/* * Copyright (c) 2018-2021, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "Profile.h" #include "DisassemblyModel.h" #include "ProfileModel.h" #include "SamplesModel.h" #include #include #include #include #include #include #include #include static void sort_profile_nodes(Vector>& nodes) { quick_sort(nodes.begin(), nodes.end(), [](auto& a, auto& b) { return a->event_count() >= b->event_count(); }); for (auto& child : nodes) child->sort_children(); } Profile::Profile(Vector processes, Vector events) : m_processes(move(processes)) , m_events(move(events)) { m_first_timestamp = m_events.first().timestamp; m_last_timestamp = m_events.last().timestamp; m_model = ProfileModel::create(*this); m_samples_model = SamplesModel::create(*this); for (auto& event : m_events) { m_deepest_stack_depth = max((u32)event.frames.size(), m_deepest_stack_depth); } rebuild_tree(); } Profile::~Profile() { } GUI::Model& Profile::model() { return *m_model; } GUI::Model& Profile::samples_model() { return *m_samples_model; } void Profile::rebuild_tree() { u32 filtered_event_count = 0; Vector> roots; auto find_or_create_root = [&roots](FlyString object_name, String symbol, u32 address, u32 offset, u64 timestamp, pid_t pid) -> ProfileNode& { for (size_t i = 0; i < roots.size(); ++i) { auto& root = roots[i]; if (root->symbol() == symbol) { return root; } } auto new_root = ProfileNode::create(move(object_name), move(symbol), address, offset, timestamp, pid); roots.append(new_root); return new_root; }; HashTable live_allocations; for_each_event_in_filter_range([&](auto& event) { if (event.type == "malloc") live_allocations.set(event.ptr); else if (event.type == "free") live_allocations.remove(event.ptr); }); Optional first_filtered_event_index; for (size_t event_index = 0; event_index < m_events.size(); ++event_index) { auto& event = m_events.at(event_index); if (has_timestamp_filter_range()) { auto timestamp = event.timestamp; if (timestamp < m_timestamp_filter_range_start || timestamp > m_timestamp_filter_range_end) continue; } if (!first_filtered_event_index.has_value()) first_filtered_event_index = event_index; if (event.type == "malloc" && !live_allocations.contains(event.ptr)) continue; if (event.type == "free") continue; auto for_each_frame = [&](Callback callback) { if (!m_inverted) { for (size_t i = 0; i < event.frames.size(); ++i) { if (callback(event.frames.at(i), i == event.frames.size() - 1) == IterationDecision::Break) break; } } else { for (ssize_t i = event.frames.size() - 1; i >= 0; --i) { if (callback(event.frames.at(i), static_cast(i) == event.frames.size() - 1) == IterationDecision::Break) break; } } }; if (!m_show_top_functions) { ProfileNode* node = nullptr; for_each_frame([&](const Frame& frame, bool is_innermost_frame) { auto& object_name = frame.object_name; auto& symbol = frame.symbol; auto& address = frame.address; auto& offset = frame.offset; if (symbol.is_empty()) return IterationDecision::Break; // FIXME: More cheating with intentional mixing of TID/PID here: if (!node) node = &find_or_create_root(object_name, symbol, address, offset, event.timestamp, event.tid); else node = &node->find_or_create_child(object_name, symbol, address, offset, event.timestamp, event.tid); node->increment_event_count(); if (is_innermost_frame) { node->add_event_address(address); node->increment_self_count(); } return IterationDecision::Continue; }); } else { for (size_t i = 0; i < event.frames.size(); ++i) { ProfileNode* node = nullptr; ProfileNode* root = nullptr; for (size_t j = i; j < event.frames.size(); ++j) { auto& frame = event.frames.at(j); auto& object_name = frame.object_name; auto& symbol = frame.symbol; auto& address = frame.address; auto& offset = frame.offset; if (symbol.is_empty()) break; // FIXME: More PID/TID mixing cheats here: if (!node) { node = &find_or_create_root(object_name, symbol, address, offset, event.timestamp, event.tid); root = node; root->will_track_seen_events(m_events.size()); } else { node = &node->find_or_create_child(object_name, symbol, address, offset, event.timestamp, event.tid); } if (!root->has_seen_event(event_index)) { root->did_see_event(event_index); root->increment_event_count(); } else if (node != root) { node->increment_event_count(); } if (j == event.frames.size() - 1) { node->add_event_address(address); node->increment_self_count(); } } } } ++filtered_event_count; } sort_profile_nodes(roots); m_filtered_event_count = filtered_event_count; m_first_filtered_event_index = first_filtered_event_index.value_or(0); m_roots = move(roots); m_model->update(); } Result, String> Profile::load_from_perfcore_file(const StringView& path) { auto file = Core::File::construct(path); if (!file->open(Core::IODevice::ReadOnly)) return String::formatted("Unable to open {}, error: {}", path, file->error_string()); auto json = JsonValue::from_string(file->read_all()); if (!json.has_value() || !json.value().is_object()) return String { "Invalid perfcore format (not a JSON object)" }; auto& object = json.value().as_object(); auto processes_value = object.get("processes"); if (processes_value.is_null()) return String { "Invalid perfcore format (no processes)" }; if (!processes_value.is_array()) return String { "Invalid perfcore format (processes is not an array)" }; Vector sampled_processes; for (auto& process_value : processes_value.as_array().values()) { if (!process_value.is_object()) return String { "Invalid perfcore format (process value is not an object)" }; auto& process = process_value.as_object(); auto regions_value = process.get("regions"); if (!regions_value.is_array()) return String { "Invalid perfcore format (regions is not an array)" }; Process sampled_process { .pid = (pid_t)process.get("pid").to_i32(), .executable = process.get("executable").to_string(), .threads = {}, .regions = {}, .library_metadata = make(regions_value.as_array()), }; for (auto& region_value : regions_value.as_array().values()) { if (!region_value.is_object()) return String { "Invalid perfcore format (region is not an object)" }; auto& region = region_value.as_object(); sampled_process.regions.append(Process::Region { .name = region.get("name").to_string(), .base = region.get("base").to_u32(), .size = region.get("size").to_u32(), }); } sampled_processes.append(move(sampled_process)); } auto file_or_error = MappedFile::map("/boot/Kernel"); OwnPtr kernel_elf; if (!file_or_error.is_error()) kernel_elf = make(file_or_error.value()->bytes()); auto events_value = object.get("events"); if (!events_value.is_array()) return String { "Malformed profile (events is not an array)" }; auto& perf_events = events_value.as_array(); if (perf_events.is_empty()) return String { "No events captured (targeted process was never on CPU)" }; Vector events; for (auto& perf_event_value : perf_events.values()) { auto& perf_event = perf_event_value.as_object(); Event event; event.timestamp = perf_event.get("timestamp").to_number(); event.type = perf_event.get("type").to_string(); event.tid = perf_event.get("tid").to_i32(); if (event.type == "malloc") { event.ptr = perf_event.get("ptr").to_number(); event.size = perf_event.get("size").to_number(); } else if (event.type == "free") { event.ptr = perf_event.get("ptr").to_number(); } auto stack_array = perf_event.get("stack").as_array(); for (ssize_t i = stack_array.values().size() - 1; i >= 0; --i) { auto& frame = stack_array.at(i); auto ptr = frame.to_number(); u32 offset = 0; FlyString object_name; String symbol; if (ptr >= 0xc0000000) { if (kernel_elf) { symbol = kernel_elf->symbolicate(ptr, &offset); } else { symbol = "??"; } } else { auto it = sampled_processes.find_if([&](auto& entry) { // FIXME: This doesn't support multi-threaded programs! return entry.pid == event.tid; }); // FIXME: This logic is kinda gnarly, find a way to clean it up. LibraryMetadata* library_metadata {}; if (!it.is_end()) library_metadata = it->library_metadata.ptr(); if (auto* library = library_metadata ? library_metadata->library_containing(ptr) : nullptr) { object_name = library->name; symbol = library->symbolicate(ptr, &offset); } else { symbol = "??"; } } event.frames.append({ object_name, symbol, ptr, offset }); } if (event.frames.size() < 2) continue; FlatPtr innermost_frame_address = event.frames.at(1).address; event.in_kernel = innermost_frame_address >= 0xc0000000; events.append(move(event)); } return adopt_own(*new Profile(move(sampled_processes), move(events))); } void ProfileNode::sort_children() { sort_profile_nodes(m_children); } void Profile::set_timestamp_filter_range(u64 start, u64 end) { if (m_has_timestamp_filter_range && m_timestamp_filter_range_start == start && m_timestamp_filter_range_end == end) return; m_has_timestamp_filter_range = true; m_timestamp_filter_range_start = min(start, end); m_timestamp_filter_range_end = max(start, end); rebuild_tree(); m_samples_model->update(); } void Profile::clear_timestamp_filter_range() { if (!m_has_timestamp_filter_range) return; m_has_timestamp_filter_range = false; rebuild_tree(); m_samples_model->update(); } void Profile::set_inverted(bool inverted) { if (m_inverted == inverted) return; m_inverted = inverted; rebuild_tree(); } void Profile::set_show_top_functions(bool show) { if (m_show_top_functions == show) return; m_show_top_functions = show; rebuild_tree(); } void Profile::set_show_percentages(bool show_percentages) { if (m_show_percentages == show_percentages) return; m_show_percentages = show_percentages; } void Profile::set_disassembly_index(const GUI::ModelIndex& index) { if (m_disassembly_index == index) return; m_disassembly_index = index; auto* node = static_cast(index.internal_data()); m_disassembly_model = DisassemblyModel::create(*this, *node); } GUI::Model* Profile::disassembly_model() { return m_disassembly_model; } HashMap> g_mapped_object_cache; static MappedObject* get_or_create_mapped_object(const String& path) { if (auto it = g_mapped_object_cache.find(path); it != g_mapped_object_cache.end()) return it->value.ptr(); auto file_or_error = MappedFile::map(path); if (file_or_error.is_error()) { g_mapped_object_cache.set(path, {}); return nullptr; } auto elf = ELF::Image(file_or_error.value()->bytes()); if (!elf.is_valid()) { g_mapped_object_cache.set(path, {}); return nullptr; } auto new_mapped_object = adopt_own(*new MappedObject { .file = file_or_error.release_value(), .elf = move(elf), }); auto* ptr = new_mapped_object.ptr(); g_mapped_object_cache.set(path, move(new_mapped_object)); return ptr; } LibraryMetadata::LibraryMetadata(JsonArray regions) : m_regions(move(regions)) { for (auto& region_value : m_regions.values()) { auto& region = region_value.as_object(); auto base = region.get("base").as_u32(); auto size = region.get("size").as_u32(); auto name = region.get("name").as_string(); String path; if (name.contains("Loader.so")) path = "Loader.so"; else if (!name.contains(":")) continue; else path = name.substring(0, name.view().find_first_of(":").value()); if (name.contains(".so")) path = String::formatted("/usr/lib/{}", path); auto* mapped_object = get_or_create_mapped_object(path); if (!mapped_object) continue; FlatPtr text_base {}; mapped_object->elf.for_each_program_header([&](const ELF::Image::ProgramHeader& ph) { if (ph.is_executable()) text_base = ph.vaddr().get(); return IterationDecision::Continue; }); m_libraries.set(name, adopt_own(*new Library { base, size, name, text_base, mapped_object })); } } String LibraryMetadata::Library::symbolicate(FlatPtr ptr, u32* offset) const { if (!object) return "??"sv; return object->elf.symbolicate(ptr - base + text_base, offset); } const LibraryMetadata::Library* LibraryMetadata::library_containing(FlatPtr ptr) const { for (auto& it : m_libraries) { if (!it.value) continue; auto& library = *it.value; if (ptr >= library.base && ptr < (library.base + library.size)) return &library; } return nullptr; } ProfileNode::ProfileNode(const String& object_name, String symbol, u32 address, u32 offset, u64 timestamp, pid_t pid) : m_symbol(move(symbol)) , m_pid(pid) , m_address(address) , m_offset(offset) , m_timestamp(timestamp) { String object; if (object_name.ends_with(": .text")) { object = object_name.view().substring_view(0, object_name.length() - 7); } else { object = object_name; } m_object_name = LexicalPath(object).basename(); } const Process* ProfileNode::process(Profile& profile) const { return profile.find_process(m_pid); }