/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include template constexpr double e_to_power(); template<> constexpr double e_to_power<0>() { return 1; } template constexpr double e_to_power() { return M_E * e_to_power(); } template constexpr size_t factorial(); template<> constexpr size_t factorial<0>() { return 1; } template constexpr size_t factorial() { return value * factorial(); } template constexpr size_t product_even(); template<> constexpr size_t product_even<2>() { return 2; } template constexpr size_t product_even() { return value * product_even(); } template constexpr size_t product_odd(); template<> constexpr size_t product_odd<1>() { return 1; } template constexpr size_t product_odd() { return value * product_odd(); } extern "C" { double trunc(double x) { return (int64_t)x; } double cos(double angle) { return sin(angle + M_PI_2); } // This can also be done with a taylor expansion, but for // now this works pretty well (and doesn't mess anything up // in quake in particular, which is very Floating-Point precision // heavy) double sin(double angle) { double ret = 0.0; __asm__( "fsin" : "=t"(ret) : "0"(angle)); return ret; } double pow(double x, double y) { //FIXME: Extremely unlikely to be standards compliant. return exp(y * log(x)); } double ldexp(double x, int exp) { // FIXME: Please fix me. I am naive. double val = pow(2, exp); return x * val; } double tanh(double x) { if (x > 0) { double exponentiated = exp(2 * x); return (exponentiated - 1) / (exponentiated + 1); } double plusX = exp(x); double minusX = 1 / plusX; return (plusX - minusX) / (plusX + minusX); } double ampsin(double angle) { double looped_angle = fmod(M_PI + angle, M_TAU) - M_PI; double looped_angle_squared = looped_angle * looped_angle; double quadratic_term; if (looped_angle > 0) { quadratic_term = -looped_angle_squared; } else { quadratic_term = looped_angle_squared; } double linear_term = M_PI * looped_angle; return quadratic_term + linear_term; } double tan(double angle) { return ampsin(angle) / ampsin(M_PI_2 + angle); } double sqrt(double x) { double res; __asm__("fsqrt" : "=t"(res) : "0"(x)); return res; } double sinh(double x) { double exponentiated = exp(x); if (x > 0) return (exponentiated * exponentiated - 1) / 2 / exponentiated; return (exponentiated - 1 / exponentiated) / 2; } double log10(double x) { return log(x) / M_LN10; } double log(double x) { if (x < 0) return __builtin_nan(""); if (x == 0) return -__builtin_huge_val(); double y = 1 + 2 * (x - 1) / (x + 1); double exponentiated = exp(y); y = y + 2 * (x - exponentiated) / (x + exponentiated); exponentiated = exp(y); y = y + 2 * (x - exponentiated) / (x + exponentiated); exponentiated = exp(y); return y + 2 * (x - exponentiated) / (x + exponentiated); } double fmod(double index, double period) { return index - trunc(index / period) * period; } double exp(double exponent) { double result = 1; if (exponent >= 1) { size_t integer_part = (size_t)exponent; if (integer_part & 1) result *= e_to_power<1>(); if (integer_part & 2) result *= e_to_power<2>(); if (integer_part > 3) { if (integer_part & 4) result *= e_to_power<4>(); if (integer_part & 8) result *= e_to_power<8>(); if (integer_part & 16) result *= e_to_power<16>(); if (integer_part & 32) result *= e_to_power<32>(); if (integer_part >= 64) return __builtin_huge_val(); } exponent -= integer_part; } else if (exponent < 0) return 1 / exp(-exponent); double taylor_series_result = 1 + exponent; double taylor_series_numerator = exponent * exponent; taylor_series_result += taylor_series_numerator / factorial<2>(); taylor_series_numerator *= exponent; taylor_series_result += taylor_series_numerator / factorial<3>(); taylor_series_numerator *= exponent; taylor_series_result += taylor_series_numerator / factorial<4>(); taylor_series_numerator *= exponent; taylor_series_result += taylor_series_numerator / factorial<5>(); return result * taylor_series_result; } double cosh(double x) { double exponentiated = exp(-x); if (x < 0) return (1 + exponentiated * exponentiated) / 2 / exponentiated; return (1 / exponentiated + exponentiated) / 2; } double atan2(double y, double x) { if (x > 0) return atan(y / x); if (x == 0) { if (y > 0) return M_PI_2; if (y < 0) return -M_PI_2; return 0; } if (y >= 0) return atan(y / x) + M_PI; return atan(y / x) - M_PI; } double atan(double x) { if (x < 0) return -atan(-x); if (x > 1) return M_PI_2 - atan(1 / x); double squared = x * x; return x / (1 + 1 * 1 * squared / (3 + 2 * 2 * squared / (5 + 3 * 3 * squared / (7 + 4 * 4 * squared / (9 + 5 * 5 * squared / (11 + 6 * 6 * squared / (13 + 7 * 7 * squared))))))); } double asin(double x) { if (x > 1 || x < -1) return __builtin_nan(""); if (x > 0.5 || x < -0.5) return 2 * atan(x / (1 + sqrt(1 - x * x))); double squared = x * x; double value = x; double i = x * squared; value += i * product_odd<1>() / product_even<2>() / 3; i *= squared; value += i * product_odd<3>() / product_even<4>() / 5; i *= squared; value += i * product_odd<5>() / product_even<6>() / 7; i *= squared; value += i * product_odd<7>() / product_even<8>() / 9; i *= squared; value += i * product_odd<9>() / product_even<10>() / 11; i *= squared; value += i * product_odd<11>() / product_even<12>() / 13; return value; } double acos(double x) { return M_PI_2 - asin(x); } double fabs(double value) { return value < 0 ? -value : value; } double log2(double x) { return log(x) / M_LN2; } float log2f(float x) { return log2(x); } long double log2l(long double x) { return log2(x); } double frexp(double, int*) { ASSERT_NOT_REACHED(); return 0; } float frexpf(float, int*) { ASSERT_NOT_REACHED(); return 0; } long double frexpl(long double, int*) { ASSERT_NOT_REACHED(); return 0; } float roundf(float value) { // FIXME: Please fix me. I am naive. if (value >= 0.0f) return (float)(int)(value + 0.5f); return (float)(int)(value - 0.5f); } double floor(double value) { return (int)value; } double rint(double value) { return (int)roundf(value); } float ceilf(float value) { // FIXME: Please fix me. I am naive. int as_int = (int)value; if (value == (float)as_int) { return (float)as_int; } return as_int + 1; } double ceil(double value) { // FIXME: Please fix me. I am naive. int as_int = (int)value; if (value == (double)as_int) { return (double)as_int; } return as_int + 1; } double modf(double x, double* intpart) { *intpart = (double)((int)(x)); return x - (int)x; } }