/* * Copyright (c) 2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #ifdef __serenity__ # include #elif __linux__ or __APPLE__ # include #endif #ifdef __serenity__ //#define HEAP_DEBUG #endif namespace JS { Heap::Heap(Interpreter& interpreter) : m_interpreter(interpreter) { } Heap::~Heap() { collect_garbage(CollectionType::CollectEverything); } Cell* Heap::allocate_cell(size_t size) { if (should_collect_on_every_allocation()) { collect_garbage(); } else if (m_allocations_since_last_gc > m_max_allocations_between_gc) { m_allocations_since_last_gc = 0; collect_garbage(); } else { ++m_allocations_since_last_gc; } for (auto& block : m_blocks) { if (size > block->cell_size()) continue; if (auto* cell = block->allocate()) return cell; } size_t cell_size = round_up_to_power_of_two(size, 16); auto block = HeapBlock::create_with_cell_size(*this, cell_size); auto* cell = block->allocate(); m_blocks.append(move(block)); return cell; } void Heap::collect_garbage(CollectionType collection_type) { if (collection_type == CollectionType::CollectGarbage) { if (m_gc_deferrals) { m_should_gc_when_deferral_ends = true; return; } HashTable roots; gather_roots(roots); mark_live_cells(roots); } sweep_dead_cells(); } void Heap::gather_roots(HashTable& roots) { m_interpreter.gather_roots({}, roots); gather_conservative_roots(roots); for (auto* handle : m_handles) roots.set(handle->cell()); for (auto* list : m_marked_value_lists) { for (auto& value : list->values()) { if (value.is_cell()) roots.set(value.as_cell()); } } #ifdef HEAP_DEBUG dbg() << "gather_roots:"; for (auto* root : roots) { dbg() << " + " << root; } #endif } void Heap::gather_conservative_roots(HashTable& roots) { FlatPtr dummy; #ifdef HEAP_DEBUG dbg() << "gather_conservative_roots:"; #endif jmp_buf buf; setjmp(buf); HashTable possible_pointers; const FlatPtr* raw_jmp_buf = reinterpret_cast(buf); for (size_t i = 0; i < ((size_t)sizeof(buf)) / sizeof(FlatPtr); i += sizeof(FlatPtr)) possible_pointers.set(raw_jmp_buf[i]); FlatPtr stack_base; size_t stack_size; #ifdef __serenity__ if (get_stack_bounds(&stack_base, &stack_size) < 0) { perror("get_stack_bounds"); ASSERT_NOT_REACHED(); } #elif __linux__ pthread_attr_t attr = {}; if (int rc = pthread_getattr_np(pthread_self(), &attr) != 0) { fprintf(stderr, "pthread_getattr_np: %s\n", strerror(-rc)); ASSERT_NOT_REACHED(); } if (int rc = pthread_attr_getstack(&attr, (void**)&stack_base, &stack_size) != 0) { fprintf(stderr, "pthread_attr_getstack: %s\n", strerror(-rc)); ASSERT_NOT_REACHED(); } pthread_attr_destroy(&attr); #elif __APPLE__ stack_base = (FlatPtr)pthread_get_stackaddr_np(pthread_self()); pthread_attr_t attr = {}; if (int rc = pthread_attr_getstacksize(&attr, &stack_size) != 0) { fprintf(stderr, "pthread_attr_getstacksize: %s\n", strerror(-rc)); ASSERT_NOT_REACHED(); } pthread_attr_destroy(&attr); #endif FlatPtr stack_reference = reinterpret_cast(&dummy); FlatPtr stack_top = stack_base + stack_size; for (FlatPtr stack_address = stack_reference; stack_address < stack_top; stack_address += sizeof(FlatPtr)) { auto data = *reinterpret_cast(stack_address); possible_pointers.set(data); } for (auto possible_pointer : possible_pointers) { if (!possible_pointer) continue; #ifdef HEAP_DEBUG dbg() << " ? " << (const void*)possible_pointer; #endif if (auto* cell = cell_from_possible_pointer(possible_pointer)) { if (cell->is_live()) { #ifdef HEAP_DEBUG dbg() << " ?-> " << (const void*)cell; #endif roots.set(cell); } else { #ifdef HEAP_DEBUG dbg() << " #-> " << (const void*)cell; #endif } } } } Cell* Heap::cell_from_possible_pointer(FlatPtr pointer) { auto* possible_heap_block = HeapBlock::from_cell(reinterpret_cast(pointer)); if (m_blocks.find([possible_heap_block](auto& block) { return block.ptr() == possible_heap_block; }) == m_blocks.end()) return nullptr; return possible_heap_block->cell_from_possible_pointer(pointer); } class MarkingVisitor final : public Cell::Visitor { public: MarkingVisitor() { } virtual void visit_impl(Cell* cell) { if (cell->is_marked()) return; #ifdef HEAP_DEBUG dbg() << " ! " << cell; #endif cell->set_marked(true); cell->visit_children(*this); } }; void Heap::mark_live_cells(const HashTable& roots) { #ifdef HEAP_DEBUG dbg() << "mark_live_cells:"; #endif MarkingVisitor visitor; for (auto* root : roots) visitor.visit(root); } void Heap::sweep_dead_cells() { #ifdef HEAP_DEBUG dbg() << "sweep_dead_cells:"; #endif Vector empty_blocks; for (auto& block : m_blocks) { bool block_has_live_cells = false; block->for_each_cell([&](Cell* cell) { if (cell->is_live()) { if (!cell->is_marked()) { #ifdef HEAP_DEBUG dbg() << " ~ " << cell; #endif block->deallocate(cell); } else { cell->set_marked(false); block_has_live_cells = true; } } }); if (!block_has_live_cells) empty_blocks.append(block); } for (auto* block : empty_blocks) { #ifdef HEAP_DEBUG dbg() << " - Reclaim HeapBlock @ " << block << ": cell_size=" << block->cell_size(); #endif m_blocks.remove_first_matching([block](auto& entry) { return entry == block; }); } #ifdef HEAP_DEBUG for (auto& block : m_blocks) { dbg() << " > Live HeapBlock @ " << block << ": cell_size=" << block->cell_size(); } #endif } void Heap::did_create_handle(Badge, HandleImpl& impl) { ASSERT(!m_handles.contains(&impl)); m_handles.set(&impl); } void Heap::did_destroy_handle(Badge, HandleImpl& impl) { ASSERT(m_handles.contains(&impl)); m_handles.remove(&impl); } void Heap::did_create_marked_value_list(Badge, MarkedValueList& list) { ASSERT(!m_marked_value_lists.contains(&list)); m_marked_value_lists.set(&list); } void Heap::did_destroy_marked_value_list(Badge, MarkedValueList& list) { ASSERT(m_marked_value_lists.contains(&list)); m_marked_value_lists.remove(&list); } void Heap::defer_gc(Badge) { ++m_gc_deferrals; } void Heap::undefer_gc(Badge) { ASSERT(m_gc_deferrals > 0); --m_gc_deferrals; if (!m_gc_deferrals) { if (m_should_gc_when_deferral_ends) collect_garbage(); m_should_gc_when_deferral_ends = false; } } }