/* * Copyright (c) 2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include namespace JS { Value ScopeNode::execute(Interpreter& interpreter) const { return interpreter.run(*this); } Value FunctionDeclaration::execute(Interpreter& interpreter) const { auto* function = interpreter.heap().allocate(body(), parameters()); interpreter.set_variable(m_name, function); return function; } Value ExpressionStatement::execute(Interpreter& interpreter) const { return m_expression->execute(interpreter); } Value CallExpression::execute(Interpreter& interpreter) const { auto callee = m_callee->execute(interpreter); ASSERT(callee.is_object()); ASSERT(callee.as_object()->is_function()); auto* function = static_cast(callee.as_object()); Vector argument_values; for (size_t i = 0; i < m_arguments.size(); ++i) argument_values.append(m_arguments[i].execute(interpreter)); Value this_value = js_undefined(); if (m_callee->is_member_expression()) this_value = static_cast(*m_callee).object().execute(interpreter).to_object(interpreter.heap()); if (!this_value.is_undefined()) interpreter.push_this_value(this_value); auto result = function->call(interpreter, move(argument_values)); if (!this_value.is_undefined()) interpreter.pop_this_value(); return result; } Value ReturnStatement::execute(Interpreter& interpreter) const { auto value = argument() ? argument()->execute(interpreter) : js_undefined(); interpreter.do_return(); return value; } Value IfStatement::execute(Interpreter& interpreter) const { auto predicate_result = m_predicate->execute(interpreter); if (predicate_result.to_boolean()) return interpreter.run(*m_consequent); else return interpreter.run(*m_alternate); } Value WhileStatement::execute(Interpreter& interpreter) const { Value last_value = js_undefined(); while (m_predicate->execute(interpreter).to_boolean()) { last_value = interpreter.run(*m_body); } return last_value; } Value ForStatement::execute(Interpreter& interpreter) const { OwnPtr wrapper; if (m_init->is_variable_declaration() && static_cast(m_init.ptr())->declaration_type() != DeclarationType::Var) { wrapper = make(); interpreter.enter_scope(*wrapper, {}, ScopeType::Block); } Value last_value = js_undefined(); if (m_init) m_init->execute(interpreter); if (m_test) { while (m_test->execute(interpreter).to_boolean()) { last_value = interpreter.run(*m_body); if (m_update) m_update->execute(interpreter); } } else { while (true) { last_value = interpreter.run(*m_body); if (m_update) m_update->execute(interpreter); } } if (wrapper) interpreter.exit_scope(*wrapper); return last_value; } Value BinaryExpression::execute(Interpreter& interpreter) const { auto lhs_result = m_lhs->execute(interpreter); auto rhs_result = m_rhs->execute(interpreter); switch (m_op) { case BinaryOp::Plus: return add(lhs_result, rhs_result); case BinaryOp::Minus: return sub(lhs_result, rhs_result); case BinaryOp::Asterisk: return mul(lhs_result, rhs_result); case BinaryOp::Slash: return div(lhs_result, rhs_result); case BinaryOp::TypedEquals: return typed_eq(lhs_result, rhs_result); case BinaryOp::TypedInequals: return Value(!typed_eq(lhs_result, rhs_result).to_boolean()); case BinaryOp::GreaterThan: return greater_than(lhs_result, rhs_result); case BinaryOp::GreaterThanEquals: return greater_than_equals(lhs_result, rhs_result); case BinaryOp::LessThan: return less_than(lhs_result, rhs_result); case BinaryOp::LessThanEquals: return less_than_equals(lhs_result, rhs_result); case BinaryOp::BitwiseAnd: return bitwise_and(lhs_result, rhs_result); case BinaryOp::BitwiseOr: return bitwise_or(lhs_result, rhs_result); case BinaryOp::BitwiseXor: return bitwise_xor(lhs_result, rhs_result); case BinaryOp::LeftShift: return left_shift(lhs_result, rhs_result); case BinaryOp::RightShift: return right_shift(lhs_result, rhs_result); } ASSERT_NOT_REACHED(); } Value LogicalExpression::execute(Interpreter& interpreter) const { auto lhs_result = m_lhs->execute(interpreter).to_boolean(); auto rhs_result = m_rhs->execute(interpreter).to_boolean(); switch (m_op) { case LogicalOp::And: return Value(lhs_result && rhs_result); case LogicalOp::Or: return Value(lhs_result || rhs_result); } ASSERT_NOT_REACHED(); } Value UnaryExpression::execute(Interpreter& interpreter) const { auto lhs_result = m_lhs->execute(interpreter); switch (m_op) { case UnaryOp::BitwiseNot: return bitwise_not(lhs_result); case UnaryOp::Not: return Value(!lhs_result.to_boolean()); } ASSERT_NOT_REACHED(); } static void print_indent(int indent) { for (int i = 0; i < indent * 2; ++i) putchar(' '); } void ASTNode::dump(int indent) const { print_indent(indent); printf("%s\n", class_name()); } void ScopeNode::dump(int indent) const { ASTNode::dump(indent); for (auto& child : children()) child.dump(indent + 1); } void BinaryExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case BinaryOp::Plus: op_string = "+"; break; case BinaryOp::Minus: op_string = "-"; break; case BinaryOp::Asterisk: op_string = "*"; break; case BinaryOp::Slash: op_string = "/"; break; case BinaryOp::TypedEquals: op_string = "==="; break; case BinaryOp::TypedInequals: op_string = "!=="; break; case BinaryOp::GreaterThan: op_string = ">"; break; case BinaryOp::GreaterThanEquals: op_string = ">="; break; case BinaryOp::LessThan: op_string = "<"; break; case BinaryOp::LessThanEquals: op_string = "<="; break; case BinaryOp::BitwiseAnd: op_string = "&"; break; case BinaryOp::BitwiseOr: op_string = "|"; break; case BinaryOp::BitwiseXor: op_string = "^"; break; case BinaryOp::LeftShift: op_string = "<<"; break; case BinaryOp::RightShift: op_string = ">>"; break; } print_indent(indent); printf("%s\n", class_name()); m_lhs->dump(indent + 1); print_indent(indent + 1); printf("%s\n", op_string); m_rhs->dump(indent + 1); } void LogicalExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case LogicalOp::And: op_string = "&&"; break; case LogicalOp::Or: op_string = "||"; break; } print_indent(indent); printf("%s\n", class_name()); m_lhs->dump(indent + 1); print_indent(indent + 1); printf("%s\n", op_string); m_rhs->dump(indent + 1); } void UnaryExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case UnaryOp::BitwiseNot: op_string = "~"; break; case UnaryOp::Not: op_string = "!"; break; } print_indent(indent); printf("%s\n", class_name()); print_indent(indent + 1); printf("%s\n", op_string); m_lhs->dump(indent + 1); } void CallExpression::dump(int indent) const { ASTNode::dump(indent); m_callee->dump(indent + 1); for (auto& argument : m_arguments) argument.dump(indent + 1); } void StringLiteral::dump(int indent) const { print_indent(indent); printf("StringLiteral \"%s\"\n", m_value.characters()); } void NumericLiteral::dump(int indent) const { print_indent(indent); printf("NumericLiteral %g\n", m_value); } void BooleanLiteral::dump(int indent) const { print_indent(indent); printf("BooleanLiteral %s\n", m_value ? "true" : "false"); } void FunctionDeclaration::dump(int indent) const { bool first_time = true; StringBuilder parameters_builder; for (const auto& parameter : m_parameters) { if (first_time) first_time = false; else parameters_builder.append(','); parameters_builder.append(parameter); } print_indent(indent); printf("%s '%s(%s)'\n", class_name(), name().characters(), parameters_builder.build().characters()); body().dump(indent + 1); } void ReturnStatement::dump(int indent) const { ASTNode::dump(indent); if (argument()) argument()->dump(indent + 1); } void IfStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); printf("If\n"); predicate().dump(indent + 1); consequent().dump(indent + 1); print_indent(indent); printf("Else\n"); alternate().dump(indent + 1); } void WhileStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); printf("While\n"); predicate().dump(indent + 1); body().dump(indent + 1); } void ForStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); printf("For\n"); if (init()) init()->dump(indent + 1); if (test()) test()->dump(indent + 1); if (update()) update()->dump(indent + 1); body().dump(indent + 1); } Value Identifier::execute(Interpreter& interpreter) const { return interpreter.get_variable(string()); } void Identifier::dump(int indent) const { print_indent(indent); printf("Identifier \"%s\"\n", m_string.characters()); } Value AssignmentExpression::execute(Interpreter& interpreter) const { ASSERT(m_lhs->is_identifier()); auto name = static_cast(*m_lhs).string(); auto rhs_result = m_rhs->execute(interpreter); switch (m_op) { case AssignmentOp::Assignment: interpreter.set_variable(name, rhs_result); break; case AssignmentOp::AdditionAssignment: rhs_result = add(m_lhs->execute(interpreter), rhs_result); interpreter.set_variable(name, rhs_result); break; case AssignmentOp::SubtractionAssignment: rhs_result = sub(m_lhs->execute(interpreter), rhs_result); interpreter.set_variable(name, rhs_result); break; case AssignmentOp::MultiplicationAssignment: rhs_result = mul(m_lhs->execute(interpreter), rhs_result); interpreter.set_variable(name, rhs_result); break; case AssignmentOp::DivisionAssignment: rhs_result = div(m_lhs->execute(interpreter), rhs_result); interpreter.set_variable(name, rhs_result); break; } return rhs_result; } Value UpdateExpression::execute(Interpreter& interpreter) const { ASSERT(m_argument->is_identifier()); auto name = static_cast(*m_argument).string(); auto previous_value = interpreter.get_variable(name); ASSERT(previous_value.is_number()); int op_result = 0; switch (m_op) { case UpdateOp::Increment: op_result = 1; break; case UpdateOp::Decrement: op_result = -1; break; } interpreter.set_variable(name, Value(previous_value.as_double() + op_result)); if (m_prefixed) return JS::Value(previous_value.as_double() + op_result); return previous_value; } void AssignmentExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case AssignmentOp::Assignment: op_string = "="; break; case AssignmentOp::AdditionAssignment: op_string = "+="; break; case AssignmentOp::SubtractionAssignment: op_string = "-="; break; case AssignmentOp::MultiplicationAssignment: op_string = "*="; break; case AssignmentOp::DivisionAssignment: op_string = "/="; break; } ASTNode::dump(indent); print_indent(indent + 1); printf("%s\n", op_string); m_lhs->dump(indent + 1); m_rhs->dump(indent + 1); } void UpdateExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case UpdateOp::Increment: op_string = "++"; break; case UpdateOp::Decrement: op_string = "--"; break; } ASTNode::dump(indent); print_indent(indent + 1); if (m_prefixed) printf("%s\n", op_string); m_argument->dump(indent + 1); if (!m_prefixed) { print_indent(indent + 1); printf("%s\n", op_string); } } Value VariableDeclaration::execute(Interpreter& interpreter) const { interpreter.declare_variable(name().string(), m_declaration_type); if (m_initializer) { auto initalizer_result = m_initializer->execute(interpreter); interpreter.set_variable(name().string(), initalizer_result); } return js_undefined(); } void VariableDeclaration::dump(int indent) const { const char* declaration_type_string = nullptr; switch (m_declaration_type) { case DeclarationType::Let: declaration_type_string = "Let"; break; case DeclarationType::Var: declaration_type_string = "Var"; break; case DeclarationType::Const: declaration_type_string = "Const"; break; } ASTNode::dump(indent); print_indent(indent + 1); printf("%s\n", declaration_type_string); m_name->dump(indent + 1); if (m_initializer) m_initializer->dump(indent + 1); } void ObjectExpression::dump(int indent) const { ASTNode::dump(indent); } void ExpressionStatement::dump(int indent) const { ASTNode::dump(indent); m_expression->dump(indent + 1); } Value ObjectExpression::execute(Interpreter& interpreter) const { return interpreter.heap().allocate(); } void MemberExpression::dump(int indent) const { ASTNode::dump(indent); m_object->dump(indent + 1); m_property->dump(indent + 1); } Value MemberExpression::execute(Interpreter& interpreter) const { auto object_result = m_object->execute(interpreter).to_object(interpreter.heap()); ASSERT(object_result.is_object()); String property_name; if (m_property->is_identifier()) { property_name = static_cast(*m_property).string(); } else { ASSERT_NOT_REACHED(); } return object_result.as_object()->get(property_name); } Value StringLiteral::execute(Interpreter& interpreter) const { return js_string(interpreter.heap(), m_value); } Value NumericLiteral::execute(Interpreter&) const { return Value(m_value); } Value BooleanLiteral::execute(Interpreter&) const { return Value(m_value); } }