/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "Painter.h" #include "Bitmap.h" #include "Emoji.h" #include "Font.h" #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__GNUC__) && !defined(__clang__) # pragma GCC optimize("O3") #endif namespace Gfx { template ALWAYS_INLINE Color get_pixel(const Gfx::Bitmap& bitmap, int x, int y) { if constexpr (format == BitmapFormat::Indexed8) return bitmap.palette_color(bitmap.scanline_u8(y)[x]); if constexpr (format == BitmapFormat::Indexed4) return bitmap.palette_color(bitmap.scanline_u8(y)[x]); if constexpr (format == BitmapFormat::Indexed2) return bitmap.palette_color(bitmap.scanline_u8(y)[x]); if constexpr (format == BitmapFormat::Indexed1) return bitmap.palette_color(bitmap.scanline_u8(y)[x]); if constexpr (format == BitmapFormat::RGB32) return Color::from_rgb(bitmap.scanline(y)[x]); if constexpr (format == BitmapFormat::RGBA32) return Color::from_rgba(bitmap.scanline(y)[x]); return bitmap.get_pixel(x, y); } Painter::Painter(Gfx::Bitmap& bitmap) : m_target(bitmap) { ASSERT(bitmap.format() == Gfx::BitmapFormat::RGB32 || bitmap.format() == Gfx::BitmapFormat::RGBA32); m_state_stack.append(State()); state().font = &Font::default_font(); state().clip_rect = { { 0, 0 }, bitmap.size() }; m_clip_origin = state().clip_rect; } Painter::~Painter() { } void Painter::fill_rect_with_draw_op(const IntRect& a_rect, Color color) { auto rect = a_rect.translated(translation()).intersected(clip_rect()); if (rect.is_empty()) return; RGBA32* dst = m_target->scanline(rect.top()) + rect.left(); const size_t dst_skip = m_target->pitch() / sizeof(RGBA32); for (int i = rect.height() - 1; i >= 0; --i) { for (int j = 0; j < rect.width(); ++j) set_pixel_with_draw_op(dst[j], color); dst += dst_skip; } } void Painter::clear_rect(const IntRect& a_rect, Color color) { auto rect = a_rect.translated(translation()).intersected(clip_rect()); if (rect.is_empty()) return; ASSERT(m_target->rect().contains(rect)); RGBA32* dst = m_target->scanline(rect.top()) + rect.left(); const size_t dst_skip = m_target->pitch() / sizeof(RGBA32); for (int i = rect.height() - 1; i >= 0; --i) { fast_u32_fill(dst, color.value(), rect.width()); dst += dst_skip; } } void Painter::fill_rect(const IntRect& a_rect, Color color) { if (color.alpha() == 0) return; if (draw_op() != DrawOp::Copy) { fill_rect_with_draw_op(a_rect, color); return; } if (color.alpha() == 0xff) { clear_rect(a_rect, color); return; } auto rect = a_rect.translated(translation()).intersected(clip_rect()); if (rect.is_empty()) return; ASSERT(m_target->rect().contains(rect)); RGBA32* dst = m_target->scanline(rect.top()) + rect.left(); const size_t dst_skip = m_target->pitch() / sizeof(RGBA32); for (int i = rect.height() - 1; i >= 0; --i) { for (int j = 0; j < rect.width(); ++j) dst[j] = Color::from_rgba(dst[j]).blend(color).value(); dst += dst_skip; } } void Painter::fill_rect_with_dither_pattern(const IntRect& a_rect, Color color_a, Color color_b) { auto rect = a_rect.translated(translation()).intersected(clip_rect()); if (rect.is_empty()) return; RGBA32* dst = m_target->scanline(rect.top()) + rect.left(); const size_t dst_skip = m_target->pitch() / sizeof(RGBA32); for (int i = 0; i < rect.height(); ++i) { for (int j = 0; j < rect.width(); ++j) { bool checkboard_use_a = (i & 1) ^ (j & 1); if (checkboard_use_a && !color_a.alpha()) continue; if (!checkboard_use_a && !color_b.alpha()) continue; dst[j] = checkboard_use_a ? color_a.value() : color_b.value(); } dst += dst_skip; } } void Painter::fill_rect_with_checkerboard(const IntRect& a_rect, const IntSize& cell_size, Color color_dark, Color color_light) { auto rect = a_rect.translated(translation()).intersected(clip_rect()); if (rect.is_empty()) return; RGBA32* dst = m_target->scanline(rect.top()) + rect.left(); const size_t dst_skip = m_target->pitch() / sizeof(RGBA32); for (int i = 0; i < rect.height(); ++i) { for (int j = 0; j < rect.width(); ++j) { int cell_row = i / cell_size.height(); int cell_col = j / cell_size.width(); dst[j] = ((cell_row % 2) ^ (cell_col % 2)) ? color_light.value() : color_dark.value(); } dst += dst_skip; } } void Painter::fill_rect_with_gradient(Orientation orientation, const IntRect& a_rect, Color gradient_start, Color gradient_end) { #ifdef NO_FPU return fill_rect(a_rect, gradient_start); #endif auto rect = a_rect.translated(translation()); auto clipped_rect = IntRect::intersection(rect, clip_rect()); if (clipped_rect.is_empty()) return; int offset = clipped_rect.primary_offset_for_orientation(orientation) - rect.primary_offset_for_orientation(orientation); RGBA32* dst = m_target->scanline(clipped_rect.top()) + clipped_rect.left(); const size_t dst_skip = m_target->pitch() / sizeof(RGBA32); float increment = (1.0 / ((rect.primary_size_for_orientation(orientation)) / 255.0)); int r2 = gradient_start.red(); int g2 = gradient_start.green(); int b2 = gradient_start.blue(); int r1 = gradient_end.red(); int g1 = gradient_end.green(); int b1 = gradient_end.blue(); if (orientation == Orientation::Horizontal) { for (int i = clipped_rect.height() - 1; i >= 0; --i) { float c = offset * increment; for (int j = 0; j < clipped_rect.width(); ++j) { dst[j] = Color( r1 / 255.0 * c + r2 / 255.0 * (255 - c), g1 / 255.0 * c + g2 / 255.0 * (255 - c), b1 / 255.0 * c + b2 / 255.0 * (255 - c)) .value(); c += increment; } dst += dst_skip; } } else { float c = offset * increment; for (int i = clipped_rect.height() - 1; i >= 0; --i) { Color color( r1 / 255.0 * c + r2 / 255.0 * (255 - c), g1 / 255.0 * c + g2 / 255.0 * (255 - c), b1 / 255.0 * c + b2 / 255.0 * (255 - c)); for (int j = 0; j < clipped_rect.width(); ++j) { dst[j] = color.value(); } c += increment; dst += dst_skip; } } } void Painter::fill_rect_with_gradient(const IntRect& a_rect, Color gradient_start, Color gradient_end) { return fill_rect_with_gradient(Orientation::Horizontal, a_rect, gradient_start, gradient_end); } void Painter::fill_ellipse(const IntRect& a_rect, Color color) { auto rect = a_rect.translated(translation()).intersected(clip_rect()); if (rect.is_empty()) return; ASSERT(m_target->rect().contains(rect)); RGBA32* dst = m_target->scanline(rect.top()) + rect.left() + rect.width() / 2; const size_t dst_skip = m_target->pitch() / sizeof(RGBA32); for (int i = 0; i < rect.height(); i++) { double y = rect.height() * 0.5 - i; double x = rect.width() * sqrt(0.25 - y * y / rect.height() / rect.height()); fast_u32_fill(dst - (int)x, color.value(), 2 * (int)x); dst += dst_skip; } } void Painter::draw_ellipse_intersecting(const IntRect& rect, Color color, int thickness) { constexpr int number_samples = 100; // FIXME: dynamically work out the number of samples based upon the rect size double increment = M_PI / number_samples; auto ellipse_x = [&](double theta) -> int { return (cos(theta) * rect.width() / sqrt(2)) + rect.center().x(); }; auto ellipse_y = [&](double theta) -> int { return (sin(theta) * rect.height() / sqrt(2)) + rect.center().y(); }; for (float theta = 0; theta < 2 * M_PI; theta += increment) { draw_line({ ellipse_x(theta), ellipse_y(theta) }, { ellipse_x(theta + increment), ellipse_y(theta + increment) }, color, thickness); } } void Painter::draw_rect(const IntRect& a_rect, Color color, bool rough) { IntRect rect = a_rect.translated(translation()); auto clipped_rect = rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; int min_y = clipped_rect.top(); int max_y = clipped_rect.bottom(); if (rect.top() >= clipped_rect.top() && rect.top() <= clipped_rect.bottom()) { int start_x = rough ? max(rect.x() + 1, clipped_rect.x()) : clipped_rect.x(); int width = rough ? min(rect.width() - 2, clipped_rect.width()) : clipped_rect.width(); fill_scanline_with_draw_op(rect.top(), start_x, width, color); ++min_y; } if (rect.bottom() >= clipped_rect.top() && rect.bottom() <= clipped_rect.bottom()) { int start_x = rough ? max(rect.x() + 1, clipped_rect.x()) : clipped_rect.x(); int width = rough ? min(rect.width() - 2, clipped_rect.width()) : clipped_rect.width(); fill_scanline_with_draw_op(rect.bottom(), start_x, width, color); --max_y; } bool draw_left_side = rect.left() >= clipped_rect.left(); bool draw_right_side = rect.right() == clipped_rect.right(); if (draw_left_side && draw_right_side) { // Specialized loop when drawing both sides. for (int y = min_y; y <= max_y; ++y) { auto* bits = m_target->scanline(y); set_pixel_with_draw_op(bits[rect.left()], color); set_pixel_with_draw_op(bits[rect.right()], color); } } else { for (int y = min_y; y <= max_y; ++y) { auto* bits = m_target->scanline(y); if (draw_left_side) set_pixel_with_draw_op(bits[rect.left()], color); if (draw_right_side) set_pixel_with_draw_op(bits[rect.right()], color); } } } void Painter::draw_bitmap(const IntPoint& p, const CharacterBitmap& bitmap, Color color) { auto rect = IntRect(p, bitmap.size()).translated(translation()); auto clipped_rect = rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; const int first_row = clipped_rect.top() - rect.top(); const int last_row = clipped_rect.bottom() - rect.top(); const int first_column = clipped_rect.left() - rect.left(); const int last_column = clipped_rect.right() - rect.left(); RGBA32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x(); const size_t dst_skip = m_target->pitch() / sizeof(RGBA32); const char* bitmap_row = &bitmap.bits()[first_row * bitmap.width() + first_column]; const size_t bitmap_skip = bitmap.width(); for (int row = first_row; row <= last_row; ++row) { for (int j = 0; j <= (last_column - first_column); ++j) { char fc = bitmap_row[j]; if (fc == '#') dst[j] = color.value(); } bitmap_row += bitmap_skip; dst += dst_skip; } } void Painter::draw_bitmap(const IntPoint& p, const GlyphBitmap& bitmap, Color color) { auto dst_rect = IntRect(p, bitmap.size()).translated(translation()); auto clipped_rect = dst_rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; const int first_row = clipped_rect.top() - dst_rect.top(); const int last_row = clipped_rect.bottom() - dst_rect.top(); const int first_column = clipped_rect.left() - dst_rect.left(); const int last_column = clipped_rect.right() - dst_rect.left(); RGBA32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x(); const size_t dst_skip = m_target->pitch() / sizeof(RGBA32); for (int row = first_row; row <= last_row; ++row) { for (int j = 0; j <= (last_column - first_column); ++j) { if (bitmap.bit_at(j + first_column, row)) dst[j] = color.value(); } dst += dst_skip; } } void Painter::draw_triangle(const IntPoint& a, const IntPoint& b, const IntPoint& c, Color color) { RGBA32 rgba = color.value(); IntPoint p0(a); IntPoint p1(b); IntPoint p2(c); if (p0.y() > p1.y()) swap(p0, p1); if (p0.y() > p2.y()) swap(p0, p2); if (p1.y() > p2.y()) swap(p1, p2); auto clip = clip_rect(); if (p0.y() >= clip.bottom()) return; if (p2.y() < clip.top()) return; float dx01 = (float)(p1.x() - p0.x()) / (p1.y() - p0.y()); float dx02 = (float)(p2.x() - p0.x()) / (p2.y() - p0.y()); float dx12 = (float)(p2.x() - p1.x()) / (p2.y() - p1.y()); float x01 = p0.x(); float x02 = p0.x(); int top = p0.y(); if (top < clip.top()) { x01 += dx01 * (clip.top() - top); x02 += dx02 * (clip.top() - top); top = clip.top(); } for (int y = top; y < p1.y() && y < clip.bottom(); ++y) { int start = x01 > x02 ? max((int)x02, clip.left()) : max((int)x01, clip.left()); int end = x01 > x02 ? min((int)x01, clip.right()) : min((int)x02, clip.right()); auto* scanline = m_target->scanline(y); for (int x = start; x < end; x++) { scanline[x] = rgba; } x01 += dx01; x02 += dx02; } x02 = p0.x() + dx02 * (p1.y() - p0.y()); float x12 = p1.x(); top = p1.y(); if (top < clip.top()) { x02 += dx02 * (clip.top() - top); x12 += dx12 * (clip.top() - top); top = clip.top(); } for (int y = top; y < p2.y() && y < clip.bottom(); ++y) { int start = x12 > x02 ? max((int)x02, clip.left()) : max((int)x12, clip.left()); int end = x12 > x02 ? min((int)x12, clip.right()) : min((int)x02, clip.right()); auto* scanline = m_target->scanline(y); for (int x = start; x < end; x++) { scanline[x] = rgba; } x02 += dx02; x12 += dx12; } } void Painter::blit_scaled(const IntRect& dst_rect_raw, const Gfx::Bitmap& source, const IntRect& src_rect, float hscale, float vscale) { auto dst_rect = IntRect(dst_rect_raw.location(), dst_rect_raw.size()).translated(translation()); auto clipped_rect = dst_rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; const int first_row = (clipped_rect.top() - dst_rect.top()); const int last_row = (clipped_rect.bottom() - dst_rect.top()); const int first_column = (clipped_rect.left() - dst_rect.left()); RGBA32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x(); const size_t dst_skip = m_target->pitch() / sizeof(RGBA32); int x_start = first_column + src_rect.left(); for (int row = first_row; row <= last_row; ++row) { int sr = (row + src_rect.top()) * vscale; if (sr >= source.size().height() || sr < 0) { dst += dst_skip; continue; } const RGBA32* sl = source.scanline(sr); for (int x = x_start; x < clipped_rect.width() + x_start; ++x) { int sx = x * hscale; if (sx < source.size().width() && sx >= 0) dst[x - x_start] = sl[sx]; } dst += dst_skip; } return; } void Painter::blit_with_opacity(const IntPoint& position, const Gfx::Bitmap& source, const IntRect& src_rect, float opacity) { ASSERT(!m_target->has_alpha_channel()); if (!opacity) return; if (opacity >= 1.0f) return blit(position, source, src_rect); u8 alpha = 255 * opacity; IntRect safe_src_rect = IntRect::intersection(src_rect, source.rect()); IntRect dst_rect(position, safe_src_rect.size()); dst_rect.move_by(state().translation); auto clipped_rect = IntRect::intersection(dst_rect, clip_rect()); if (clipped_rect.is_empty()) return; const int first_row = clipped_rect.top() - dst_rect.top(); const int last_row = clipped_rect.bottom() - dst_rect.top(); const int first_column = clipped_rect.left() - dst_rect.left(); const int last_column = clipped_rect.right() - dst_rect.left(); RGBA32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x(); const RGBA32* src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column; const size_t dst_skip = m_target->pitch() / sizeof(RGBA32); const unsigned src_skip = source.pitch() / sizeof(RGBA32); for (int row = first_row; row <= last_row; ++row) { for (int x = 0; x <= (last_column - first_column); ++x) { Color src_color_with_alpha = Color::from_rgb(src[x]); src_color_with_alpha.set_alpha(alpha); Color dst_color = Color::from_rgb(dst[x]); dst[x] = dst_color.blend(src_color_with_alpha).value(); } dst += dst_skip; src += src_skip; } } void Painter::blit_filtered(const IntPoint& position, const Gfx::Bitmap& source, const IntRect& src_rect, Function filter) { IntRect safe_src_rect = src_rect.intersected(source.rect()); auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation()); auto clipped_rect = dst_rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; const int first_row = clipped_rect.top() - dst_rect.top(); const int last_row = clipped_rect.bottom() - dst_rect.top(); const int first_column = clipped_rect.left() - dst_rect.left(); const int last_column = clipped_rect.right() - dst_rect.left(); RGBA32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x(); const RGBA32* src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column; const size_t dst_skip = m_target->pitch() / sizeof(RGBA32); const size_t src_skip = source.pitch() / sizeof(RGBA32); for (int row = first_row; row <= last_row; ++row) { for (int x = 0; x <= (last_column - first_column); ++x) { u8 alpha = Color::from_rgba(src[x]).alpha(); if (alpha == 0xff) dst[x] = filter(Color::from_rgba(src[x])).value(); else if (!alpha) continue; else dst[x] = Color::from_rgba(dst[x]).blend(filter(Color::from_rgba(src[x]))).value(); } dst += dst_skip; src += src_skip; } } void Painter::blit_brightened(const IntPoint& position, const Gfx::Bitmap& source, const IntRect& src_rect) { return blit_filtered(position, source, src_rect, [](Color src) { return src.lightened(); }); } void Painter::blit_dimmed(const IntPoint& position, const Gfx::Bitmap& source, const IntRect& src_rect) { return blit_filtered(position, source, src_rect, [](Color src) { return src.to_grayscale().lightened(); }); } void Painter::draw_tiled_bitmap(const IntRect& a_dst_rect, const Gfx::Bitmap& source) { auto dst_rect = a_dst_rect.translated(translation()); auto clipped_rect = dst_rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; const int first_row = (clipped_rect.top() - dst_rect.top()); const int last_row = (clipped_rect.bottom() - dst_rect.top()); const int first_column = (clipped_rect.left() - dst_rect.left()); RGBA32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x(); const size_t dst_skip = m_target->pitch() / sizeof(RGBA32); if (source.format() == BitmapFormat::RGB32 || source.format() == BitmapFormat::RGBA32) { int x_start = first_column + a_dst_rect.left(); for (int row = first_row; row <= last_row; ++row) { const RGBA32* sl = source.scanline((row + a_dst_rect.top()) % source.size().height()); for (int x = x_start; x < clipped_rect.width() + x_start; ++x) { dst[x - x_start] = sl[x % source.size().width()]; } dst += dst_skip; } return; } ASSERT_NOT_REACHED(); } void Painter::blit_offset(const IntPoint& position, const Gfx::Bitmap& source, const IntRect& src_rect, const IntPoint& offset) { auto dst_rect = IntRect(position, src_rect.size()).translated(translation()); auto clipped_rect = dst_rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; const int first_row = (clipped_rect.top() - dst_rect.top()); const int last_row = (clipped_rect.bottom() - dst_rect.top()); const int first_column = (clipped_rect.left() - dst_rect.left()); RGBA32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x(); const size_t dst_skip = m_target->pitch() / sizeof(RGBA32); if (source.format() == BitmapFormat::RGB32 || source.format() == BitmapFormat::RGBA32) { int x_start = first_column + src_rect.left(); for (int row = first_row; row <= last_row; ++row) { int sr = row - offset.y() + src_rect.top(); if (sr >= source.size().height() || sr < 0) { dst += dst_skip; continue; } const RGBA32* sl = source.scanline(sr); for (int x = x_start; x < clipped_rect.width() + x_start; ++x) { int sx = x - offset.x(); if (sx < source.size().width() && sx >= 0) dst[x - x_start] = sl[sx]; } dst += dst_skip; } return; } ASSERT_NOT_REACHED(); } void Painter::blit_with_alpha(const IntPoint& position, const Gfx::Bitmap& source, const IntRect& src_rect) { ASSERT(source.has_alpha_channel()); IntRect safe_src_rect = src_rect.intersected(source.rect()); auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation()); auto clipped_rect = dst_rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; const int first_row = clipped_rect.top() - dst_rect.top(); const int last_row = clipped_rect.bottom() - dst_rect.top(); const int first_column = clipped_rect.left() - dst_rect.left(); const int last_column = clipped_rect.right() - dst_rect.left(); RGBA32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x(); const RGBA32* src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column; const size_t dst_skip = m_target->pitch() / sizeof(RGBA32); const size_t src_skip = source.pitch() / sizeof(RGBA32); for (int row = first_row; row <= last_row; ++row) { for (int x = 0; x <= (last_column - first_column); ++x) { u8 alpha = Color::from_rgba(src[x]).alpha(); if (alpha == 0xff) dst[x] = src[x]; else if (!alpha) continue; else dst[x] = Color::from_rgba(dst[x]).blend(Color::from_rgba(src[x])).value(); } dst += dst_skip; src += src_skip; } } void Painter::blit(const IntPoint& position, const Gfx::Bitmap& source, const IntRect& src_rect, float opacity) { if (opacity < 1.0f) return blit_with_opacity(position, source, src_rect, opacity); if (source.has_alpha_channel()) return blit_with_alpha(position, source, src_rect); auto safe_src_rect = src_rect.intersected(source.rect()); ASSERT(source.rect().contains(safe_src_rect)); auto dst_rect = IntRect(position, safe_src_rect.size()).translated(translation()); auto clipped_rect = dst_rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; const int first_row = clipped_rect.top() - dst_rect.top(); const int last_row = clipped_rect.bottom() - dst_rect.top(); const int first_column = clipped_rect.left() - dst_rect.left(); RGBA32* dst = m_target->scanline(clipped_rect.y()) + clipped_rect.x(); const size_t dst_skip = m_target->pitch() / sizeof(RGBA32); if (source.format() == BitmapFormat::RGB32 || source.format() == BitmapFormat::RGBA32) { const RGBA32* src = source.scanline(src_rect.top() + first_row) + src_rect.left() + first_column; const size_t src_skip = source.pitch() / sizeof(RGBA32); for (int row = first_row; row <= last_row; ++row) { fast_u32_copy(dst, src, clipped_rect.width()); dst += dst_skip; src += src_skip; } return; } if (Bitmap::is_indexed(source.format())) { const u8* src = source.scanline_u8(src_rect.top() + first_row) + src_rect.left() + first_column; const size_t src_skip = source.pitch(); for (int row = first_row; row <= last_row; ++row) { for (int i = 0; i < clipped_rect.width(); ++i) dst[i] = source.palette_color(src[i]).value(); dst += dst_skip; src += src_skip; } return; } ASSERT_NOT_REACHED(); } template ALWAYS_INLINE static void do_draw_integer_scaled_bitmap(Gfx::Bitmap& target, const IntRect& dst_rect, const Gfx::Bitmap& source, int hfactor, int vfactor, GetPixel get_pixel, float opacity) { bool has_opacity = opacity != 1.0f; for (int y = source.rect().top(); y <= source.rect().bottom(); ++y) { int dst_y = dst_rect.y() + y * vfactor; for (int x = source.rect().left(); x <= source.rect().right(); ++x) { auto src_pixel = get_pixel(source, x, y); if (has_opacity) src_pixel.set_alpha(src_pixel.alpha() * opacity); for (int yo = 0; yo < vfactor; ++yo) { auto* scanline = (Color*)target.scanline(dst_y + yo); int dst_x = dst_rect.x() + x * hfactor; for (int xo = 0; xo < hfactor; ++xo) { if constexpr (has_alpha_channel) scanline[dst_x + xo] = scanline[dst_x + xo].blend(src_pixel); else scanline[dst_x + xo] = src_pixel; } } } } } template ALWAYS_INLINE static void do_draw_scaled_bitmap(Gfx::Bitmap& target, const IntRect& dst_rect, const IntRect& clipped_rect, const Gfx::Bitmap& source, const IntRect& src_rect, int hscale, int vscale, GetPixel get_pixel, float opacity) { if (dst_rect == clipped_rect && !(dst_rect.width() % src_rect.width()) && !(dst_rect.height() % src_rect.height())) { int hfactor = dst_rect.width() / src_rect.width(); int vfactor = dst_rect.height() / src_rect.height(); if (hfactor == 2 && vfactor == 2) return do_draw_integer_scaled_bitmap(target, dst_rect, source, 2, 2, get_pixel, opacity); if (hfactor == 3 && vfactor == 3) return do_draw_integer_scaled_bitmap(target, dst_rect, source, 3, 3, get_pixel, opacity); if (hfactor == 4 && vfactor == 4) return do_draw_integer_scaled_bitmap(target, dst_rect, source, 4, 4, get_pixel, opacity); return do_draw_integer_scaled_bitmap(target, dst_rect, source, hfactor, vfactor, get_pixel, opacity); } bool has_opacity = opacity != 1.0f; for (int y = clipped_rect.top(); y <= clipped_rect.bottom(); ++y) { auto* scanline = (Color*)target.scanline(y); for (int x = clipped_rect.left(); x <= clipped_rect.right(); ++x) { auto scaled_x = ((x - dst_rect.x()) * hscale) >> 16; auto scaled_y = ((y - dst_rect.y()) * vscale) >> 16; auto src_pixel = get_pixel(source, scaled_x, scaled_y); if (has_opacity) src_pixel.set_alpha(src_pixel.alpha() * opacity); if constexpr (has_alpha_channel) { scanline[x] = scanline[x].blend(src_pixel); } else scanline[x] = src_pixel; } } } void Painter::draw_scaled_bitmap(const IntRect& a_dst_rect, const Gfx::Bitmap& source, const IntRect& src_rect, float opacity) { auto dst_rect = a_dst_rect; if (dst_rect.size() == src_rect.size()) return blit(dst_rect.location(), source, src_rect, opacity); auto safe_src_rect = src_rect.intersected(source.rect()); ASSERT(source.rect().contains(safe_src_rect)); dst_rect.move_by(state().translation); auto clipped_rect = dst_rect.intersected(clip_rect()); if (clipped_rect.is_empty()) return; int hscale = (src_rect.width() << 16) / dst_rect.width(); int vscale = (src_rect.height() << 16) / dst_rect.height(); if (source.has_alpha_channel()) { switch (source.format()) { case BitmapFormat::RGB32: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, hscale, vscale, get_pixel, opacity); break; case BitmapFormat::RGBA32: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, hscale, vscale, get_pixel, opacity); break; case BitmapFormat::Indexed8: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, hscale, vscale, get_pixel, opacity); break; case BitmapFormat::Indexed4: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, hscale, vscale, get_pixel, opacity); break; case BitmapFormat::Indexed2: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, hscale, vscale, get_pixel, opacity); break; case BitmapFormat::Indexed1: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, hscale, vscale, get_pixel, opacity); break; default: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, hscale, vscale, get_pixel, opacity); break; } } else { switch (source.format()) { case BitmapFormat::RGB32: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, hscale, vscale, get_pixel, opacity); break; case BitmapFormat::RGBA32: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, hscale, vscale, get_pixel, opacity); break; case BitmapFormat::Indexed8: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, hscale, vscale, get_pixel, opacity); break; default: do_draw_scaled_bitmap(*m_target, dst_rect, clipped_rect, source, src_rect, hscale, vscale, get_pixel, opacity); break; } } } FLATTEN void Painter::draw_glyph(const IntPoint& point, u32 code_point, Color color) { draw_glyph(point, code_point, font(), color); } FLATTEN void Painter::draw_glyph(const IntPoint& point, u32 code_point, const Font& font, Color color) { draw_bitmap(point, font.glyph_bitmap(code_point), color); } void Painter::draw_emoji(const IntPoint& point, const Gfx::Bitmap& emoji, const Font& font) { if (!font.is_fixed_width()) blit(point, emoji, emoji.rect()); else { IntRect dst_rect { point.x(), point.y(), font.glyph_width('x'), font.glyph_height() }; draw_scaled_bitmap(dst_rect, emoji, emoji.rect()); } } void Painter::draw_glyph_or_emoji(const IntPoint& point, u32 code_point, const Font& font, Color color) { if (code_point < (u32)font.glyph_count()) { // This looks like a regular character. draw_glyph(point, (size_t)code_point, font, color); return; } // Perhaps it's an emoji? auto* emoji = Emoji::emoji_for_code_point(code_point); if (emoji == nullptr) { #ifdef EMOJI_DEBUG dbg() << "Failed to find an emoji for code_point " << code_point; #endif draw_glyph(point, '?', font, color); return; } draw_emoji(point, *emoji, font); } static void apply_elision(Utf8View& final_text, String& elided_text, size_t offset) { StringBuilder builder; builder.append(final_text.substring_view(0, offset).as_string()); builder.append("..."); elided_text = builder.to_string(); final_text = Utf8View { elided_text }; } static void apply_elision(Utf32View& final_text, Vector& elided_text, size_t offset) { elided_text.append(final_text.code_points(), offset); elided_text.append('.'); elided_text.append('.'); elided_text.append('.'); final_text = Utf32View { elided_text.data(), elided_text.size() }; } template struct ElidedText { }; template<> struct ElidedText { typedef String Type; }; template<> struct ElidedText { typedef Vector Type; }; template void draw_text_line(const IntRect& a_rect, const TextType& text, const Font& font, TextAlignment alignment, TextElision elision, DrawGlyphFunction draw_glyph) { auto rect = a_rect; TextType final_text(text); typename ElidedText::Type elided_text; if (elision == TextElision::Right) { int text_width = font.width(final_text); if (font.width(final_text) > rect.width()) { int glyph_spacing = font.glyph_spacing(); int new_width = font.width("..."); if (new_width < text_width) { size_t offset = 0; for (auto code_point : text) { int glyph_width = font.glyph_or_emoji_width(code_point); // NOTE: Glyph spacing should not be added after the last glyph on the line, // but since we are here because the last glyph does not actually fit on the line, // we don't have to worry about spacing. int width_with_this_glyph_included = new_width + glyph_width + glyph_spacing; if (width_with_this_glyph_included > rect.width()) break; new_width += glyph_width + glyph_spacing; offset++; } apply_elision(final_text, elided_text, offset); } } } switch (alignment) { case TextAlignment::TopLeft: case TextAlignment::CenterLeft: break; case TextAlignment::TopRight: case TextAlignment::CenterRight: case TextAlignment::BottomRight: rect.set_x(rect.right() - font.width(final_text)); break; case TextAlignment::Center: { auto shrunken_rect = rect; shrunken_rect.set_width(font.width(final_text)); shrunken_rect.center_within(rect); rect = shrunken_rect; break; } default: ASSERT_NOT_REACHED(); } if (is_vertically_centered_text_alignment(alignment)) { int distance_from_baseline_to_bottom = (font.glyph_height() - 1) - font.baseline(); rect.move_by(0, distance_from_baseline_to_bottom / 2); } auto point = rect.location(); int space_width = font.glyph_width(' ') + font.glyph_spacing(); for (u32 code_point : final_text) { if (code_point == ' ') { point.move_by(space_width, 0); continue; } IntSize glyph_size(font.glyph_or_emoji_width(code_point) + font.glyph_spacing(), font.glyph_height()); draw_glyph({ point, glyph_size }, code_point); point.move_by(glyph_size.width(), 0); } } static inline size_t draw_text_iterator_offset(const Utf8View& text, const Utf8View::Iterator& it) { return text.byte_offset_of(it); } static inline size_t draw_text_iterator_offset(const Utf32View& text, const Utf32View::Iterator& it) { return it - text.begin(); } static inline size_t draw_text_get_length(const Utf8View& text) { return text.byte_length(); } static inline size_t draw_text_get_length(const Utf32View& text) { return text.length(); } template void do_draw_text(const IntRect& rect, const TextType& text, const Font& font, TextAlignment alignment, TextElision elision, DrawGlyphFunction draw_glyph) { Vector lines; size_t start_of_current_line = 0; for (auto it = text.begin(); it != text.end(); ++it) { u32 code_point = *it; if (code_point == '\n') { auto offset = draw_text_iterator_offset(text, it); TextType line = text.substring_view(start_of_current_line, offset - start_of_current_line); lines.append(line); start_of_current_line = offset + 1; } } if (start_of_current_line != draw_text_get_length(text)) { TextType line = text.substring_view(start_of_current_line, draw_text_get_length(text) - start_of_current_line); lines.append(line); } static const int line_spacing = 4; int line_height = font.glyph_height() + line_spacing; IntRect bounding_rect { 0, 0, 0, (static_cast(lines.size()) * line_height) - line_spacing }; for (auto& line : lines) { auto line_width = font.width(line); if (line_width > bounding_rect.width()) bounding_rect.set_width(line_width); } switch (alignment) { case TextAlignment::TopLeft: bounding_rect.set_location(rect.location()); break; case TextAlignment::TopRight: bounding_rect.set_location({ (rect.right() + 1) - bounding_rect.width(), rect.y() }); break; case TextAlignment::CenterLeft: bounding_rect.set_location({ rect.x(), rect.center().y() - (bounding_rect.height() / 2) }); break; case TextAlignment::CenterRight: bounding_rect.set_location({ (rect.right() + 1) - bounding_rect.width(), rect.center().y() - (bounding_rect.height() / 2) }); break; case TextAlignment::Center: bounding_rect.center_within(rect); break; default: ASSERT_NOT_REACHED(); } for (size_t i = 0; i < lines.size(); ++i) { auto& line = lines[i]; IntRect line_rect { bounding_rect.x(), bounding_rect.y() + static_cast(i) * line_height, bounding_rect.width(), line_height }; line_rect.intersect(rect); draw_text_line(line_rect, line, font, alignment, elision, draw_glyph); } } void Painter::draw_text(const IntRect& rect, const StringView& text, TextAlignment alignment, Color color, TextElision elision) { draw_text(rect, text, font(), alignment, color, elision); } void Painter::draw_text(const IntRect& rect, const Utf32View& text, TextAlignment alignment, Color color, TextElision elision) { draw_text(rect, text, font(), alignment, color, elision); } void Painter::draw_text(const IntRect& rect, const StringView& raw_text, const Font& font, TextAlignment alignment, Color color, TextElision elision) { Utf8View text { raw_text }; do_draw_text(rect, text, font, alignment, elision, [&](const IntRect& r, u32 code_point) { draw_glyph_or_emoji(r.location(), code_point, font, color); }); } void Painter::draw_text(const IntRect& rect, const Utf32View& text, const Font& font, TextAlignment alignment, Color color, TextElision elision) { do_draw_text(rect, text, font, alignment, elision, [&](const IntRect& r, u32 code_point) { draw_glyph_or_emoji(r.location(), code_point, font, color); }); } void Painter::draw_text(Function draw_one_glyph, const IntRect& rect, const StringView& raw_text, const Font& font, TextAlignment alignment, TextElision elision) { Utf8View text { raw_text }; do_draw_text(rect, text, font, alignment, elision, [&](const IntRect& r, u32 code_point) { draw_one_glyph(r, code_point); }); } void Painter::draw_text(Function draw_one_glyph, const IntRect& rect, const Utf8View& text, const Font& font, TextAlignment alignment, TextElision elision) { do_draw_text(rect, text, font, alignment, elision, [&](const IntRect& r, u32 code_point) { draw_one_glyph(r, code_point); }); } void Painter::draw_text(Function draw_one_glyph, const IntRect& rect, const Utf32View& text, const Font& font, TextAlignment alignment, TextElision elision) { do_draw_text(rect, text, font, alignment, elision, [&](const IntRect& r, u32 code_point) { draw_one_glyph(r, code_point); }); } void Painter::set_pixel(const IntPoint& p, Color color) { auto point = p; point.move_by(state().translation); if (!clip_rect().contains(point)) return; m_target->scanline(point.y())[point.x()] = color.value(); } ALWAYS_INLINE void Painter::set_pixel_with_draw_op(u32& pixel, const Color& color) { switch (draw_op()) { case DrawOp::Copy: pixel = color.value(); break; case DrawOp::Xor: pixel = color.xored(Color::from_rgba(pixel)).value(); break; case DrawOp::Invert: pixel = Color::from_rgba(pixel).inverted().value(); break; } } ALWAYS_INLINE void Painter::fill_scanline_with_draw_op(int y, int x, int width, const Color& color) { switch (draw_op()) { case DrawOp::Copy: fast_u32_fill(m_target->scanline(y) + x, color.value(), width); break; case DrawOp::Xor: { auto* pixel = m_target->scanline(y) + x; auto* end = pixel + width; while (pixel < end) { *pixel = Color::from_rgba(*pixel).xored(color).value(); pixel++; } break; } case DrawOp::Invert: { auto* pixel = m_target->scanline(y) + x; auto* end = pixel + width; while (pixel < end) { *pixel = Color::from_rgba(*pixel).inverted().value(); pixel++; } break; } } } void Painter::draw_pixel(const IntPoint& position, Color color, int thickness) { ASSERT(draw_op() == DrawOp::Copy); if (thickness == 1) return set_pixel_with_draw_op(m_target->scanline(position.y())[position.x()], color); IntRect rect { position.translated(-(thickness / 2), -(thickness / 2)), { thickness, thickness } }; fill_rect(rect.translated(-state().translation), color); } void Painter::draw_line(const IntPoint& p1, const IntPoint& p2, Color color, int thickness, LineStyle style) { if (color.alpha() == 0) return; auto clip_rect = this->clip_rect(); auto point1 = p1; point1.move_by(state().translation); auto point2 = p2; point2.move_by(state().translation); // Special case: vertical line. if (point1.x() == point2.x()) { const int x = point1.x(); if (x < clip_rect.left() || x > clip_rect.right()) return; if (point1.y() > point2.y()) swap(point1, point2); if (point1.y() > clip_rect.bottom()) return; if (point2.y() < clip_rect.top()) return; int min_y = max(point1.y(), clip_rect.top()); int max_y = min(point2.y(), clip_rect.bottom()); if (style == LineStyle::Dotted) { for (int y = min_y; y <= max_y; y += thickness * 2) draw_pixel({ x, y }, color, thickness); } else if (style == LineStyle::Dashed) { for (int y = min_y; y <= max_y; y += thickness * 6) { draw_pixel({ x, y }, color, thickness); draw_pixel({ x, min(y + thickness, max_y) }, color, thickness); draw_pixel({ x, min(y + thickness * 2, max_y) }, color, thickness); } } else { for (int y = min_y; y <= max_y; ++y) draw_pixel({ x, y }, color, thickness); } return; } // Special case: horizontal line. if (point1.y() == point2.y()) { const int y = point1.y(); if (y < clip_rect.top() || y > clip_rect.bottom()) return; if (point1.x() > point2.x()) swap(point1, point2); if (point1.x() > clip_rect.right()) return; if (point2.x() < clip_rect.left()) return; int min_x = max(point1.x(), clip_rect.left()); int max_x = min(point2.x(), clip_rect.right()); if (style == LineStyle::Dotted) { for (int x = min_x; x <= max_x; x += thickness * 2) draw_pixel({ x, y }, color, thickness); } else if (style == LineStyle::Dashed) { for (int x = min_x; x <= max_x; x += thickness * 6) { draw_pixel({ x, y }, color, thickness); draw_pixel({ min(x + thickness, max_x), y }, color, thickness); draw_pixel({ min(x + thickness * 2, max_x), y }, color, thickness); } } else { for (int x = min_x; x <= max_x; ++x) draw_pixel({ x, y }, color, thickness); } return; } // FIXME: Implement dotted/dashed diagonal lines. ASSERT(style == LineStyle::Solid); const double adx = abs(point2.x() - point1.x()); const double ady = abs(point2.y() - point1.y()); if (adx > ady) { if (point1.x() > point2.x()) swap(point1, point2); } else { if (point1.y() > point2.y()) swap(point1, point2); } // FIXME: Implement clipping below. const double dx = point2.x() - point1.x(); const double dy = point2.y() - point1.y(); double error = 0; if (dx > dy) { const double y_step = dy == 0 ? 0 : (dy > 0 ? 1 : -1); const double delta_error = fabs(dy / dx); int y = point1.y(); for (int x = point1.x(); x <= point2.x(); ++x) { if (clip_rect.contains(x, y)) draw_pixel({ x, y }, color, thickness); error += delta_error; if (error >= 0.5) { y = (double)y + y_step; error -= 1.0; } } } else { const double x_step = dx == 0 ? 0 : (dx > 0 ? 1 : -1); const double delta_error = fabs(dx / dy); int x = point1.x(); for (int y = point1.y(); y <= point2.y(); ++y) { if (clip_rect.contains(x, y)) draw_pixel({ x, y }, color, thickness); error += delta_error; if (error >= 0.5) { x = (double)x + x_step; error -= 1.0; } } } } static void split_quadratic_bezier_curve(const FloatPoint& original_control, const FloatPoint& p1, const FloatPoint& p2, Function& callback) { auto po1_midpoint = original_control + p1; po1_midpoint /= 2; auto po2_midpoint = original_control + p2; po2_midpoint /= 2; auto new_segment = po1_midpoint + po2_midpoint; new_segment /= 2; Painter::for_each_line_segment_on_bezier_curve(po1_midpoint, p1, new_segment, callback); Painter::for_each_line_segment_on_bezier_curve(po2_midpoint, new_segment, p2, callback); } static bool can_approximate_bezier_curve(const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& control) { constexpr static int tolerance = 15; auto p1x = 3 * control.x() - 2 * p1.x() - p2.x(); auto p1y = 3 * control.y() - 2 * p1.y() - p2.y(); auto p2x = 3 * control.x() - 2 * p2.x() - p1.x(); auto p2y = 3 * control.y() - 2 * p2.y() - p1.y(); p1x = p1x * p1x; p1y = p1y * p1y; p2x = p2x * p2x; p2y = p2y * p2y; return max(p1x, p2x) + max(p1y, p2y) <= tolerance; } void Painter::for_each_line_segment_on_bezier_curve(const FloatPoint& control_point, const FloatPoint& p1, const FloatPoint& p2, Function& callback) { if (can_approximate_bezier_curve(p1, p2, control_point)) { callback(p1, p2); } else { split_quadratic_bezier_curve(control_point, p1, p2, callback); } } void Painter::for_each_line_segment_on_bezier_curve(const FloatPoint& control_point, const FloatPoint& p1, const FloatPoint& p2, Function&& callback) { for_each_line_segment_on_bezier_curve(control_point, p1, p2, callback); } static void split_elliptical_arc(const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& center, const FloatPoint radii, float x_axis_rotation, float theta_1, float theta_delta, Function& callback) { auto half_theta_delta = theta_delta / 2; auto theta_mid = theta_1 + half_theta_delta; auto xc = cosf(x_axis_rotation); auto xs = sinf(x_axis_rotation); auto tc = cosf(theta_1 + half_theta_delta); auto ts = sinf(theta_1 + half_theta_delta); auto x2 = xc * radii.x() * tc - xs * radii.y() * ts + center.x(); auto y2 = xs * radii.x() * tc + xc * radii.y() * ts + center.y(); FloatPoint mid_point = { x2, y2 }; Painter::for_each_line_segment_on_elliptical_arc(p1, mid_point, center, radii, x_axis_rotation, theta_1, half_theta_delta, callback); Painter::for_each_line_segment_on_elliptical_arc(mid_point, p2, center, radii, x_axis_rotation, theta_mid, half_theta_delta, callback); } static bool can_approximate_elliptical_arc(const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& center, const FloatPoint radii, float x_axis_rotation, float theta_1, float theta_delta) { constexpr static float tolerance = 1; auto half_theta_delta = theta_delta / 2.0f; auto xc = cosf(x_axis_rotation); auto xs = sinf(x_axis_rotation); auto tc = cosf(theta_1 + half_theta_delta); auto ts = sinf(theta_1 + half_theta_delta); auto x2 = xc * radii.x() * tc - xs * radii.y() * ts + center.x(); auto y2 = xs * radii.x() * tc + xc * radii.y() * ts + center.y(); auto ellipse_mid_point = FloatPoint { x2, y2 }; auto line_mid_point = p1 + (p2 - p1) / 2.0f; return ellipse_mid_point.distance_from(line_mid_point) < tolerance; } void Painter::draw_quadratic_bezier_curve(const IntPoint& control_point, const IntPoint& p1, const IntPoint& p2, Color color, int thickness, LineStyle style) { for_each_line_segment_on_bezier_curve(FloatPoint(control_point), FloatPoint(p1), FloatPoint(p2), [&](const FloatPoint& fp1, const FloatPoint& fp2) { draw_line(IntPoint(fp1.x(), fp1.y()), IntPoint(fp2.x(), fp2.y()), color, thickness, style); }); } void Painter::for_each_line_segment_on_elliptical_arc(const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& center, const FloatPoint radii, float x_axis_rotation, float theta_1, float theta_delta, Function& callback) { if (can_approximate_elliptical_arc(p1, p2, center, radii, x_axis_rotation, theta_1, theta_delta)) { callback(p1, p2); } else { split_elliptical_arc(p1, p2, center, radii, x_axis_rotation, theta_1, theta_delta, callback); } } void Painter::for_each_line_segment_on_elliptical_arc(const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& center, const FloatPoint radii, float x_axis_rotation, float theta_1, float theta_delta, Function&& callback) { for_each_line_segment_on_elliptical_arc(p1, p2, center, radii, x_axis_rotation, theta_1, theta_delta, callback); } void Painter::draw_elliptical_arc(const IntPoint& p1, const IntPoint& p2, const IntPoint& center, const FloatPoint& radii, float x_axis_rotation, float theta_1, float theta_delta, Color color, int thickness, LineStyle style) { for_each_line_segment_on_elliptical_arc(FloatPoint(p1), FloatPoint(p2), FloatPoint(center), radii, x_axis_rotation, theta_1, theta_delta, [&](const FloatPoint& fp1, const FloatPoint& fp2) { draw_line(IntPoint(fp1.x(), fp1.y()), IntPoint(fp2.x(), fp2.y()), color, thickness, style); }); } void Painter::add_clip_rect(const IntRect& rect) { state().clip_rect.intersect(rect.translated(translation())); state().clip_rect.intersect(m_target->rect()); } void Painter::clear_clip_rect() { state().clip_rect = m_clip_origin; } PainterStateSaver::PainterStateSaver(Painter& painter) : m_painter(painter) { m_painter.save(); } PainterStateSaver::~PainterStateSaver() { m_painter.restore(); } void Painter::stroke_path(const Path& path, Color color, int thickness) { FloatPoint cursor; for (auto& segment : path.segments()) { switch (segment.type()) { case Segment::Type::Invalid: ASSERT_NOT_REACHED(); break; case Segment::Type::MoveTo: cursor = segment.point(); break; case Segment::Type::LineTo: draw_line(cursor.to_type(), segment.point().to_type(), color, thickness); cursor = segment.point(); break; case Segment::Type::QuadraticBezierCurveTo: { auto& through = static_cast(segment).through(); draw_quadratic_bezier_curve(through.to_type(), cursor.to_type(), segment.point().to_type(), color, thickness); cursor = segment.point(); break; } case Segment::Type::EllipticalArcTo: auto& arc = static_cast(segment); draw_elliptical_arc(cursor.to_type(), segment.point().to_type(), arc.center().to_type(), arc.radii(), arc.x_axis_rotation(), arc.theta_1(), arc.theta_delta(), color, thickness); cursor = segment.point(); break; } } } //#define FILL_PATH_DEBUG void Painter::fill_path(Path& path, Color color, WindingRule winding_rule) { const auto& segments = path.split_lines(); if (segments.size() == 0) return; Vector active_list; active_list.ensure_capacity(segments.size()); // first, grab the segments for the very first scanline auto first_y = segments.first().maximum_y; auto last_y = segments.last().minimum_y; auto scanline = first_y; size_t last_active_segment { 0 }; for (auto& segment : segments) { if (segment.maximum_y != scanline) break; active_list.append(segment); ++last_active_segment; } auto is_inside_shape = [winding_rule](int winding_number) { if (winding_rule == WindingRule::Nonzero) return winding_number != 0; if (winding_rule == WindingRule::EvenOdd) return winding_number % 2 == 0; ASSERT_NOT_REACHED(); }; auto increment_winding = [winding_rule](int& winding_number, const IntPoint& from, const IntPoint& to) { if (winding_rule == WindingRule::EvenOdd) { ++winding_number; return; } if (winding_rule == WindingRule::Nonzero) { if (from.dy_relative_to(to) < 0) ++winding_number; else --winding_number; return; } ASSERT_NOT_REACHED(); }; while (scanline >= last_y) { if (active_list.size()) { // sort the active list by 'x' from right to left quick_sort(active_list, [](const auto& line0, const auto& line1) { return line1.x < line0.x; }); #ifdef FILL_PATH_DEBUG if ((int)scanline % 10 == 0) { draw_text(IntRect(active_list.last().x - 20, scanline, 20, 10), String::format("%d", (int)scanline)); } #endif if (active_list.size() > 1) { auto winding_number { 0 }; for (size_t i = 1; i < active_list.size(); ++i) { auto& previous = active_list[i - 1]; auto& current = active_list[i]; int int_distance = fabs(current.x - previous.x); IntPoint from(previous.x, scanline); IntPoint to(current.x, scanline); if (int_distance < 1) { // the two lines intersect on an int grid // so they should both be treated as a single line segment goto skip_drawing; } if (int_distance == 1 && is_inside_shape(winding_number)) { // The two lines form a singluar edge for the shape // while they do not intersect, they connect together goto skip_drawing; } if (is_inside_shape(winding_number)) { // The points between this segment and the previous are // inside the shape #ifdef FILL_PATH_DEBUG dbg() << "y=" << scanline << ": " << winding_number << " at " << i << ": " << from << " -- " << to; #endif draw_line(from, to, color, 1); } skip_drawing:; auto is_passing_through_maxima = scanline == previous.maximum_y || scanline == previous.minimum_y || scanline == current.maximum_y || scanline == current.minimum_y; auto is_passing_through_vertex = false; if (is_passing_through_maxima) { is_passing_through_vertex = previous.x == current.x; } if (!is_passing_through_vertex || previous.inverse_slope * current.inverse_slope < 0) increment_winding(winding_number, from, to); // update the x coord active_list[i - 1].x -= active_list[i - 1].inverse_slope; } active_list.last().x -= active_list.last().inverse_slope; } else { auto point = IntPoint(active_list[0].x, scanline); draw_line(point, point, color); // update the x coord active_list.first().x -= active_list.first().inverse_slope; } } --scanline; // remove any edge that goes out of bound from the active list for (size_t i = 0, count = active_list.size(); i < count; ++i) { if (scanline <= active_list[i].minimum_y) { active_list.remove(i); --count; --i; } } for (size_t j = last_active_segment; j < segments.size(); ++j, ++last_active_segment) { auto& segment = segments[j]; if (segment.maximum_y < scanline) break; if (segment.minimum_y >= scanline) continue; active_list.append(segment); } } #ifdef FILL_PATH_DEBUG size_t i { 0 }; for (auto& segment : segments) { draw_line(Point(segment.from), Point(segment.to), Color::from_hsv(++i / segments.size() * 360.0, 1.0, 1.0), 1); } #endif } }