/* * Copyright (c) 2020, Andreas Kling * Copyright (c) 2020, Linus Groh * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace JS { static void update_function_name(Value& value, const FlyString& name) { if (!value.is_object()) return; auto& object = value.as_object(); if (object.is_function()) { auto& function = static_cast(object); if (function.is_script_function() && function.name().is_empty()) static_cast(function).set_name(name); } else if (object.is_array()) { auto& array = static_cast(object); for (auto& entry : array.indexed_properties().values_unordered()) update_function_name(entry.value, name); } } Value ScopeNode::execute(Interpreter& interpreter) const { return interpreter.run(*this); } Value FunctionDeclaration::execute(Interpreter&) const { return js_undefined(); } Value FunctionExpression::execute(Interpreter& interpreter) const { return ScriptFunction::create(interpreter.global_object(), name(), body(), parameters(), function_length(), interpreter.current_environment(), m_is_arrow_function); } Value ExpressionStatement::execute(Interpreter& interpreter) const { return m_expression->execute(interpreter); } CallExpression::ThisAndCallee CallExpression::compute_this_and_callee(Interpreter& interpreter) const { if (is_new_expression()) { // Computing |this| is irrelevant for "new" expression. return { js_undefined(), m_callee->execute(interpreter) }; } if (m_callee->is_member_expression()) { auto& member_expression = static_cast(*m_callee); auto object_value = member_expression.object().execute(interpreter); if (interpreter.exception()) return {}; auto* this_value = object_value.to_object(interpreter); if (interpreter.exception()) return {}; auto callee = this_value->get(member_expression.computed_property_name(interpreter)).value_or(js_undefined()); return { this_value, callee }; } return { &interpreter.global_object(), m_callee->execute(interpreter) }; } Value CallExpression::execute(Interpreter& interpreter) const { auto [this_value, callee] = compute_this_and_callee(interpreter); if (interpreter.exception()) return {}; ASSERT(!callee.is_empty()); if (!callee.is_function() || (is_new_expression() && (callee.as_object().is_native_function() && !static_cast(callee.as_object()).has_constructor()))) { String error_message; auto call_type = is_new_expression() ? "constructor" : "function"; if (m_callee->is_identifier() || m_callee->is_member_expression()) { String expression_string; if (m_callee->is_identifier()) expression_string = static_cast(*m_callee).string(); else expression_string = static_cast(*m_callee).to_string_approximation(); error_message = String::format("%s is not a %s (evaluated from '%s')", callee.to_string_without_side_effects().characters(), call_type, expression_string.characters()); } else { error_message = String::format("%s is not a %s", callee.to_string_without_side_effects().characters(), call_type); } return interpreter.throw_exception(error_message); } auto& function = callee.as_function(); MarkedValueList arguments(interpreter.heap()); arguments.values().append(function.bound_arguments()); for (size_t i = 0; i < m_arguments.size(); ++i) { auto value = m_arguments[i].value->execute(interpreter); if (interpreter.exception()) return {}; if (m_arguments[i].is_spread) { // FIXME: Support generic iterables if (value.is_string()) { for (auto ch : value.as_string().string()) arguments.append(Value(js_string(interpreter, String::format("%c", ch)))); } else if (value.is_object() && value.as_object().is_array()) { auto& array = static_cast(value.as_object()); for (auto& entry : array.indexed_properties()) { arguments.append(entry.value_and_attributes(&array).value); if (interpreter.exception()) return {}; } } else if (value.is_object() && value.as_object().is_string_object()) { for (auto ch : static_cast(value.as_object()).primitive_string().string()) arguments.append(Value(js_string(interpreter, String::format("%c", ch)))); } else { interpreter.throw_exception(String::format("%s is not iterable", value.to_string_without_side_effects().characters())); } } else { arguments.append(value); } } auto& call_frame = interpreter.push_call_frame(); call_frame.function_name = function.name(); call_frame.arguments = arguments.values(); call_frame.environment = function.create_environment(); Object* new_object = nullptr; Value result; if (is_new_expression()) { new_object = Object::create_empty(interpreter, interpreter.global_object()); auto prototype = function.get("prototype"); if (prototype.is_object()) new_object->set_prototype(&prototype.as_object()); call_frame.this_value = new_object; result = function.construct(interpreter); } else { call_frame.this_value = function.bound_this().value_or(this_value); result = function.call(interpreter); } interpreter.pop_call_frame(); if (interpreter.exception()) return {}; if (is_new_expression()) { if (result.is_object()) return result; return new_object; } return result; } Value ReturnStatement::execute(Interpreter& interpreter) const { auto value = argument() ? argument()->execute(interpreter) : js_undefined(); if (interpreter.exception()) return {}; interpreter.unwind(ScopeType::Function); return value; } Value IfStatement::execute(Interpreter& interpreter) const { auto predicate_result = m_predicate->execute(interpreter); if (interpreter.exception()) return {}; if (predicate_result.to_boolean()) return interpreter.run(*m_consequent); if (m_alternate) return interpreter.run(*m_alternate); return js_undefined(); } Value WhileStatement::execute(Interpreter& interpreter) const { Value last_value = js_undefined(); while (m_test->execute(interpreter).to_boolean()) { if (interpreter.exception()) return {}; last_value = interpreter.run(*m_body); if (interpreter.exception()) return {}; } return last_value; } Value DoWhileStatement::execute(Interpreter& interpreter) const { Value last_value = js_undefined(); do { if (interpreter.exception()) return {}; last_value = interpreter.run(*m_body); if (interpreter.exception()) return {}; } while (m_test->execute(interpreter).to_boolean()); return last_value; } Value ForStatement::execute(Interpreter& interpreter) const { RefPtr wrapper; if (m_init && m_init->is_variable_declaration() && static_cast(m_init.ptr())->declaration_kind() != DeclarationKind::Var) { wrapper = create_ast_node(); NonnullRefPtrVector decls; decls.append(*static_cast(m_init.ptr())); wrapper->add_variables(decls); interpreter.enter_scope(*wrapper, {}, ScopeType::Block); } auto wrapper_cleanup = ScopeGuard([&] { if (wrapper) interpreter.exit_scope(*wrapper); }); Value last_value = js_undefined(); if (m_init) { m_init->execute(interpreter); if (interpreter.exception()) return {}; } if (m_test) { while (true) { auto test_result = m_test->execute(interpreter); if (interpreter.exception()) return {}; if (!test_result.to_boolean()) break; last_value = interpreter.run(*m_body); if (interpreter.exception()) return {}; if (interpreter.should_unwind()) { if (interpreter.should_unwind_until(ScopeType::Continuable, m_label)) { interpreter.stop_unwind(); } else if (interpreter.should_unwind_until(ScopeType::Breakable, m_label)) { interpreter.stop_unwind(); break; } else { return js_undefined(); } } if (m_update) { m_update->execute(interpreter); if (interpreter.exception()) return {}; } } } else { while (true) { last_value = interpreter.run(*m_body); if (interpreter.exception()) return {}; if (interpreter.should_unwind()) { if (interpreter.should_unwind_until(ScopeType::Continuable, m_label)) { interpreter.stop_unwind(); } else if (interpreter.should_unwind_until(ScopeType::Breakable, m_label)) { interpreter.stop_unwind(); break; } else { return js_undefined(); } } if (m_update) { m_update->execute(interpreter); if (interpreter.exception()) return {}; } } } return last_value; } static FlyString variable_from_for_declaration(Interpreter& interpreter, NonnullRefPtr node, RefPtr wrapper) { FlyString variable_name; if (node->is_variable_declaration()) { auto* variable_declaration = static_cast(node.ptr()); ASSERT(!variable_declaration->declarations().is_empty()); if (variable_declaration->declaration_kind() != DeclarationKind::Var) { wrapper = create_ast_node(); interpreter.enter_scope(*wrapper, {}, ScopeType::Block); } variable_declaration->execute(interpreter); variable_name = variable_declaration->declarations().first().id().string(); } else if (node->is_identifier()) { variable_name = static_cast(*node).string(); } else { ASSERT_NOT_REACHED(); } return variable_name; } Value ForInStatement::execute(Interpreter& interpreter) const { if (!m_lhs->is_variable_declaration() && !m_lhs->is_identifier()) { // FIXME: Implement "for (foo.bar in baz)", "for (foo[0] in bar)" ASSERT_NOT_REACHED(); } RefPtr wrapper; auto variable_name = variable_from_for_declaration(interpreter, m_lhs, wrapper); auto wrapper_cleanup = ScopeGuard([&] { if (wrapper) interpreter.exit_scope(*wrapper); }); auto last_value = js_undefined(); auto rhs_result = m_rhs->execute(interpreter); if (interpreter.exception()) return {}; auto* object = rhs_result.to_object(interpreter); while (object) { auto property_names = object->get_own_properties(*object, Object::GetOwnPropertyMode::Key, true); for (auto& property_name : property_names.as_object().indexed_properties()) { interpreter.set_variable(variable_name, property_name.value_and_attributes(object).value); if (interpreter.exception()) return {}; last_value = interpreter.run(*m_body); if (interpreter.exception()) return {}; if (interpreter.should_unwind()) { if (interpreter.should_unwind_until(ScopeType::Continuable, m_label)) { interpreter.stop_unwind(); } else if (interpreter.should_unwind_until(ScopeType::Breakable, m_label)) { interpreter.stop_unwind(); break; } else { return js_undefined(); } } } object = object->prototype(); } return last_value; } Value ForOfStatement::execute(Interpreter& interpreter) const { if (!m_lhs->is_variable_declaration() && !m_lhs->is_identifier()) { // FIXME: Implement "for (foo.bar of baz)", "for (foo[0] of bar)" ASSERT_NOT_REACHED(); } RefPtr wrapper; auto variable_name = variable_from_for_declaration(interpreter, m_lhs, wrapper); auto wrapper_cleanup = ScopeGuard([&] { if (wrapper) interpreter.exit_scope(*wrapper); }); auto last_value = js_undefined(); auto rhs_result = m_rhs->execute(interpreter); if (interpreter.exception()) return {}; // FIXME: We need to properly implement the iterator protocol auto is_iterable = rhs_result.is_array() || rhs_result.is_string() || (rhs_result.is_object() && rhs_result.as_object().is_string_object()); if (!is_iterable) return interpreter.throw_exception("for..of right-hand side must be iterable"); size_t index = 0; auto next = [&]() -> Optional { if (rhs_result.is_array()) { auto& array_elements = rhs_result.as_object().indexed_properties(); if (index < array_elements.array_like_size()) { auto result = array_elements.get(&rhs_result.as_object(), index); if (interpreter.exception()) return {}; return result.value().value; } } else if (rhs_result.is_string()) { auto string = rhs_result.as_string().string(); if (index < string.length()) return js_string(interpreter, string.substring(index, 1)); } else if (rhs_result.is_object() && rhs_result.as_object().is_string_object()) { auto string = static_cast(&rhs_result.as_object())->primitive_string().string(); if (index < string.length()) return js_string(interpreter, string.substring(index, 1)); } return {}; }; for (;;) { auto next_item = next(); if (!next_item.has_value()) break; interpreter.set_variable(variable_name, next_item.value()); last_value = interpreter.run(*m_body); if (interpreter.exception()) return {}; if (interpreter.should_unwind()) { if (interpreter.should_unwind_until(ScopeType::Continuable, m_label)) { interpreter.stop_unwind(); } else if (interpreter.should_unwind_until(ScopeType::Breakable, m_label)) { interpreter.stop_unwind(); break; } else { return js_undefined(); } } ++index; } return last_value; } Value BinaryExpression::execute(Interpreter& interpreter) const { auto lhs_result = m_lhs->execute(interpreter); if (interpreter.exception()) return {}; auto rhs_result = m_rhs->execute(interpreter); if (interpreter.exception()) return {}; switch (m_op) { case BinaryOp::Addition: return add(interpreter, lhs_result, rhs_result); case BinaryOp::Subtraction: return sub(interpreter, lhs_result, rhs_result); case BinaryOp::Multiplication: return mul(interpreter, lhs_result, rhs_result); case BinaryOp::Division: return div(interpreter, lhs_result, rhs_result); case BinaryOp::Modulo: return mod(interpreter, lhs_result, rhs_result); case BinaryOp::Exponentiation: return exp(interpreter, lhs_result, rhs_result); case BinaryOp::TypedEquals: return Value(strict_eq(interpreter, lhs_result, rhs_result)); case BinaryOp::TypedInequals: return Value(!strict_eq(interpreter, lhs_result, rhs_result)); case BinaryOp::AbstractEquals: return Value(abstract_eq(interpreter, lhs_result, rhs_result)); case BinaryOp::AbstractInequals: return Value(!abstract_eq(interpreter, lhs_result, rhs_result)); case BinaryOp::GreaterThan: return greater_than(interpreter, lhs_result, rhs_result); case BinaryOp::GreaterThanEquals: return greater_than_equals(interpreter, lhs_result, rhs_result); case BinaryOp::LessThan: return less_than(interpreter, lhs_result, rhs_result); case BinaryOp::LessThanEquals: return less_than_equals(interpreter, lhs_result, rhs_result); case BinaryOp::BitwiseAnd: return bitwise_and(interpreter, lhs_result, rhs_result); case BinaryOp::BitwiseOr: return bitwise_or(interpreter, lhs_result, rhs_result); case BinaryOp::BitwiseXor: return bitwise_xor(interpreter, lhs_result, rhs_result); case BinaryOp::LeftShift: return left_shift(interpreter, lhs_result, rhs_result); case BinaryOp::RightShift: return right_shift(interpreter, lhs_result, rhs_result); case BinaryOp::UnsignedRightShift: return unsigned_right_shift(interpreter, lhs_result, rhs_result); case BinaryOp::In: return in(interpreter, lhs_result, rhs_result); case BinaryOp::InstanceOf: return instance_of(interpreter, lhs_result, rhs_result); } ASSERT_NOT_REACHED(); } Value LogicalExpression::execute(Interpreter& interpreter) const { auto lhs_result = m_lhs->execute(interpreter); if (interpreter.exception()) return {}; switch (m_op) { case LogicalOp::And: if (lhs_result.to_boolean()) { auto rhs_result = m_rhs->execute(interpreter); if (interpreter.exception()) return {}; return rhs_result; } return lhs_result; case LogicalOp::Or: { if (lhs_result.to_boolean()) return lhs_result; auto rhs_result = m_rhs->execute(interpreter); if (interpreter.exception()) return {}; return rhs_result; } case LogicalOp::NullishCoalescing: if (lhs_result.is_null() || lhs_result.is_undefined()) { auto rhs_result = m_rhs->execute(interpreter); if (interpreter.exception()) return {}; return rhs_result; } return lhs_result; } ASSERT_NOT_REACHED(); } Reference Expression::to_reference(Interpreter&) const { return {}; } Reference Identifier::to_reference(Interpreter& interpreter) const { return interpreter.get_reference(string()); } Reference MemberExpression::to_reference(Interpreter& interpreter) const { auto object_value = m_object->execute(interpreter); if (interpreter.exception()) return {}; auto property_name = computed_property_name(interpreter); if (!property_name.is_valid()) return {}; return { object_value, property_name }; } Value UnaryExpression::execute(Interpreter& interpreter) const { if (m_op == UnaryOp::Delete) { auto reference = m_lhs->to_reference(interpreter); if (interpreter.exception()) return {}; if (reference.is_unresolvable()) return Value(true); // FIXME: Support deleting locals ASSERT(!reference.is_local_variable()); if (reference.is_global_variable()) return interpreter.global_object().delete_property(reference.name()); auto* base_object = reference.base().to_object(interpreter); if (!base_object) return {}; return base_object->delete_property(reference.name()); } Value lhs_result; if (m_op == UnaryOp::Typeof && m_lhs->is_identifier()) { auto reference = m_lhs->to_reference(interpreter); if (interpreter.exception()) { return {}; } // FIXME: standard recommends checking with is_unresolvable but it ALWAYS return false here if (reference.is_local_variable() || reference.is_global_variable()) { auto name = reference.name(); lhs_result = interpreter.get_variable(name.to_string()).value_or(js_undefined()); if (interpreter.exception()) return {}; } } else { lhs_result = m_lhs->execute(interpreter); if (interpreter.exception()) return {}; } switch (m_op) { case UnaryOp::BitwiseNot: return bitwise_not(interpreter, lhs_result); case UnaryOp::Not: return Value(!lhs_result.to_boolean()); case UnaryOp::Plus: return unary_plus(interpreter, lhs_result); case UnaryOp::Minus: return unary_minus(interpreter, lhs_result); case UnaryOp::Typeof: switch (lhs_result.type()) { case Value::Type::Empty: ASSERT_NOT_REACHED(); return {}; case Value::Type::Undefined: return js_string(interpreter, "undefined"); case Value::Type::Null: // yes, this is on purpose. yes, this is how javascript works. // yes, it's silly. return js_string(interpreter, "object"); case Value::Type::Number: return js_string(interpreter, "number"); case Value::Type::String: return js_string(interpreter, "string"); case Value::Type::Object: if (lhs_result.is_function()) return js_string(interpreter, "function"); return js_string(interpreter, "object"); case Value::Type::Boolean: return js_string(interpreter, "boolean"); case Value::Type::Symbol: return js_string(interpreter, "symbol"); case Value::Type::BigInt: return js_string(interpreter, "bigint"); default: ASSERT_NOT_REACHED(); } case UnaryOp::Void: return js_undefined(); case UnaryOp::Delete: ASSERT_NOT_REACHED(); } ASSERT_NOT_REACHED(); } static void print_indent(int indent) { for (int i = 0; i < indent * 2; ++i) putchar(' '); } void ASTNode::dump(int indent) const { print_indent(indent); printf("%s\n", class_name()); } void ScopeNode::dump(int indent) const { ASTNode::dump(indent); if (!m_variables.is_empty()) { print_indent(indent + 1); printf("(Variables)\n"); for (auto& variable : m_variables) variable.dump(indent + 2); } if (!m_children.is_empty()) { print_indent(indent + 1); printf("(Children)\n"); for (auto& child : children()) child.dump(indent + 2); } } void BinaryExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case BinaryOp::Addition: op_string = "+"; break; case BinaryOp::Subtraction: op_string = "-"; break; case BinaryOp::Multiplication: op_string = "*"; break; case BinaryOp::Division: op_string = "/"; break; case BinaryOp::Modulo: op_string = "%"; break; case BinaryOp::Exponentiation: op_string = "**"; break; case BinaryOp::TypedEquals: op_string = "==="; break; case BinaryOp::TypedInequals: op_string = "!=="; break; case BinaryOp::AbstractEquals: op_string = "=="; break; case BinaryOp::AbstractInequals: op_string = "!="; break; case BinaryOp::GreaterThan: op_string = ">"; break; case BinaryOp::GreaterThanEquals: op_string = ">="; break; case BinaryOp::LessThan: op_string = "<"; break; case BinaryOp::LessThanEquals: op_string = "<="; break; case BinaryOp::BitwiseAnd: op_string = "&"; break; case BinaryOp::BitwiseOr: op_string = "|"; break; case BinaryOp::BitwiseXor: op_string = "^"; break; case BinaryOp::LeftShift: op_string = "<<"; break; case BinaryOp::RightShift: op_string = ">>"; break; case BinaryOp::UnsignedRightShift: op_string = ">>>"; break; case BinaryOp::In: op_string = "in"; break; case BinaryOp::InstanceOf: op_string = "instanceof"; break; } print_indent(indent); printf("%s\n", class_name()); m_lhs->dump(indent + 1); print_indent(indent + 1); printf("%s\n", op_string); m_rhs->dump(indent + 1); } void LogicalExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case LogicalOp::And: op_string = "&&"; break; case LogicalOp::Or: op_string = "||"; break; case LogicalOp::NullishCoalescing: op_string = "??"; break; } print_indent(indent); printf("%s\n", class_name()); m_lhs->dump(indent + 1); print_indent(indent + 1); printf("%s\n", op_string); m_rhs->dump(indent + 1); } void UnaryExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case UnaryOp::BitwiseNot: op_string = "~"; break; case UnaryOp::Not: op_string = "!"; break; case UnaryOp::Plus: op_string = "+"; break; case UnaryOp::Minus: op_string = "-"; break; case UnaryOp::Typeof: op_string = "typeof "; break; case UnaryOp::Void: op_string = "void "; break; case UnaryOp::Delete: op_string = "delete "; break; } print_indent(indent); printf("%s\n", class_name()); print_indent(indent + 1); printf("%s\n", op_string); m_lhs->dump(indent + 1); } void CallExpression::dump(int indent) const { print_indent(indent); printf("CallExpression %s\n", is_new_expression() ? "[new]" : ""); m_callee->dump(indent + 1); for (auto& argument : m_arguments) argument.value->dump(indent + 1); } void StringLiteral::dump(int indent) const { print_indent(indent); printf("StringLiteral \"%s\"\n", m_value.characters()); } void NumericLiteral::dump(int indent) const { print_indent(indent); printf("NumericLiteral %g\n", m_value); } void BigIntLiteral::dump(int indent) const { print_indent(indent); printf("BigIntLiteral %s\n", m_value.characters()); } void BooleanLiteral::dump(int indent) const { print_indent(indent); printf("BooleanLiteral %s\n", m_value ? "true" : "false"); } void NullLiteral::dump(int indent) const { print_indent(indent); printf("null\n"); } void FunctionNode::dump(int indent, const char* class_name) const { print_indent(indent); printf("%s '%s'\n", class_name, name().characters()); if (!m_parameters.is_empty()) { print_indent(indent + 1); printf("(Parameters)\n"); for (auto& parameter : m_parameters) { print_indent(indent + 2); if (parameter.is_rest) printf("..."); printf("%s\n", parameter.name.characters()); if (parameter.default_value) parameter.default_value->dump(indent + 3); } } if (!m_variables.is_empty()) { print_indent(indent + 1); printf("(Variables)\n"); for (auto& variable : m_variables) variable.dump(indent + 2); } print_indent(indent + 1); printf("(Body)\n"); body().dump(indent + 2); } void FunctionDeclaration::dump(int indent) const { FunctionNode::dump(indent, class_name()); } void FunctionExpression::dump(int indent) const { FunctionNode::dump(indent, class_name()); } void ReturnStatement::dump(int indent) const { ASTNode::dump(indent); if (argument()) argument()->dump(indent + 1); } void IfStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); printf("If\n"); predicate().dump(indent + 1); consequent().dump(indent + 1); if (alternate()) { print_indent(indent); printf("Else\n"); alternate()->dump(indent + 1); } } void WhileStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); printf("While\n"); test().dump(indent + 1); body().dump(indent + 1); } void DoWhileStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); printf("DoWhile\n"); test().dump(indent + 1); body().dump(indent + 1); } void ForStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); printf("For\n"); if (init()) init()->dump(indent + 1); if (test()) test()->dump(indent + 1); if (update()) update()->dump(indent + 1); body().dump(indent + 1); } void ForInStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); printf("ForIn\n"); lhs().dump(indent + 1); rhs().dump(indent + 1); body().dump(indent + 1); } void ForOfStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); printf("ForOf\n"); lhs().dump(indent + 1); rhs().dump(indent + 1); body().dump(indent + 1); } Value Identifier::execute(Interpreter& interpreter) const { auto value = interpreter.get_variable(string()); if (value.is_empty()) return interpreter.throw_exception(String::format("'%s' not known", string().characters())); return value; } void Identifier::dump(int indent) const { print_indent(indent); printf("Identifier \"%s\"\n", m_string.characters()); } void SpreadExpression::dump(int indent) const { ASTNode::dump(indent); m_target->dump(indent + 1); } Value SpreadExpression::execute(Interpreter& interpreter) const { return m_target->execute(interpreter); } Value ThisExpression::execute(Interpreter& interpreter) const { return interpreter.this_value(); } void ThisExpression::dump(int indent) const { ASTNode::dump(indent); } Value AssignmentExpression::execute(Interpreter& interpreter) const { auto rhs_result = m_rhs->execute(interpreter); if (interpreter.exception()) return {}; Value lhs_result; switch (m_op) { case AssignmentOp::Assignment: break; case AssignmentOp::AdditionAssignment: lhs_result = m_lhs->execute(interpreter); if (interpreter.exception()) return {}; rhs_result = add(interpreter, lhs_result, rhs_result); break; case AssignmentOp::SubtractionAssignment: lhs_result = m_lhs->execute(interpreter); if (interpreter.exception()) return {}; rhs_result = sub(interpreter, lhs_result, rhs_result); break; case AssignmentOp::MultiplicationAssignment: lhs_result = m_lhs->execute(interpreter); if (interpreter.exception()) return {}; rhs_result = mul(interpreter, lhs_result, rhs_result); break; case AssignmentOp::DivisionAssignment: lhs_result = m_lhs->execute(interpreter); if (interpreter.exception()) return {}; rhs_result = div(interpreter, lhs_result, rhs_result); break; case AssignmentOp::ModuloAssignment: lhs_result = m_lhs->execute(interpreter); if (interpreter.exception()) return {}; rhs_result = mod(interpreter, lhs_result, rhs_result); break; case AssignmentOp::ExponentiationAssignment: lhs_result = m_lhs->execute(interpreter); if (interpreter.exception()) return {}; rhs_result = exp(interpreter, lhs_result, rhs_result); break; case AssignmentOp::BitwiseAndAssignment: lhs_result = m_lhs->execute(interpreter); if (interpreter.exception()) return {}; rhs_result = bitwise_and(interpreter, lhs_result, rhs_result); break; case AssignmentOp::BitwiseOrAssignment: lhs_result = m_lhs->execute(interpreter); if (interpreter.exception()) return {}; rhs_result = bitwise_or(interpreter, lhs_result, rhs_result); break; case AssignmentOp::BitwiseXorAssignment: lhs_result = m_lhs->execute(interpreter); if (interpreter.exception()) return {}; rhs_result = bitwise_xor(interpreter, lhs_result, rhs_result); break; case AssignmentOp::LeftShiftAssignment: lhs_result = m_lhs->execute(interpreter); if (interpreter.exception()) return {}; rhs_result = left_shift(interpreter, lhs_result, rhs_result); break; case AssignmentOp::RightShiftAssignment: lhs_result = m_lhs->execute(interpreter); if (interpreter.exception()) return {}; rhs_result = right_shift(interpreter, lhs_result, rhs_result); break; case AssignmentOp::UnsignedRightShiftAssignment: lhs_result = m_lhs->execute(interpreter); if (interpreter.exception()) return {}; rhs_result = unsigned_right_shift(interpreter, lhs_result, rhs_result); break; } if (interpreter.exception()) return {}; auto reference = m_lhs->to_reference(interpreter); if (interpreter.exception()) return {}; if (reference.is_unresolvable()) return interpreter.throw_exception("Invalid left-hand side in assignment"); update_function_name(rhs_result, reference.name().as_string()); reference.put(interpreter, rhs_result); if (interpreter.exception()) return {}; return rhs_result; } Value UpdateExpression::execute(Interpreter& interpreter) const { auto reference = m_argument->to_reference(interpreter); if (interpreter.exception()) return {}; auto old_value = reference.get(interpreter); if (interpreter.exception()) return {}; old_value = old_value.to_numeric(interpreter); if (interpreter.exception()) return {}; Value new_value; switch (m_op) { case UpdateOp::Increment: if (old_value.is_number()) new_value = Value(old_value.as_double() + 1); else new_value = js_bigint(interpreter, old_value.as_bigint().big_integer().plus(Crypto::SignedBigInteger { 1 })); break; case UpdateOp::Decrement: if (old_value.is_number()) new_value = Value(old_value.as_double() - 1); else new_value = js_bigint(interpreter, old_value.as_bigint().big_integer().minus(Crypto::SignedBigInteger { 1 })); break; default: ASSERT_NOT_REACHED(); } reference.put(interpreter, new_value); if (interpreter.exception()) return {}; return m_prefixed ? new_value : old_value; } void AssignmentExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case AssignmentOp::Assignment: op_string = "="; break; case AssignmentOp::AdditionAssignment: op_string = "+="; break; case AssignmentOp::SubtractionAssignment: op_string = "-="; break; case AssignmentOp::MultiplicationAssignment: op_string = "*="; break; case AssignmentOp::DivisionAssignment: op_string = "/="; break; case AssignmentOp::ModuloAssignment: op_string = "%="; break; case AssignmentOp::ExponentiationAssignment: op_string = "**="; break; case AssignmentOp::BitwiseAndAssignment: op_string = "&="; break; case AssignmentOp::BitwiseOrAssignment: op_string = "|="; break; case AssignmentOp::BitwiseXorAssignment: op_string = "^="; break; case AssignmentOp::LeftShiftAssignment: op_string = "<<="; break; case AssignmentOp::RightShiftAssignment: op_string = ">>="; break; case AssignmentOp::UnsignedRightShiftAssignment: op_string = ">>>="; break; } ASTNode::dump(indent); print_indent(indent + 1); printf("%s\n", op_string); m_lhs->dump(indent + 1); m_rhs->dump(indent + 1); } void UpdateExpression::dump(int indent) const { const char* op_string = nullptr; switch (m_op) { case UpdateOp::Increment: op_string = "++"; break; case UpdateOp::Decrement: op_string = "--"; break; } ASTNode::dump(indent); print_indent(indent + 1); if (m_prefixed) printf("%s\n", op_string); m_argument->dump(indent + 1); if (!m_prefixed) { print_indent(indent + 1); printf("%s\n", op_string); } } Value VariableDeclaration::execute(Interpreter& interpreter) const { for (auto& declarator : m_declarations) { if (auto* init = declarator.init()) { auto initalizer_result = init->execute(interpreter); if (interpreter.exception()) return {}; auto variable_name = declarator.id().string(); update_function_name(initalizer_result, variable_name); interpreter.set_variable(variable_name, initalizer_result, true); } } return js_undefined(); } Value VariableDeclarator::execute(Interpreter&) const { // NOTE: This node is handled by VariableDeclaration. ASSERT_NOT_REACHED(); } void VariableDeclaration::dump(int indent) const { const char* declaration_kind_string = nullptr; switch (m_declaration_kind) { case DeclarationKind::Let: declaration_kind_string = "Let"; break; case DeclarationKind::Var: declaration_kind_string = "Var"; break; case DeclarationKind::Const: declaration_kind_string = "Const"; break; } ASTNode::dump(indent); print_indent(indent + 1); printf("%s\n", declaration_kind_string); for (auto& declarator : m_declarations) declarator.dump(indent + 1); } void VariableDeclarator::dump(int indent) const { ASTNode::dump(indent); m_id->dump(indent + 1); if (m_init) m_init->dump(indent + 1); } void ObjectProperty::dump(int indent) const { ASTNode::dump(indent); m_key->dump(indent + 1); m_value->dump(indent + 1); } void ObjectExpression::dump(int indent) const { ASTNode::dump(indent); for (auto& property : m_properties) { property.dump(indent + 1); } } void ExpressionStatement::dump(int indent) const { ASTNode::dump(indent); m_expression->dump(indent + 1); } Value ObjectProperty::execute(Interpreter&) const { // NOTE: ObjectProperty execution is handled by ObjectExpression. ASSERT_NOT_REACHED(); } Value ObjectExpression::execute(Interpreter& interpreter) const { auto* object = Object::create_empty(interpreter, interpreter.global_object()); for (auto& property : m_properties) { auto key_result = property.key().execute(interpreter); if (interpreter.exception()) return {}; if (property.type() == ObjectProperty::Type::Spread) { if (key_result.is_array()) { auto& array_to_spread = static_cast(key_result.as_object()); for (auto& entry : array_to_spread.indexed_properties()) { object->indexed_properties().append(entry.value_and_attributes(&array_to_spread).value); if (interpreter.exception()) return {}; } } else if (key_result.is_object()) { auto& obj_to_spread = key_result.as_object(); for (auto& it : obj_to_spread.shape().property_table_ordered()) { if (it.value.attributes.is_enumerable()) object->define_property(it.key, obj_to_spread.get(it.key)); } } else if (key_result.is_string()) { auto& str_to_spread = key_result.as_string().string(); for (size_t i = 0; i < str_to_spread.length(); i++) { object->define_property(i, js_string(interpreter, str_to_spread.substring(i, 1))); } } continue; } auto key = key_result.to_string(interpreter); if (interpreter.exception()) return {}; auto value = property.value().execute(interpreter); if (interpreter.exception()) return {}; String name = key; if (property.type() == ObjectProperty::Type::Getter) { name = String::format("get %s", key.characters()); } else if (property.type() == ObjectProperty::Type::Setter) { name = String::format("set %s", key.characters()); } update_function_name(value, name); if (property.type() == ObjectProperty::Type::Getter || property.type() == ObjectProperty::Type::Setter) { ASSERT(value.is_function()); Accessor* accessor { nullptr }; auto property_metadata = object->shape().lookup(key); if (property_metadata.has_value()) { auto existing_property = object->get_direct(property_metadata.value().offset); if (existing_property.is_accessor()) accessor = &existing_property.as_accessor(); } if (!accessor) { accessor = Accessor::create(interpreter, nullptr, nullptr); object->define_property(key, accessor, Attribute::Configurable | Attribute::Enumerable); } if (property.type() == ObjectProperty::Type::Getter) accessor->set_getter(&value.as_function()); else accessor->set_setter(&value.as_function()); } else { object->define_property(key, value); } } return object; } void MemberExpression::dump(int indent) const { print_indent(indent); printf("%s (computed=%s)\n", class_name(), is_computed() ? "true" : "false"); m_object->dump(indent + 1); m_property->dump(indent + 1); } PropertyName MemberExpression::computed_property_name(Interpreter& interpreter) const { if (!is_computed()) { ASSERT(m_property->is_identifier()); return static_cast(*m_property).string(); } auto index = m_property->execute(interpreter); if (interpreter.exception()) return {}; ASSERT(!index.is_empty()); if (index.is_integer() && index.as_i32() >= 0) return index.as_i32(); auto index_string = index.to_string(interpreter); if (interpreter.exception()) return {}; return index_string; } String MemberExpression::to_string_approximation() const { String object_string = ""; if (m_object->is_identifier()) object_string = static_cast(*m_object).string(); if (is_computed()) return String::format("%s[]", object_string.characters()); ASSERT(m_property->is_identifier()); return String::format("%s.%s", object_string.characters(), static_cast(*m_property).string().characters()); } Value MemberExpression::execute(Interpreter& interpreter) const { auto object_value = m_object->execute(interpreter); if (interpreter.exception()) return {}; auto* object_result = object_value.to_object(interpreter); if (interpreter.exception()) return {}; return object_result->get(computed_property_name(interpreter)).value_or(js_undefined()); } Value StringLiteral::execute(Interpreter& interpreter) const { return js_string(interpreter, m_value); } Value NumericLiteral::execute(Interpreter&) const { return Value(m_value); } Value BigIntLiteral::execute(Interpreter& interpreter) const { return js_bigint(interpreter, Crypto::SignedBigInteger::from_base10(m_value.substring(0, m_value.length() - 1))); } Value BooleanLiteral::execute(Interpreter&) const { return Value(m_value); } Value NullLiteral::execute(Interpreter&) const { return js_null(); } void RegExpLiteral::dump(int indent) const { print_indent(indent); printf("%s (/%s/%s)\n", class_name(), content().characters(), flags().characters()); } Value RegExpLiteral::execute(Interpreter& interpreter) const { return RegExpObject::create(interpreter.global_object(), content(), flags()); } void ArrayExpression::dump(int indent) const { ASTNode::dump(indent); for (auto& element : m_elements) { if (element) { element->dump(indent + 1); } else { print_indent(indent + 1); printf("\n"); } } } Value ArrayExpression::execute(Interpreter& interpreter) const { auto* array = Array::create(interpreter.global_object()); for (auto& element : m_elements) { auto value = Value(); if (element) { value = element->execute(interpreter); if (interpreter.exception()) return {}; if (element->is_spread_expression()) { // FIXME: Support arbitrary iterables if (value.is_array()) { auto& array_to_spread = static_cast(value.as_object()); for (auto& entry : array_to_spread.indexed_properties()) { array->indexed_properties().append(entry.value_and_attributes(&array_to_spread).value); if (interpreter.exception()) return {}; } continue; } if (value.is_string() || (value.is_object() && value.as_object().is_string_object())) { String string_to_spread; if (value.is_string()) { string_to_spread = value.as_string().string(); } else { string_to_spread = static_cast(value.as_object()).primitive_string().string(); } for (size_t i = 0; i < string_to_spread.length(); ++i) array->indexed_properties().append(js_string(interpreter, string_to_spread.substring(i, 1))); continue; } interpreter.throw_exception(String::format("%s is not iterable", value.to_string_without_side_effects().characters())); return {}; } } array->indexed_properties().append(value); } return array; } void TemplateLiteral::dump(int indent) const { ASTNode::dump(indent); for (auto& expression : m_expressions) expression.dump(indent + 1); } Value TemplateLiteral::execute(Interpreter& interpreter) const { StringBuilder string_builder; for (auto& expression : m_expressions) { auto expr = expression.execute(interpreter); if (interpreter.exception()) return {}; auto string = expr.to_string(interpreter); if (interpreter.exception()) return {}; string_builder.append(string); } return js_string(interpreter, string_builder.build()); } void TaggedTemplateLiteral::dump(int indent) const { ASTNode::dump(indent); print_indent(indent + 1); printf("(Tag)\n"); m_tag->dump(indent + 2); print_indent(indent + 1); printf("(Template Literal)\n"); m_template_literal->dump(indent + 2); } Value TaggedTemplateLiteral::execute(Interpreter& interpreter) const { auto tag = m_tag->execute(interpreter); if (interpreter.exception()) return {}; if (!tag.is_function()) { interpreter.throw_exception(String::format("%s is not a function", tag.to_string_without_side_effects().characters())); return {}; } auto& tag_function = tag.as_function(); auto& expressions = m_template_literal->expressions(); auto* strings = Array::create(interpreter.global_object()); MarkedValueList arguments(interpreter.heap()); arguments.append(strings); for (size_t i = 0; i < expressions.size(); ++i) { auto value = expressions[i].execute(interpreter); if (interpreter.exception()) return {}; // tag`${foo}` -> "", foo, "" -> tag(["", ""], foo) // tag`foo${bar}baz${qux}` -> "foo", bar, "baz", qux, "" -> tag(["foo", "baz", ""], bar, qux) if (i % 2 == 0) { strings->indexed_properties().append(value); } else { arguments.append(value); } } auto* raw_strings = Array::create(interpreter.global_object()); for (auto& raw_string : m_template_literal->raw_strings()) { auto value = raw_string.execute(interpreter); if (interpreter.exception()) return {}; raw_strings->indexed_properties().append(value); } strings->define_property("raw", raw_strings, 0); return interpreter.call(tag_function, js_undefined(), move(arguments)); } void TryStatement::dump(int indent) const { ASTNode::dump(indent); print_indent(indent); printf("(Block)\n"); block().dump(indent + 1); if (handler()) { print_indent(indent); printf("(Handler)\n"); handler()->dump(indent + 1); } if (finalizer()) { print_indent(indent); printf("(Finalizer)\n"); finalizer()->dump(indent + 1); } } void CatchClause::dump(int indent) const { print_indent(indent); printf("CatchClause"); if (!m_parameter.is_null()) printf(" (%s)", m_parameter.characters()); printf("\n"); body().dump(indent + 1); } void ThrowStatement::dump(int indent) const { ASTNode::dump(indent); argument().dump(indent + 1); } Value TryStatement::execute(Interpreter& interpreter) const { interpreter.run(block(), {}, ScopeType::Try); if (auto* exception = interpreter.exception()) { if (m_handler) { interpreter.clear_exception(); ArgumentVector arguments { { m_handler->parameter(), exception->value() } }; interpreter.run(m_handler->body(), move(arguments)); } } if (m_finalizer) m_finalizer->execute(interpreter); return js_undefined(); } Value CatchClause::execute(Interpreter&) const { // NOTE: CatchClause execution is handled by TryStatement. ASSERT_NOT_REACHED(); return {}; } Value ThrowStatement::execute(Interpreter& interpreter) const { auto value = m_argument->execute(interpreter); if (interpreter.exception()) return {}; return interpreter.throw_exception(value); } Value SwitchStatement::execute(Interpreter& interpreter) const { auto discriminant_result = m_discriminant->execute(interpreter); if (interpreter.exception()) return {}; bool falling_through = false; for (auto& switch_case : m_cases) { if (!falling_through && switch_case.test()) { auto test_result = switch_case.test()->execute(interpreter); if (interpreter.exception()) return {}; if (!strict_eq(interpreter, discriminant_result, test_result)) continue; } falling_through = true; for (auto& statement : switch_case.consequent()) { statement.execute(interpreter); if (interpreter.exception()) return {}; if (interpreter.should_unwind()) { if (interpreter.should_unwind_until(ScopeType::Breakable, m_label)) { interpreter.stop_unwind(); return {}; } return {}; } } } return js_undefined(); } Value SwitchCase::execute(Interpreter& interpreter) const { (void)interpreter; return {}; } Value BreakStatement::execute(Interpreter& interpreter) const { interpreter.unwind(ScopeType::Breakable, m_target_label); return js_undefined(); } Value ContinueStatement::execute(Interpreter& interpreter) const { interpreter.unwind(ScopeType::Continuable, m_target_label); return js_undefined(); } void SwitchStatement::dump(int indent) const { ASTNode::dump(indent); m_discriminant->dump(indent + 1); for (auto& switch_case : m_cases) { switch_case.dump(indent + 1); } } void SwitchCase::dump(int indent) const { ASTNode::dump(indent); print_indent(indent + 1); if (m_test) { printf("(Test)\n"); m_test->dump(indent + 2); } else { printf("(Default)\n"); } print_indent(indent + 1); printf("(Consequent)\n"); for (auto& statement : m_consequent) statement.dump(indent + 2); } Value ConditionalExpression::execute(Interpreter& interpreter) const { auto test_result = m_test->execute(interpreter); if (interpreter.exception()) return {}; Value result; if (test_result.to_boolean()) { result = m_consequent->execute(interpreter); } else { result = m_alternate->execute(interpreter); } if (interpreter.exception()) return {}; return result; } void ConditionalExpression::dump(int indent) const { ASTNode::dump(indent); print_indent(indent + 1); printf("(Test)\n"); m_test->dump(indent + 2); print_indent(indent + 1); printf("(Consequent)\n"); m_consequent->dump(indent + 2); print_indent(indent + 1); printf("(Alternate)\n"); m_alternate->dump(indent + 2); } void SequenceExpression::dump(int indent) const { ASTNode::dump(indent); for (auto& expression : m_expressions) expression.dump(indent + 1); } Value SequenceExpression::execute(Interpreter& interpreter) const { Value last_value; for (auto& expression : m_expressions) { last_value = expression.execute(interpreter); if (interpreter.exception()) return {}; } return last_value; } Value DebuggerStatement::execute(Interpreter&) const { dbg() << "Sorry, no JavaScript debugger available (yet)!"; return js_undefined(); } void ScopeNode::add_variables(NonnullRefPtrVector variables) { m_variables.append(move(variables)); } void ScopeNode::add_functions(NonnullRefPtrVector functions) { m_functions.append(move(functions)); } }