/* * Copyright (c) 2020, the SerenityOS developers. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "MCTSTree.h" #include #include MCTSTree::MCTSTree(const Chess::Board& board, double exploration_parameter, MCTSTree* parent) : m_parent(parent) , m_exploration_parameter(exploration_parameter) , m_board(board) { if (m_parent) m_eval_method = m_parent->eval_method(); } MCTSTree& MCTSTree::select_leaf() { if (!expanded() || m_children.size() == 0) return *this; MCTSTree* node = nullptr; double max_uct = -double(INFINITY); for (auto& child : m_children) { double uct = child.uct(m_board.turn()); if (uct >= max_uct) { max_uct = uct; node = &child; } } ASSERT(node); return node->select_leaf(); } MCTSTree& MCTSTree::expand() { ASSERT(!expanded() || m_children.size() == 0); if (!m_moves_generated) { m_board.generate_moves([&](Chess::Move move) { Chess::Board clone = m_board; clone.apply_move(move); m_children.append(make(clone, m_exploration_parameter, this)); return IterationDecision::Continue; }); m_moves_generated = true; } if (m_children.size() == 0) { return *this; } for (auto& child : m_children) { if (child.m_simulations == 0) { return child; } } ASSERT_NOT_REACHED(); } int MCTSTree::simulate_game() const { ASSERT_NOT_REACHED(); Chess::Board clone = m_board; while (!clone.game_finished()) { clone.apply_move(clone.random_move()); } return clone.game_score(); } int MCTSTree::heuristic() const { if (m_board.game_finished()) return m_board.game_score(); double winchance = max(min(double(m_board.material_imbalance()) / 6, 1.0), -1.0); double random = double(rand()) / RAND_MAX; if (winchance >= random) return 1; if (winchance <= -random) return -1; return 0; } void MCTSTree::apply_result(int game_score) { m_simulations++; m_white_points += game_score; if (m_parent) m_parent->apply_result(game_score); } void MCTSTree::do_round() { auto& node = select_leaf().expand(); int result; if (m_eval_method == EvalMethod::Simulation) { result = node.simulate_game(); } else { result = node.heuristic(); } node.apply_result(result); } Chess::Move MCTSTree::best_move() const { int score_multiplier = (m_board.turn() == Chess::Colour::White) ? 1 : -1; Chess::Move best_move = { { 0, 0 }, { 0, 0 } }; double best_score = -double(INFINITY); ASSERT(m_children.size()); for (auto& node : m_children) { double node_score = node.expected_value() * score_multiplier; if (node_score >= best_score) { // The best move is the last move made in the child. best_move = node.m_board.moves()[node.m_board.moves().size() - 1]; best_score = node_score; } } return best_move; } double MCTSTree::expected_value() const { if (m_simulations == 0) return 0; return double(m_white_points) / m_simulations; } double MCTSTree::uct(Chess::Colour colour) const { // UCT: Upper Confidence Bound Applied to Trees. // Kocsis, Levente; Szepesvári, Csaba (2006). "Bandit based Monte-Carlo Planning" // Fun fact: Szepesvári was my data structures professor. double expected = expected_value() * ((colour == Chess::Colour::White) ? 1 : -1); return expected + m_exploration_parameter * sqrt(log(m_parent->m_simulations) / m_simulations); } bool MCTSTree::expanded() const { if (!m_moves_generated) return false; for (auto& child : m_children) { if (child.m_simulations == 0) return false; } return true; }