/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include template constexpr double e_to_power(); template<> constexpr double e_to_power<0>() { return 1; } template constexpr double e_to_power() { return M_E * e_to_power(); } template constexpr size_t factorial(); template<> constexpr size_t factorial<0>() { return 1; } template constexpr size_t factorial() { return value * factorial(); } template constexpr size_t product_even(); template<> constexpr size_t product_even<2>() { return 2; } template constexpr size_t product_even() { return value * product_even(); } template constexpr size_t product_odd(); template<> constexpr size_t product_odd<1>() { return 1; } template constexpr size_t product_odd() { return value * product_odd(); } extern "C" { double trunc(double x) NOEXCEPT { return (int64_t)x; } double cos(double angle) NOEXCEPT { return sin(angle + M_PI_2); } float cosf(float angle) NOEXCEPT { return sinf(angle + M_PI_2); } // This can also be done with a taylor expansion, but for // now this works pretty well (and doesn't mess anything up // in quake in particular, which is very Floating-Point precision // heavy) double sin(double angle) NOEXCEPT { double ret = 0.0; __asm__( "fsin" : "=t"(ret) : "0"(angle)); return ret; } float sinf(float angle) NOEXCEPT { float ret = 0.0f; __asm__( "fsin" : "=t"(ret) : "0"(angle)); return ret; } double pow(double x, double y) NOEXCEPT { // FIXME: Please fix me. I am naive. if (y == 0) return 1; if (y == 1) return x; int y_as_int = (int)y; if (y == (double)y_as_int) { double result = x; for (int i = 0; i < fabs(y) - 1; ++i) result *= x; if (y < 0) result = 1.0 / result; return result; } return exp(y * log(x)); } float powf(float x, float y) NOEXCEPT { // FIXME: Please fix me. I am naive. if (y == 0) return 1; if (y == 1) return x; int y_as_int = (int)y; if (y == (float)y_as_int) { float result = x; for (int i = 0; i < fabs(y) - 1; ++i) result *= x; if (y < 0) result = 1.0 / result; return result; } return (float)exp((double)y * log((double)x)); } double ldexp(double x, int exp) NOEXCEPT { // FIXME: Please fix me. I am naive. double val = pow(2, exp); return x * val; } double tanh(double x) NOEXCEPT { if (x > 0) { double exponentiated = exp(2 * x); return (exponentiated - 1) / (exponentiated + 1); } double plusX = exp(x); double minusX = 1 / plusX; return (plusX - minusX) / (plusX + minusX); } static double ampsin(double angle) NOEXCEPT { double looped_angle = fmod(M_PI + angle, M_TAU) - M_PI; double looped_angle_squared = looped_angle * looped_angle; double quadratic_term; if (looped_angle > 0) { quadratic_term = -looped_angle_squared; } else { quadratic_term = looped_angle_squared; } double linear_term = M_PI * looped_angle; return quadratic_term + linear_term; } double tan(double angle) NOEXCEPT { return ampsin(angle) / ampsin(M_PI_2 + angle); } double sqrt(double x) NOEXCEPT { double res; __asm__("fsqrt" : "=t"(res) : "0"(x)); return res; } float sqrtf(float x) NOEXCEPT { float res; __asm__("fsqrt" : "=t"(res) : "0"(x)); return res; } double sinh(double x) NOEXCEPT { double exponentiated = exp(x); if (x > 0) return (exponentiated * exponentiated - 1) / 2 / exponentiated; return (exponentiated - 1 / exponentiated) / 2; } double log10(double x) NOEXCEPT { return log(x) / M_LN10; } double log(double x) NOEXCEPT { if (x < 0) return NAN; if (x == 0) return -INFINITY; double y = 1 + 2 * (x - 1) / (x + 1); double exponentiated = exp(y); y = y + 2 * (x - exponentiated) / (x + exponentiated); exponentiated = exp(y); y = y + 2 * (x - exponentiated) / (x + exponentiated); exponentiated = exp(y); return y + 2 * (x - exponentiated) / (x + exponentiated); } float logf(float x) NOEXCEPT { return (float)log(x); } double fmod(double index, double period) NOEXCEPT { return index - trunc(index / period) * period; } float fmodf(float index, float period) NOEXCEPT { return index - trunc(index / period) * period; } double exp(double exponent) NOEXCEPT { double result = 1; if (exponent >= 1) { size_t integer_part = (size_t)exponent; if (integer_part & 1) result *= e_to_power<1>(); if (integer_part & 2) result *= e_to_power<2>(); if (integer_part > 3) { if (integer_part & 4) result *= e_to_power<4>(); if (integer_part & 8) result *= e_to_power<8>(); if (integer_part & 16) result *= e_to_power<16>(); if (integer_part & 32) result *= e_to_power<32>(); if (integer_part >= 64) return INFINITY; } exponent -= integer_part; } else if (exponent < 0) return 1 / exp(-exponent); double taylor_series_result = 1 + exponent; double taylor_series_numerator = exponent * exponent; taylor_series_result += taylor_series_numerator / factorial<2>(); taylor_series_numerator *= exponent; taylor_series_result += taylor_series_numerator / factorial<3>(); taylor_series_numerator *= exponent; taylor_series_result += taylor_series_numerator / factorial<4>(); taylor_series_numerator *= exponent; taylor_series_result += taylor_series_numerator / factorial<5>(); return result * taylor_series_result; } float expf(float exponent) NOEXCEPT { return (float)exp(exponent); } double exp2(double exponent) NOEXCEPT { return pow(2.0, exponent); } float exp2f(float exponent) NOEXCEPT { return pow(2.0f, exponent); } double cosh(double x) NOEXCEPT { double exponentiated = exp(-x); if (x < 0) return (1 + exponentiated * exponentiated) / 2 / exponentiated; return (1 / exponentiated + exponentiated) / 2; } double atan2(double y, double x) NOEXCEPT { if (x > 0) return atan(y / x); if (x == 0) { if (y > 0) return M_PI_2; if (y < 0) return -M_PI_2; return 0; } if (y >= 0) return atan(y / x) + M_PI; return atan(y / x) - M_PI; } float atan2f(float y, float x) NOEXCEPT { return (float)atan2(y, x); } double atan(double x) NOEXCEPT { if (x < 0) return -atan(-x); if (x > 1) return M_PI_2 - atan(1 / x); double squared = x * x; return x / (1 + 1 * 1 * squared / (3 + 2 * 2 * squared / (5 + 3 * 3 * squared / (7 + 4 * 4 * squared / (9 + 5 * 5 * squared / (11 + 6 * 6 * squared / (13 + 7 * 7 * squared))))))); } double asin(double x) NOEXCEPT { if (x > 1 || x < -1) return NAN; if (x > 0.5 || x < -0.5) return 2 * atan(x / (1 + sqrt(1 - x * x))); double squared = x * x; double value = x; double i = x * squared; value += i * product_odd<1>() / product_even<2>() / 3; i *= squared; value += i * product_odd<3>() / product_even<4>() / 5; i *= squared; value += i * product_odd<5>() / product_even<6>() / 7; i *= squared; value += i * product_odd<7>() / product_even<8>() / 9; i *= squared; value += i * product_odd<9>() / product_even<10>() / 11; i *= squared; value += i * product_odd<11>() / product_even<12>() / 13; return value; } float asinf(float x) NOEXCEPT { return (float)asin(x); } double acos(double x) NOEXCEPT { return M_PI_2 - asin(x); } float acosf(float x) NOEXCEPT { return M_PI_2 - asinf(x); } double fabs(double value) NOEXCEPT { return value < 0 ? -value : value; } double log2(double x) NOEXCEPT { return log(x) / M_LN2; } float log2f(float x) NOEXCEPT { return log2(x); } long double log2l(long double x) NOEXCEPT { return log2(x); } double frexp(double, int*) NOEXCEPT { ASSERT_NOT_REACHED(); return 0; } float frexpf(float, int*) NOEXCEPT { ASSERT_NOT_REACHED(); return 0; } long double frexpl(long double, int*) NOEXCEPT { ASSERT_NOT_REACHED(); return 0; } double round(double value) NOEXCEPT { // FIXME: Please fix me. I am naive. if (value >= 0.0) return (double)(int)(value + 0.5); return (double)(int)(value - 0.5); } float roundf(float value) NOEXCEPT { // FIXME: Please fix me. I am naive. if (value >= 0.0f) return (float)(int)(value + 0.5f); return (float)(int)(value - 0.5f); } float floorf(float value) NOEXCEPT { if (value >= 0) return (int)value; int intvalue = (int)value; return ((float)intvalue == value) ? intvalue : intvalue - 1; } double floor(double value) NOEXCEPT { if (value >= 0) return (int)value; int intvalue = (int)value; return ((double)intvalue == value) ? intvalue : intvalue - 1; } double rint(double value) NOEXCEPT { return (int)roundf(value); } float ceilf(float value) NOEXCEPT { // FIXME: Please fix me. I am naive. int as_int = (int)value; if (value == (float)as_int) return as_int; if (value < 0) { if (as_int == 0) return -0; return as_int; } return as_int + 1; } double ceil(double value) NOEXCEPT { // FIXME: Please fix me. I am naive. int as_int = (int)value; if (value == (double)as_int) return as_int; if (value < 0) { if (as_int == 0) return -0; return as_int; } return as_int + 1; } double modf(double x, double* intpart) NOEXCEPT { *intpart = (double)((int)(x)); return x - (int)x; } double gamma(double x) NOEXCEPT { // Stirling approximation return sqrt(2.0 * M_PI / x) * pow(x / M_E, x); } double expm1(double x) NOEXCEPT { return pow(M_E, x) - 1; } double cbrt(double x) NOEXCEPT { if (x > 0) { return pow(x, 1.0 / 3.0); } return -pow(-x, 1.0 / 3.0); } double log1p(double x) NOEXCEPT { return log(1 + x); } double acosh(double x) NOEXCEPT { return log(x + sqrt(x * x - 1)); } double asinh(double x) NOEXCEPT { return log(x + sqrt(x * x + 1)); } double atanh(double x) NOEXCEPT { return log((1 + x) / (1 - x)) / 2.0; } double hypot(double x, double y) NOEXCEPT { return sqrt(x * x + y * y); } double erf(double x) NOEXCEPT { // algorithm taken from Abramowitz and Stegun (no. 26.2.17) double t = 1 / (1 + 0.47047 * fabs(x)); double poly = t * (0.3480242 + t * (-0.958798 + t * 0.7478556)); double answer = 1 - poly * exp(-x * x); if (x < 0) return -answer; return answer; } double erfc(double x) NOEXCEPT { return 1 - erf(x); } }