED(); } } void SoftCPU::JMP_FAR_mem16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::JMP_FAR_mem32(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::JMP_RM16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::JMP_RM32(const X86::Instruction& insn) { set_eip(insn.modrm().read32(*this, insn).value()); } void SoftCPU::JMP_imm16(const X86::Instruction& insn) { set_eip(eip() + (i16)insn.imm16()); } void SoftCPU::JMP_imm16_imm16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::JMP_imm16_imm32(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::JMP_imm32(const X86::Instruction& insn) { set_eip(eip() + (i32)insn.imm32()); } void SoftCPU::JMP_short_imm8(const X86::Instruction& insn) { set_eip(eip() + (i8)insn.imm8()); } void SoftCPU::Jcc_NEAR_imm(const X86::Instruction& insn) { warn_if_flags_tainted("jcc near imm32"); if (evaluate_condition(insn.cc())) set_eip(eip() + (i32)insn.imm32()); } void SoftCPU::Jcc_imm8(const X86::Instruction& insn) { warn_if_flags_tainted("jcc imm8"); if (evaluate_condition(insn.cc())) set_eip(eip() + (i8)insn.imm8()); } void SoftCPU::LAHF(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LAR_reg16_RM16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LAR_reg32_RM32(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LDS_reg16_mem16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LDS_reg32_mem32(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LEAVE16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LEAVE32(const X86::Instruction&) { auto new_ebp = read_memory32({ ss(), ebp().value() }); set_esp({ ebp().value() + 4, ebp().shadow() }); set_ebp(new_ebp); } void SoftCPU::LEA_reg16_mem16(const X86::Instruction& insn) { // FIXME: Respect shadow values gpr16(insn.reg16()) = shadow_wrap_as_initialized(insn.modrm().resolve(*this, insn).offset()); } void SoftCPU::LEA_reg32_mem32(const X86::Instruction& insn) { // FIXME: Respect shadow values gpr32(insn.reg32()) = shadow_wrap_as_initialized(insn.modrm().resolve(*this, insn).offset()); } void SoftCPU::LES_reg16_mem16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LES_reg32_mem32(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LFS_reg16_mem16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LFS_reg32_mem32(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LGDT(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LGS_reg16_mem16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LGS_reg32_mem32(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LIDT(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LLDT_RM16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LMSW_RM16(const X86::Instruction&) { TODO_INSN(); } template ALWAYS_INLINE static void do_lods(SoftCPU& cpu, const X86::Instruction& insn) { auto src_segment = cpu.segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)); cpu.do_once_or_repeat(insn, [&] { auto src = cpu.read_memory({ src_segment, cpu.source_index(insn.address_size()).value() }); cpu.gpr(X86::RegisterAL) = src; cpu.step_source_index(insn.address_size(), sizeof(T)); }); } void SoftCPU::LODSB(const X86::Instruction& insn) { do_lods(*this, insn); } void SoftCPU::LODSD(const X86::Instruction& insn) { do_lods(*this, insn); } void SoftCPU::LODSW(const X86::Instruction& insn) { do_lods(*this, insn); } void SoftCPU::LOOPNZ_imm8(const X86::Instruction& insn) { warn_if_flags_tainted("loopnz"); switch (insn.address_size()) { case X86::AddressSize::Size32: set_ecx({ ecx().value() - 1, ecx().shadow() }); if (ecx().value() != 0 && !zf()) set_eip(eip() + (i8)insn.imm8()); break; case X86::AddressSize::Size16: set_cx({ (u16)(cx().value() - 1), cx().shadow() }); if (cx().value() != 0 && !zf()) set_eip(eip() + (i8)insn.imm8()); break; default: VERIFY_NOT_REACHED(); } } void SoftCPU::LOOPZ_imm8(const X86::Instruction& insn) { warn_if_flags_tainted("loopz"); switch (insn.address_size()) { case X86::AddressSize::Size32: set_ecx({ ecx().value() - 1, ecx().shadow() }); if (ecx().value() != 0 && zf()) set_eip(eip() + (i8)insn.imm8()); break; case X86::AddressSize::Size16: set_cx({ (u16)(cx().value() - 1), cx().shadow() }); if (cx().value() != 0 && zf()) set_eip(eip() + (i8)insn.imm8()); break; default: VERIFY_NOT_REACHED(); } } void SoftCPU::LOOP_imm8(const X86::Instruction& insn) { switch (insn.address_size()) { case X86::AddressSize::Size32: set_ecx({ ecx().value() - 1, ecx().shadow() }); if (ecx().value() != 0) set_eip(eip() + (i8)insn.imm8()); break; case X86::AddressSize::Size16: set_cx({ (u16)(cx().value() - 1), cx().shadow() }); if (cx().value() != 0) set_eip(eip() + (i8)insn.imm8()); break; default: VERIFY_NOT_REACHED(); } } void SoftCPU::LSL_reg16_RM16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LSL_reg32_RM32(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LSS_reg16_mem16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LSS_reg32_mem32(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::LTR_RM16(const X86::Instruction&) { TODO_INSN(); } template ALWAYS_INLINE static void do_movs(SoftCPU& cpu, const X86::Instruction& insn) { auto src_segment = cpu.segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)); cpu.do_once_or_repeat(insn, [&] { auto src = cpu.read_memory({ src_segment, cpu.source_index(insn.address_size()).value() }); cpu.write_memory({ cpu.es(), cpu.destination_index(insn.address_size()).value() }, src); cpu.step_source_index(insn.address_size(), sizeof(T)); cpu.step_destination_index(insn.address_size(), sizeof(T)); }); } void SoftCPU::MOVSB(const X86::Instruction& insn) { do_movs(*this, insn); } void SoftCPU::MOVSD(const X86::Instruction& insn) { do_movs(*this, insn); } void SoftCPU::MOVSW(const X86::Instruction& insn) { do_movs(*this, insn); } void SoftCPU::MOVSX_reg16_RM8(const X86::Instruction& insn) { auto src = insn.modrm().read8(*this, insn); gpr16(insn.reg16()) = shadow_wrap_with_taint_from(sign_extended_to(src.value()), src); } void SoftCPU::MOVSX_reg32_RM16(const X86::Instruction& insn) { auto src = insn.modrm().read16(*this, insn); gpr32(insn.reg32()) = shadow_wrap_with_taint_from(sign_extended_to(src.value()), src); } void SoftCPU::MOVSX_reg32_RM8(const X86::Instruction& insn) { auto src = insn.modrm().read8(*this, insn); gpr32(insn.reg32()) = shadow_wrap_with_taint_from(sign_extended_to(src.value()), src); } void SoftCPU::MOVZX_reg16_RM8(const X86::Instruction& insn) { auto src = insn.modrm().read8(*this, insn); gpr16(insn.reg16()) = ValueWithShadow(src.value(), 0x0100 | (src.shadow_as_value() & 0xff)); } void SoftCPU::MOVZX_reg32_RM16(const X86::Instruction& insn) { auto src = insn.modrm().read16(*this, insn); gpr32(insn.reg32()) = ValueWithShadow(src.value(), 0x01010000 | (src.shadow_as_value() & 0xffff)); } void SoftCPU::MOVZX_reg32_RM8(const X86::Instruction& insn) { auto src = insn.modrm().read8(*this, insn); gpr32(insn.reg32()) = ValueWithShadow(src.value(), 0x01010100 | (src.shadow_as_value() & 0xff)); } void SoftCPU::MOV_AL_moff8(const X86::Instruction& insn) { set_al(read_memory8({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() })); } void SoftCPU::MOV_AX_moff16(const X86::Instruction& insn) { set_ax(read_memory16({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() })); } void SoftCPU::MOV_CR_reg32(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::MOV_DR_reg32(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::MOV_EAX_moff32(const X86::Instruction& insn) { set_eax(read_memory32({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() })); } void SoftCPU::MOV_RM16_imm16(const X86::Instruction& insn) { insn.modrm().write16(*this, insn, shadow_wrap_as_initialized(insn.imm16())); } void SoftCPU::MOV_RM16_reg16(const X86::Instruction& insn) { insn.modrm().write16(*this, insn, const_gpr16(insn.reg16())); } void SoftCPU::MOV_RM16_seg(X86::Instruction const& insn) { insn.modrm().write16(*this, insn, shadow_wrap_as_initialized(m_segment[to_underlying(insn.segment_register())])); } void SoftCPU::MOV_RM32_imm32(const X86::Instruction& insn) { insn.modrm().write32(*this, insn, shadow_wrap_as_initialized(insn.imm32())); } void SoftCPU::MOV_RM32_reg32(const X86::Instruction& insn) { insn.modrm().write32(*this, insn, const_gpr32(insn.reg32())); } void SoftCPU::MOV_RM8_imm8(const X86::Instruction& insn) { insn.modrm().write8(*this, insn, shadow_wrap_as_initialized(insn.imm8())); } void SoftCPU::MOV_RM8_reg8(const X86::Instruction& insn) { insn.modrm().write8(*this, insn, const_gpr8(insn.reg8())); } void SoftCPU::MOV_moff16_AX(const X86::Instruction& insn) { write_memory16({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() }, ax()); } void SoftCPU::MOV_moff32_EAX(const X86::Instruction& insn) { write_memory32({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() }, eax()); } void SoftCPU::MOV_moff8_AL(const X86::Instruction& insn) { write_memory8({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), insn.imm_address() }, al()); } void SoftCPU::MOV_reg16_RM16(const X86::Instruction& insn) { gpr16(insn.reg16()) = insn.modrm().read16(*this, insn); } void SoftCPU::MOV_reg16_imm16(const X86::Instruction& insn) { gpr16(insn.reg16()) = shadow_wrap_as_initialized(insn.imm16()); } void SoftCPU::MOV_reg32_CR(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::MOV_reg32_DR(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::MOV_reg32_RM32(const X86::Instruction& insn) { gpr32(insn.reg32()) = insn.modrm().read32(*this, insn); } void SoftCPU::MOV_reg32_imm32(const X86::Instruction& insn) { gpr32(insn.reg32()) = shadow_wrap_as_initialized(insn.imm32()); } void SoftCPU::MOV_reg8_RM8(const X86::Instruction& insn) { gpr8(insn.reg8()) = insn.modrm().read8(*this, insn); } void SoftCPU::MOV_reg8_imm8(const X86::Instruction& insn) { gpr8(insn.reg8()) = shadow_wrap_as_initialized(insn.imm8()); } void SoftCPU::write_segment_register(X86::SegmentRegister segment_register, ValueWithShadow value) { // FIXME: Validate the segment selector and raise exception if necessary. // FIXME: Complain if uninitialized data is moved into a segment register. m_segment[to_underlying(segment_register)] = value.value(); } void SoftCPU::MOV_seg_RM16(X86::Instruction const& insn) { write_segment_register(insn.segment_register(), insn.modrm().read16(*this, insn)); } void SoftCPU::MOV_seg_RM32(X86::Instruction const& insn) { // NOTE: This instruction performs a 32-bit read but only the bottom 16 bits are used since segment registers are 16-bit. auto value = insn.modrm().read32(*this, insn); write_segment_register(insn.segment_register(), ValueWithShadow(value.value(), value.shadow_as_value())); } void SoftCPU::MUL_RM16(const X86::Instruction& insn) { auto src = insn.modrm().read16(*this, insn); u32 result = (u32)ax().value() * (u32)src.value(); auto original_ax = ax(); set_ax(shadow_wrap_with_taint_from(result & 0xffff, src, original_ax)); set_dx(shadow_wrap_with_taint_from(result >> 16, src, original_ax)); taint_flags_from(src, original_ax); set_cf(dx().value() != 0); set_of(dx().value() != 0); } void SoftCPU::MUL_RM32(const X86::Instruction& insn) { auto src = insn.modrm().read32(*this, insn); u64 result = (u64)eax().value() * (u64)src.value(); auto original_eax = eax(); set_eax(shadow_wrap_with_taint_from(result, src, original_eax)); set_edx(shadow_wrap_with_taint_from(result >> 32, src, original_eax)); taint_flags_from(src, original_eax); set_cf(edx().value() != 0); set_of(edx().value() != 0); } void SoftCPU::MUL_RM8(const X86::Instruction& insn) { auto src = insn.modrm().read8(*this, insn); u16 result = (u16)al().value() * src.value(); auto original_al = al(); set_ax(shadow_wrap_with_taint_from(result, src, original_al)); taint_flags_from(src, original_al); set_cf((result & 0xff00) != 0); set_of((result & 0xff00) != 0); } void SoftCPU::NEG_RM16(const X86::Instruction& insn) { insn.modrm().write16(*this, insn, op_sub>(*this, shadow_wrap_as_initialized(0), insn.modrm().read16(*this, insn))); } void SoftCPU::NEG_RM32(const X86::Instruction& insn) { insn.modrm().write32(*this, insn, op_sub>(*this, shadow_wrap_as_initialized(0), insn.modrm().read32(*this, insn))); } void SoftCPU::NEG_RM8(const X86::Instruction& insn) { insn.modrm().write8(*this, insn, op_sub>(*this, shadow_wrap_as_initialized(0), insn.modrm().read8(*this, insn))); } void SoftCPU::NOP(const X86::Instruction&) { } void SoftCPU::NOT_RM16(const X86::Instruction& insn) { auto data = insn.modrm().read16(*this, insn); insn.modrm().write16(*this, insn, ValueWithShadow(~data.value(), data.shadow())); } void SoftCPU::NOT_RM32(const X86::Instruction& insn) { auto data = insn.modrm().read32(*this, insn); insn.modrm().write32(*this, insn, ValueWithShadow(~data.value(), data.shadow())); } void SoftCPU::NOT_RM8(const X86::Instruction& insn) { auto data = insn.modrm().read8(*this, insn); insn.modrm().write8(*this, insn, ValueWithShadow(~data.value(), data.shadow())); } void SoftCPU::OUTSB(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::OUTSD(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::OUTSW(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::OUT_DX_AL(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::OUT_DX_AX(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::OUT_DX_EAX(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::OUT_imm8_AL(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::OUT_imm8_AX(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::OUT_imm8_EAX(const X86::Instruction&) { TODO_INSN(); } FPU_INSTRUCTION(PACKSSDW_mm1_mm2m64); FPU_INSTRUCTION(PACKSSWB_mm1_mm2m64); FPU_INSTRUCTION(PACKUSWB_mm1_mm2m64); FPU_INSTRUCTION(PADDB_mm1_mm2m64); FPU_INSTRUCTION(PADDW_mm1_mm2m64); FPU_INSTRUCTION(PADDD_mm1_mm2m64); FPU_INSTRUCTION(PADDSB_mm1_mm2m64); FPU_INSTRUCTION(PADDSW_mm1_mm2m64); FPU_INSTRUCTION(PADDUSB_mm1_mm2m64); FPU_INSTRUCTION(PADDUSW_mm1_mm2m64); FPU_INSTRUCTION(PAND_mm1_mm2m64); FPU_INSTRUCTION(PANDN_mm1_mm2m64); FPU_INSTRUCTION(PCMPEQB_mm1_mm2m64); FPU_INSTRUCTION(PCMPEQW_mm1_mm2m64); FPU_INSTRUCTION(PCMPEQD_mm1_mm2m64); FPU_INSTRUCTION(PCMPGTB_mm1_mm2m64); FPU_INSTRUCTION(PCMPGTW_mm1_mm2m64); FPU_INSTRUCTION(PCMPGTD_mm1_mm2m64); FPU_INSTRUCTION(PMADDWD_mm1_mm2m64); FPU_INSTRUCTION(PMULHW_mm1_mm2m64); FPU_INSTRUCTION(PMULLW_mm1_mm2m64); void SoftCPU::POPA(const X86::Instruction&) { set_di(pop16()); set_si(pop16()); set_bp(pop16()); pop16(); set_bx(pop16()); set_dx(pop16()); set_cx(pop16()); set_ax(pop16()); } void SoftCPU::POPAD(const X86::Instruction&) { set_edi(pop32()); set_esi(pop32()); set_ebp(pop32()); pop32(); set_ebx(pop32()); set_edx(pop32()); set_ecx(pop32()); set_eax(pop32()); } void SoftCPU::POPF(const X86::Instruction&) { auto popped_value = pop16(); m_eflags &= ~0xffff; m_eflags |= popped_value.value(); taint_flags_from(popped_value); } void SoftCPU::POPFD(const X86::Instruction&) { auto popped_value = pop32(); m_eflags &= ~0x00fcffff; m_eflags |= popped_value.value() & 0x00fcffff; taint_flags_from(popped_value); } void SoftCPU::POP_DS(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::POP_ES(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::POP_FS(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::POP_GS(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::POP_RM16(const X86::Instruction& insn) { insn.modrm().write16(*this, insn, pop16()); } void SoftCPU::POP_RM32(const X86::Instruction& insn) { insn.modrm().write32(*this, insn, pop32()); } void SoftCPU::POP_SS(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::POP_reg16(const X86::Instruction& insn) { gpr16(insn.reg16()) = pop16(); } void SoftCPU::POP_reg32(const X86::Instruction& insn) { gpr32(insn.reg32()) = pop32(); } FPU_INSTRUCTION(POR_mm1_mm2m64); FPU_INSTRUCTION(PSLLW_mm1_mm2m64); FPU_INSTRUCTION(PSLLW_mm1_imm8); FPU_INSTRUCTION(PSLLD_mm1_mm2m64); FPU_INSTRUCTION(PSLLD_mm1_imm8); FPU_INSTRUCTION(PSLLQ_mm1_mm2m64); FPU_INSTRUCTION(PSLLQ_mm1_imm8); FPU_INSTRUCTION(PSRAW_mm1_mm2m64); FPU_INSTRUCTION(PSRAW_mm1_imm8); FPU_INSTRUCTION(PSRAD_mm1_mm2m64); FPU_INSTRUCTION(PSRAD_mm1_imm8); FPU_INSTRUCTION(PSRLW_mm1_mm2m64); FPU_INSTRUCTION(PSRLW_mm1_imm8); FPU_INSTRUCTION(PSRLD_mm1_mm2m64); FPU_INSTRUCTION(PSRLD_mm1_imm8); FPU_INSTRUCTION(PSRLQ_mm1_mm2m64); FPU_INSTRUCTION(PSRLQ_mm1_imm8); FPU_INSTRUCTION(PSUBB_mm1_mm2m64); FPU_INSTRUCTION(PSUBW_mm1_mm2m64); FPU_INSTRUCTION(PSUBD_mm1_mm2m64); FPU_INSTRUCTION(PSUBSB_mm1_mm2m64); FPU_INSTRUCTION(PSUBSW_mm1_mm2m64); FPU_INSTRUCTION(PSUBUSB_mm1_mm2m64); FPU_INSTRUCTION(PSUBUSW_mm1_mm2m64); FPU_INSTRUCTION(PUNPCKHBW_mm1_mm2m64); FPU_INSTRUCTION(PUNPCKHWD_mm1_mm2m64); FPU_INSTRUCTION(PUNPCKHDQ_mm1_mm2m64); FPU_INSTRUCTION(PUNPCKLBW_mm1_mm2m32); FPU_INSTRUCTION(PUNPCKLWD_mm1_mm2m32); FPU_INSTRUCTION(PUNPCKLDQ_mm1_mm2m32); void SoftCPU::PUSHA(const X86::Instruction&) { auto temp = sp(); push16(ax()); push16(cx()); push16(dx()); push16(bx()); push16(temp); push16(bp()); push16(si()); push16(di()); } void SoftCPU::PUSHAD(const X86::Instruction&) { auto temp = esp(); push32(eax()); push32(ecx()); push32(edx()); push32(ebx()); push32(temp); push32(ebp()); push32(esi()); push32(edi()); } void SoftCPU::PUSHF(const X86::Instruction&) { // FIXME: Respect shadow flags when they exist! push16(shadow_wrap_as_initialized(m_eflags & 0xffff)); } void SoftCPU::PUSHFD(const X86::Instruction&) { // FIXME: Respect shadow flags when they exist! push32(shadow_wrap_as_initialized(m_eflags & 0x00fcffff)); } void SoftCPU::PUSH_CS(X86::Instruction const&) { push16(shadow_wrap_as_initialized(cs())); } void SoftCPU::PUSH_DS(X86::Instruction const&) { push16(shadow_wrap_as_initialized(ds())); } void SoftCPU::PUSH_ES(X86::Instruction const&) { push16(shadow_wrap_as_initialized(es())); } void SoftCPU::PUSH_FS(X86::Instruction const&) { push16(shadow_wrap_as_initialized(fs())); } void SoftCPU::PUSH_GS(X86::Instruction const&) { push16(shadow_wrap_as_initialized(gs())); } void SoftCPU::PUSH_RM16(const X86::Instruction& insn) { push16(insn.modrm().read16(*this, insn)); } void SoftCPU::PUSH_RM32(const X86::Instruction& insn) { push32(insn.modrm().read32(*this, insn)); } void SoftCPU::PUSH_SP_8086_80186(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::PUSH_SS(X86::Instruction const&) { push16(shadow_wrap_as_initialized(ss())); } void SoftCPU::PUSH_imm16(const X86::Instruction& insn) { push16(shadow_wrap_as_initialized(insn.imm16())); } void SoftCPU::PUSH_imm32(const X86::Instruction& insn) { push32(shadow_wrap_as_initialized(insn.imm32())); } void SoftCPU::PUSH_imm8(const X86::Instruction& insn) { VERIFY(!insn.has_operand_size_override_prefix()); push32(shadow_wrap_as_initialized(sign_extended_to(insn.imm8()))); } void SoftCPU::PUSH_reg16(const X86::Instruction& insn) { push16(gpr16(insn.reg16())); } void SoftCPU::PUSH_reg32(const X86::Instruction& insn) { push32(gpr32(insn.reg32())); } FPU_INSTRUCTION(PXOR_mm1_mm2m64); template ALWAYS_INLINE static T op_rcl_impl(SoftCPU& cpu, T data, ValueWithShadow steps) { if (steps.value() == 0) return shadow_wrap_with_taint_from(data.value(), data, steps); u32 result = 0; u32 new_flags = 0; if constexpr (cf) asm volatile("stc"); else asm volatile("clc"); if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("rcll %%cl, %%eax\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("rclw %%cl, %%ax\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } else if constexpr (sizeof(typename T::ValueType) == 1) { asm volatile("rclb %%cl, %%al\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oc(new_flags); cpu.taint_flags_from(data, steps); return shadow_wrap_with_taint_from(result, data, steps); } template ALWAYS_INLINE static T op_rcl(SoftCPU& cpu, T data, ValueWithShadow steps) { cpu.warn_if_flags_tainted("rcl"); if (cpu.cf()) return op_rcl_impl(cpu, data, steps); return op_rcl_impl(cpu, data, steps); } DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(RCL, op_rcl) template ALWAYS_INLINE static T op_rcr_impl(SoftCPU& cpu, T data, ValueWithShadow steps) { if (steps.value() == 0) return shadow_wrap_with_taint_from(data.value(), data, steps); u32 result = 0; u32 new_flags = 0; if constexpr (cf) asm volatile("stc"); else asm volatile("clc"); if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("rcrl %%cl, %%eax\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("rcrw %%cl, %%ax\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } else if constexpr (sizeof(typename T::ValueType) == 1) { asm volatile("rcrb %%cl, %%al\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oc(new_flags); return shadow_wrap_with_taint_from(result, data, steps); } template ALWAYS_INLINE static T op_rcr(SoftCPU& cpu, T data, ValueWithShadow steps) { cpu.warn_if_flags_tainted("rcr"); if (cpu.cf()) return op_rcr_impl(cpu, data, steps); return op_rcr_impl(cpu, data, steps); } DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(RCR, op_rcr) void SoftCPU::RDTSC(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::RET(const X86::Instruction& insn) { VERIFY(!insn.has_operand_size_override_prefix()); auto ret_address = pop32(); warn_if_uninitialized(ret_address, "ret"); set_eip(ret_address.value()); m_emulator.return_callback(ret_address.value()); } void SoftCPU::RETF(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::RETF_imm16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::RET_imm16(const X86::Instruction& insn) { VERIFY(!insn.has_operand_size_override_prefix()); auto ret_address = pop32(); warn_if_uninitialized(ret_address, "ret imm16"); set_eip(ret_address.value()); set_esp({ esp().value() + insn.imm16(), esp().shadow() }); m_emulator.return_callback(ret_address.value()); } template ALWAYS_INLINE static T op_rol(SoftCPU& cpu, T data, ValueWithShadow steps) { if (steps.value() == 0) return shadow_wrap_with_taint_from(data.value(), data, steps); u32 result = 0; u32 new_flags = 0; if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("roll %%cl, %%eax\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("rolw %%cl, %%ax\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } else if constexpr (sizeof(typename T::ValueType) == 1) { asm volatile("rolb %%cl, %%al\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oc(new_flags); return shadow_wrap_with_taint_from(result, data, steps); } DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(ROL, op_rol) template ALWAYS_INLINE static T op_ror(SoftCPU& cpu, T data, ValueWithShadow steps) { if (steps.value() == 0) return shadow_wrap_with_taint_from(data.value(), data, steps); u32 result = 0; u32 new_flags = 0; if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("rorl %%cl, %%eax\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("rorw %%cl, %%ax\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } else if constexpr (sizeof(typename T::ValueType) == 1) { asm volatile("rorb %%cl, %%al\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oc(new_flags); return shadow_wrap_with_taint_from(result, data, steps); } DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(ROR, op_ror) void SoftCPU::SAHF(const X86::Instruction&) { // FIXME: Respect shadow flags once they exists! set_al(shadow_wrap_as_initialized(eflags() & 0xff)); } void SoftCPU::SALC(const X86::Instruction&) { // FIXME: Respect shadow flags once they exists! set_al(shadow_wrap_as_initialized(cf() ? 0xff : 0x00)); } template static T op_sar(SoftCPU& cpu, T data, ValueWithShadow steps) { if (steps.value() == 0) return shadow_wrap_with_taint_from(data.value(), data, steps); u32 result = 0; u32 new_flags = 0; if constexpr (sizeof(typename T::ValueType) == 4) { asm volatile("sarl %%cl, %%eax\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } else if constexpr (sizeof(typename T::ValueType) == 2) { asm volatile("sarw %%cl, %%ax\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } else if constexpr (sizeof(typename T::ValueType) == 1) { asm volatile("sarb %%cl, %%al\n" : "=a"(result) : "a"(data.value()), "c"(steps.value())); } asm volatile( "pushf\n" "pop %%ebx" : "=b"(new_flags)); cpu.set_flags_oszapc(new_flags); return shadow_wrap_with_taint_from(result, data, steps); } DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(SAR, op_sar) template ALWAYS_INLINE static void do_scas(SoftCPU& cpu, const X86::Instruction& insn) { cpu.do_once_or_repeat(insn, [&] { auto src = cpu.const_gpr(X86::RegisterAL); auto dest = cpu.read_memory({ cpu.es(), cpu.destination_index(insn.address_size()).value() }); op_sub(cpu, dest, src); cpu.step_destination_index(insn.address_size(), sizeof(T)); }); } void SoftCPU::SCASB(const X86::Instruction& insn) { do_scas(*this, insn); } void SoftCPU::SCASD(const X86::Instruction& insn) { do_scas(*this, insn); } void SoftCPU::SCASW(const X86::Instruction& insn) { do_scas(*this, insn); } void SoftCPU::SETcc_RM8(const X86::Instruction& insn) { warn_if_flags_tainted("setcc"); insn.modrm().write8(*this, insn, shadow_wrap_as_initialized(evaluate_condition(insn.cc()))); } void SoftCPU::SGDT(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::SHLD_RM16_reg16_CL(const X86::Instruction& insn) { insn.modrm().write16(*this, insn, op_shld(*this, insn.modrm().read16(*this, insn), const_gpr16(insn.reg16()), cl())); } void SoftCPU::SHLD_RM16_reg16_imm8(const X86::Instruction& insn) { insn.modrm().write16(*this, insn, op_shld(*this, insn.modrm().read16(*this, insn), const_gpr16(insn.reg16()), shadow_wrap_as_initialized(insn.imm8()))); } void SoftCPU::SHLD_RM32_reg32_CL(const X86::Instruction& insn) { insn.modrm().write32(*this, insn, op_shld(*this, insn.modrm().read32(*this, insn), const_gpr32(insn.reg32()), cl())); } void SoftCPU::SHLD_RM32_reg32_imm8(const X86::Instruction& insn) { insn.modrm().write32(*this, insn, op_shld(*this, insn.modrm().read32(*this, insn), const_gpr32(insn.reg32()), shadow_wrap_as_initialized(insn.imm8()))); } DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(SHL, op_shl) void SoftCPU::SHRD_RM16_reg16_CL(const X86::Instruction& insn) { insn.modrm().write16(*this, insn, op_shrd(*this, insn.modrm().read16(*this, insn), const_gpr16(insn.reg16()), cl())); } void SoftCPU::SHRD_RM16_reg16_imm8(const X86::Instruction& insn) { insn.modrm().write16(*this, insn, op_shrd(*this, insn.modrm().read16(*this, insn), const_gpr16(insn.reg16()), shadow_wrap_as_initialized(insn.imm8()))); } void SoftCPU::SHRD_RM32_reg32_CL(const X86::Instruction& insn) { insn.modrm().write32(*this, insn, op_shrd(*this, insn.modrm().read32(*this, insn), const_gpr32(insn.reg32()), cl())); } void SoftCPU::SHRD_RM32_reg32_imm8(const X86::Instruction& insn) { insn.modrm().write32(*this, insn, op_shrd(*this, insn.modrm().read32(*this, insn), const_gpr32(insn.reg32()), shadow_wrap_as_initialized(insn.imm8()))); } DEFINE_GENERIC_SHIFT_ROTATE_INSN_HANDLERS(SHR, op_shr) void SoftCPU::SIDT(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::SLDT_RM16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::SMSW_RM16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::STC(const X86::Instruction&) { set_cf(true); } void SoftCPU::STD(const X86::Instruction&) { set_df(true); } void SoftCPU::STI(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::STOSB(const X86::Instruction& insn) { if (insn.has_rep_prefix() && !df()) { // Fast path for 8-bit forward memory fill. if (m_emulator.mmu().fast_fill_memory8({ es(), destination_index(insn.address_size()).value() }, ecx().value(), al())) { switch (insn.address_size()) { case X86::AddressSize::Size32: // FIXME: Should an uninitialized ECX taint EDI here? set_edi({ (u32)(edi().value() + ecx().value()), edi().shadow() }); set_ecx(shadow_wrap_as_initialized(0)); break; case X86::AddressSize::Size16: // FIXME: Should an uninitialized CX taint DI here? set_di({ (u16)(di().value() + cx().value()), di().shadow() }); set_cx(shadow_wrap_as_initialized(0)); break; default: VERIFY_NOT_REACHED(); } return; } } do_once_or_repeat(insn, [&] { write_memory8({ es(), destination_index(insn.address_size()).value() }, al()); step_destination_index(insn.address_size(), 1); }); } void SoftCPU::STOSD(const X86::Instruction& insn) { if (insn.has_rep_prefix() && !df()) { // Fast path for 32-bit forward memory fill. if (m_emulator.mmu().fast_fill_memory32({ es(), destination_index(insn.address_size()).value() }, ecx().value(), eax())) { switch (insn.address_size()) { case X86::AddressSize::Size32: // FIXME: Should an uninitialized ECX taint EDI here? set_edi({ (u32)(edi().value() + (ecx().value() * sizeof(u32))), edi().shadow() }); set_ecx(shadow_wrap_as_initialized(0)); break; case X86::AddressSize::Size16: // FIXME: Should an uninitialized CX taint DI here? set_di({ (u16)(di().value() + (cx().value() * sizeof(u32))), di().shadow() }); set_cx(shadow_wrap_as_initialized(0)); break; default: VERIFY_NOT_REACHED(); } return; } } do_once_or_repeat(insn, [&] { write_memory32({ es(), destination_index(insn.address_size()).value() }, eax()); step_destination_index(insn.address_size(), 4); }); } void SoftCPU::STOSW(const X86::Instruction& insn) { do_once_or_repeat(insn, [&] { write_memory16({ es(), destination_index(insn.address_size()).value() }, ax()); step_destination_index(insn.address_size(), 2); }); } void SoftCPU::STR_RM16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::UD0(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::UD1(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::UD2(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::VERR_RM16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::VERW_RM16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::WAIT(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::WBINVD(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::XADD_RM16_reg16(const X86::Instruction& insn) { auto dest = insn.modrm().read16(*this, insn); auto src = const_gpr16(insn.reg16()); auto result = op_add(*this, dest, src); gpr16(insn.reg16()) = dest; insn.modrm().write16(*this, insn, result); } void SoftCPU::XADD_RM32_reg32(const X86::Instruction& insn) { auto dest = insn.modrm().read32(*this, insn); auto src = const_gpr32(insn.reg32()); auto result = op_add(*this, dest, src); gpr32(insn.reg32()) = dest; insn.modrm().write32(*this, insn, result); } void SoftCPU::XADD_RM8_reg8(const X86::Instruction& insn) { auto dest = insn.modrm().read8(*this, insn); auto src = const_gpr8(insn.reg8()); auto result = op_add(*this, dest, src); gpr8(insn.reg8()) = dest; insn.modrm().write8(*this, insn, result); } void SoftCPU::XCHG_AX_reg16(const X86::Instruction& insn) { auto temp = gpr16(insn.reg16()); gpr16(insn.reg16()) = ax(); set_ax(temp); } void SoftCPU::XCHG_EAX_reg32(const X86::Instruction& insn) { auto temp = gpr32(insn.reg32()); gpr32(insn.reg32()) = eax(); set_eax(temp); } void SoftCPU::XCHG_reg16_RM16(const X86::Instruction& insn) { auto temp = insn.modrm().read16(*this, insn); insn.modrm().write16(*this, insn, const_gpr16(insn.reg16())); gpr16(insn.reg16()) = temp; } void SoftCPU::XCHG_reg32_RM32(const X86::Instruction& insn) { auto temp = insn.modrm().read32(*this, insn); insn.modrm().write32(*this, insn, const_gpr32(insn.reg32())); gpr32(insn.reg32()) = temp; } void SoftCPU::XCHG_reg8_RM8(const X86::Instruction& insn) { auto temp = insn.modrm().read8(*this, insn); insn.modrm().write8(*this, insn, const_gpr8(insn.reg8())); gpr8(insn.reg8()) = temp; } void SoftCPU::XLAT(const X86::Instruction& insn) { u32 offset; switch (insn.address_size()) { case X86::AddressSize::Size32: warn_if_uninitialized(ebx(), "xlat ebx"); offset = ebx().value() + al().value(); break; case X86::AddressSize::Size16: warn_if_uninitialized(bx(), "xlat bx"); offset = bx().value() + al().value(); break; default: VERIFY_NOT_REACHED(); } warn_if_uninitialized(al(), "xlat al"); set_al(read_memory8({ segment(insn.segment_prefix().value_or(X86::SegmentRegister::DS)), offset })); } #define DEFINE_GENERIC_INSN_HANDLERS_PARTIAL(mnemonic, op, update_dest, is_zero_idiom_if_both_operands_same, is_or) \ void SoftCPU::mnemonic##_AL_imm8(const X86::Instruction& insn) \ { \ generic_AL_imm8(op>, insn); \ } \ void SoftCPU::mnemonic##_AX_imm16(const X86::Instruction& insn) \ { \ generic_AX_imm16(op>, insn); \ } \ void SoftCPU::mnemonic##_EAX_imm32(const X86::Instruction& insn) \ { \ generic_EAX_imm32(op>, insn); \ } \ void SoftCPU::mnemonic##_RM16_imm16(const X86::Instruction& insn) \ { \ generic_RM16_imm16(op>, insn); \ } \ void SoftCPU::mnemonic##_RM16_reg16(const X86::Instruction& insn) \ { \ generic_RM16_reg16(op>, insn); \ } \ void SoftCPU::mnemonic##_RM32_imm32(const X86::Instruction& insn) \ { \ generic_RM32_imm32(op>, insn); \ } \ void SoftCPU::mnemonic##_RM32_reg32(const X86::Instruction& insn) \ { \ generic_RM32_reg32(op>, insn); \ } \ void SoftCPU::mnemonic##_RM8_imm8(const X86::Instruction& insn) \ { \ generic_RM8_imm8(op>, insn); \ } \ void SoftCPU::mnemonic##_RM8_reg8(const X86::Instruction& insn) \ { \ generic_RM8_reg8(op>, insn); \ } #define DEFINE_GENERIC_INSN_HANDLERS(mnemonic, op, update_dest, is_zero_idiom_if_both_operands_same, is_or) \ DEFINE_GENERIC_INSN_HANDLERS_PARTIAL(mnemonic, op, update_dest, is_zero_idiom_if_both_operands_same, is_or) \ void SoftCPU::mnemonic##_RM16_imm8(const X86::Instruction& insn) \ { \ generic_RM16_imm8(op>, insn); \ } \ void SoftCPU::mnemonic##_RM32_imm8(const X86::Instruction& insn) \ { \ generic_RM32_imm8(op>, insn); \ } \ void SoftCPU::mnemonic##_reg16_RM16(const X86::Instruction& insn) \ { \ generic_reg16_RM16(op>, insn); \ } \ void SoftCPU::mnemonic##_reg32_RM32(const X86::Instruction& insn) \ { \ generic_reg32_RM32(op>, insn); \ } \ void SoftCPU::mnemonic##_reg8_RM8(const X86::Instruction& insn) \ { \ generic_reg8_RM8(op>, insn); \ } DEFINE_GENERIC_INSN_HANDLERS(XOR, op_xor, true, true, false) DEFINE_GENERIC_INSN_HANDLERS(OR, op_or, true, false, true) DEFINE_GENERIC_INSN_HANDLERS(ADD, op_add, true, false, false) DEFINE_GENERIC_INSN_HANDLERS(ADC, op_adc, true, false, false) DEFINE_GENERIC_INSN_HANDLERS(SUB, op_sub, true, true, false) DEFINE_GENERIC_INSN_HANDLERS(SBB, op_sbb, true, false, false) DEFINE_GENERIC_INSN_HANDLERS(AND, op_and, true, false, false) DEFINE_GENERIC_INSN_HANDLERS(CMP, op_sub, false, false, false) DEFINE_GENERIC_INSN_HANDLERS_PARTIAL(TEST, op_and, false, false, false) FPU_INSTRUCTION(MOVQ_mm1_mm2m64); FPU_INSTRUCTION(MOVQ_mm1m64_mm2); FPU_INSTRUCTION(MOVD_mm1_rm32); FPU_INSTRUCTION(MOVQ_mm1_rm64); // long mode FPU_INSTRUCTION(MOVD_rm32_mm2); FPU_INSTRUCTION(MOVQ_rm64_mm2); // long mode FPU_INSTRUCTION(EMMS); void SoftCPU::CMPXCHG8B_m64(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::RDRAND_reg(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::RDSEED_reg(X86::Instruction const&) { TODO_INSN(); } VPU_INSTRUCTION(PREFETCHTNTA); VPU_INSTRUCTION(PREFETCHT0); VPU_INSTRUCTION(PREFETCHT1); VPU_INSTRUCTION(PREFETCHT2); VPU_INSTRUCTION(LDMXCSR); VPU_INSTRUCTION(STMXCSR); VPU_INSTRUCTION(MOVUPS_xmm1_xmm2m128); VPU_INSTRUCTION(MOVSS_xmm1_xmm2m32); VPU_INSTRUCTION(MOVUPS_xmm1m128_xmm2); VPU_INSTRUCTION(MOVSS_xmm1m32_xmm2); VPU_INSTRUCTION(MOVLPS_xmm1_xmm2m64); VPU_INSTRUCTION(MOVLPS_m64_xmm2); VPU_INSTRUCTION(UNPCKLPS_xmm1_xmm2m128); VPU_INSTRUCTION(UNPCKHPS_xmm1_xmm2m128); VPU_INSTRUCTION(MOVHPS_xmm1_xmm2m64); VPU_INSTRUCTION(MOVHPS_m64_xmm2); VPU_INSTRUCTION(MOVAPS_xmm1_xmm2m128); VPU_INSTRUCTION(MOVAPS_xmm1m128_xmm2); VPU_INSTRUCTION(CVTTPS2PI_mm1_xmm2m64); VPU_INSTRUCTION(CVTTSS2SI_r32_xmm2m32); VPU_INSTRUCTION(CVTPI2PS_xmm1_mm2m64); VPU_INSTRUCTION(CVTSI2SS_xmm1_rm32); VPU_INSTRUCTION(MOVNTPS_xmm1m128_xmm2); VPU_INSTRUCTION(CVTPS2PI_xmm1_mm2m64); VPU_INSTRUCTION(CVTSS2SI_r32_xmm2m32); VPU_INSTRUCTION(UCOMISS_xmm1_xmm2m32); VPU_INSTRUCTION(COMISS_xmm1_xmm2m32); VPU_INSTRUCTION(MOVMSKPS_reg_xmm); VPU_INSTRUCTION(SQRTPS_xmm1_xmm2m128); VPU_INSTRUCTION(SQRTSS_xmm1_xmm2m32); VPU_INSTRUCTION(RSQRTPS_xmm1_xmm2m128); VPU_INSTRUCTION(RSQRTSS_xmm1_xmm2m32); VPU_INSTRUCTION(RCPPS_xmm1_xmm2m128); VPU_INSTRUCTION(RCPSS_xmm1_xmm2m32); VPU_INSTRUCTION(ANDPS_xmm1_xmm2m128); VPU_INSTRUCTION(ANDNPS_xmm1_xmm2m128); VPU_INSTRUCTION(ORPS_xmm1_xmm2m128); VPU_INSTRUCTION(XORPS_xmm1_xmm2m128); VPU_INSTRUCTION(ADDPS_xmm1_xmm2m128); VPU_INSTRUCTION(ADDSS_xmm1_xmm2m32); VPU_INSTRUCTION(MULPS_xmm1_xmm2m128); VPU_INSTRUCTION(MULSS_xmm1_xmm2m32); VPU_INSTRUCTION(SUBPS_xmm1_xmm2m128); VPU_INSTRUCTION(SUBSS_xmm1_xmm2m32); VPU_INSTRUCTION(MINPS_xmm1_xmm2m128); VPU_INSTRUCTION(MINSS_xmm1_xmm2m32); VPU_INSTRUCTION(DIVPS_xmm1_xmm2m128); VPU_INSTRUCTION(DIVSS_xmm1_xmm2m32); VPU_INSTRUCTION(MAXPS_xmm1_xmm2m128); VPU_INSTRUCTION(MAXSS_xmm1_xmm2m32); VPU_INSTRUCTION(PSHUFW_mm1_mm2m64_imm8); VPU_INSTRUCTION(CMPPS_xmm1_xmm2m128_imm8); VPU_INSTRUCTION(CMPSS_xmm1_xmm2m32_imm8); VPU_INSTRUCTION(PINSRW_mm1_r32m16_imm8); VPU_INSTRUCTION(PINSRW_xmm1_r32m16_imm8); VPU_INSTRUCTION(PEXTRW_reg_mm1_imm8); VPU_INSTRUCTION(PEXTRW_reg_xmm1_imm8); VPU_INSTRUCTION(SHUFPS_xmm1_xmm2m128_imm8); VPU_INSTRUCTION(PMOVMSKB_reg_mm1); VPU_INSTRUCTION(PMOVMSKB_reg_xmm1); VPU_INSTRUCTION(PMINUB_mm1_mm2m64); VPU_INSTRUCTION(PMINUB_xmm1_xmm2m128); VPU_INSTRUCTION(PMAXUB_mm1_mm2m64); VPU_INSTRUCTION(PMAXUB_xmm1_xmm2m128); VPU_INSTRUCTION(PAVGB_mm1_mm2m64); VPU_INSTRUCTION(PAVGB_xmm1_xmm2m128); VPU_INSTRUCTION(PAVGW_mm1_mm2m64); VPU_INSTRUCTION(PAVGW_xmm1_xmm2m128); VPU_INSTRUCTION(PMULHUW_mm1_mm2m64); VPU_INSTRUCTION(PMULHUW_xmm1_xmm2m64); VPU_INSTRUCTION(MOVNTQ_m64_mm1); VPU_INSTRUCTION(PMINSB_mm1_mm2m64); VPU_INSTRUCTION(PMINSB_xmm1_xmm2m128); VPU_INSTRUCTION(PMAXSB_mm1_mm2m64); VPU_INSTRUCTION(PMAXSB_xmm1_xmm2m128); VPU_INSTRUCTION(PSADBB_mm1_mm2m64); VPU_INSTRUCTION(PSADBB_xmm1_xmm2m128); VPU_INSTRUCTION(MASKMOVQ_mm1_mm2m64); void SoftCPU::MOVUPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVSD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVUPD_xmm1m128_xmm2(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVSD_xmm1m32_xmm2(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVLPD_xmm1_m64(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVLPD_m64_xmm2(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::UNPCKLPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::UNPCKHPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVHPD_xmm1_xmm2m64(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVAPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVAPD_xmm1m128_xmm2(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CVTPI2PD_xmm1_mm2m64(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CVTSI2SD_xmm1_rm32(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CVTTPD2PI_mm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CVTTSS2SI_r32_xmm2m64(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CVTPD2PI_xmm1_mm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CVTSD2SI_xmm1_rm64(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::UCOMISD_xmm1_xmm2m64(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::COMISD_xmm1_xmm2m64(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVMSKPD_reg_xmm(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::SQRTPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::SQRTSD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::ANDPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::ANDNPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::ORPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::XORPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::ADDPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::ADDSD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MULPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MULSD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CVTPS2PD_xmm1_xmm2m64(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CVTPD2PS_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CVTSS2SD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CVTSD2SS_xmm1_xmm2m64(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CVTDQ2PS_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CVTPS2DQ_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CVTTPS2DQ_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::SUBPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); }; void SoftCPU::SUBSD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); }; void SoftCPU::MINPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MINSD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::DIVPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::DIVSD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MAXPD_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MAXSD_xmm1_xmm2m32(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::PUNPCKLQDQ_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::PUNPCKHQDQ_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVDQA_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVDQU_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::PSHUFD_xmm1_xmm2m128_imm8(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::PSHUFHW_xmm1_xmm2m128_imm8(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::PSHUFLW_xmm1_xmm2m128_imm8(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::PSRLQ_xmm1_imm8(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::PSRLDQ_xmm1_imm8(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::PSLLQ_xmm1_imm8(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::PSLLDQ_xmm1_imm8(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVD_rm32_xmm2(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVQ_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVDQA_xmm1m128_xmm2(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVDQU_xmm1m128_xmm2(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CMPPD_xmm1_xmm2m128_imm8(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CMPSD_xmm1_xmm2m32_imm8(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::SHUFPD_xmm1_xmm2m128_imm8(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::PADDQ_mm1_mm2m64(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVQ_xmm1m128_xmm2(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVQ2DQ_xmm_mm(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::MOVDQ2Q_mm_xmm(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CVTTPD2DQ_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CVTPD2DQ_xmm1_xmm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::CVTDQ2PD_xmm1_xmm2m64(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::PMULUDQ_mm1_mm2m64(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::PMULUDQ_mm1_mm2m128(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::PSUBQ_mm1_mm2m64(X86::Instruction const&) { TODO_INSN(); } void SoftCPU::wrap_0xC0(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::wrap_0xC1_16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::wrap_0xC1_32(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::wrap_0xD0(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::wrap_0xD1_16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::wrap_0xD1_32(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::wrap_0xD2(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::wrap_0xD3_16(const X86::Instruction&) { TODO_INSN(); } void SoftCPU::wrap_0xD3_32(const X86::Instruction&) { TODO_INSN(); } }