/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __serenity__ # include #endif //#define PNG_DEBUG namespace Gfx { static const u8 png_header[8] = { 0x89, 'P', 'N', 'G', 13, 10, 26, 10 }; struct PNG_IHDR { NetworkOrdered width; NetworkOrdered height; u8 bit_depth { 0 }; u8 color_type { 0 }; u8 compression_method { 0 }; u8 filter_method { 0 }; u8 interlace_method { 0 }; }; static_assert(sizeof(PNG_IHDR) == 13); struct Scanline { u8 filter { 0 }; ByteBuffer data {}; }; struct [[gnu::packed]] PaletteEntry { u8 r; u8 g; u8 b; //u8 a; }; template struct [[gnu::packed]] Tuple { T gray; T a; }; template struct [[gnu::packed]] Triplet { T r; T g; T b; }; template struct [[gnu::packed]] Quad { T r; T g; T b; T a; }; enum PngInterlaceMethod { Null = 0, Adam7 = 1 }; struct PNGLoadingContext { enum State { NotDecoded = 0, Error, HeaderDecoded, SizeDecoded, ChunksDecoded, BitmapDecoded, }; State state { State::NotDecoded }; const u8* data { nullptr }; size_t data_size { 0 }; int width { -1 }; int height { -1 }; u8 bit_depth { 0 }; u8 color_type { 0 }; u8 compression_method { 0 }; u8 filter_method { 0 }; u8 interlace_method { 0 }; u8 channels { 0 }; bool has_seen_zlib_header { false }; bool has_alpha() const { return color_type & 4 || palette_transparency_data.size() > 0; } Vector scanlines; RefPtr bitmap; u8* decompression_buffer { nullptr }; size_t decompression_buffer_size { 0 }; Vector compressed_data; Vector palette_data; Vector palette_transparency_data; }; class Streamer { public: Streamer(const u8* data, size_t size) : m_data_ptr(data) , m_size_remaining(size) { } template bool read(T& value) { if (m_size_remaining < sizeof(T)) return false; value = *((const NetworkOrdered*)m_data_ptr); m_data_ptr += sizeof(T); m_size_remaining -= sizeof(T); return true; } bool read_bytes(u8* buffer, size_t count) { if (m_size_remaining < count) return false; memcpy(buffer, m_data_ptr, count); m_data_ptr += count; m_size_remaining -= count; return true; } bool wrap_bytes(ByteBuffer& buffer, size_t count) { if (m_size_remaining < count) return false; buffer = ByteBuffer::wrap(m_data_ptr, count); m_data_ptr += count; m_size_remaining -= count; return true; } bool at_end() const { return !m_size_remaining; } private: const u8* m_data_ptr { nullptr }; size_t m_size_remaining { 0 }; }; static RefPtr load_png_impl(const u8*, size_t); static bool process_chunk(Streamer&, PNGLoadingContext& context); RefPtr load_png(const StringView& path) { MappedFile mapped_file(path); if (!mapped_file.is_valid()) return nullptr; auto bitmap = load_png_impl((const u8*)mapped_file.data(), mapped_file.size()); if (bitmap) bitmap->set_mmap_name(String::format("Gfx::Bitmap [%dx%d] - Decoded PNG: %s", bitmap->width(), bitmap->height(), LexicalPath::canonicalized_path(path).characters())); return bitmap; } RefPtr load_png_from_memory(const u8* data, size_t length) { auto bitmap = load_png_impl(data, length); if (bitmap) bitmap->set_mmap_name(String::format("Gfx::Bitmap [%dx%d] - Decoded PNG: ", bitmap->width(), bitmap->height())); return bitmap; } ALWAYS_INLINE static u8 paeth_predictor(int a, int b, int c) { int p = a + b - c; int pa = abs(p - a); int pb = abs(p - b); int pc = abs(p - c); if (pa <= pb && pa <= pc) return a; if (pb <= pc) return b; return c; } union [[gnu::packed]] Pixel { RGBA32 rgba { 0 }; u8 v[4]; struct { u8 r; u8 g; u8 b; u8 a; }; }; static_assert(sizeof(Pixel) == 4); template ALWAYS_INLINE static void unfilter_impl(Gfx::Bitmap& bitmap, int y, const void* dummy_scanline_data) { auto* dummy_scanline = (const Pixel*)dummy_scanline_data; if constexpr (filter_type == 0) { auto* pixels = (Pixel*)bitmap.scanline(y); for (int i = 0; i < bitmap.width(); ++i) { auto& x = pixels[i]; swap(x.r, x.b); } } if constexpr (filter_type == 1) { auto* pixels = (Pixel*)bitmap.scanline(y); swap(pixels[0].r, pixels[0].b); for (int i = 1; i < bitmap.width(); ++i) { auto& x = pixels[i]; swap(x.r, x.b); auto& a = (const Pixel&)pixels[i - 1]; x.v[0] += a.v[0]; x.v[1] += a.v[1]; x.v[2] += a.v[2]; if constexpr (has_alpha) x.v[3] += a.v[3]; } return; } if constexpr (filter_type == 2) { auto* pixels = (Pixel*)bitmap.scanline(y); auto* pixels_y_minus_1 = y == 0 ? dummy_scanline : (const Pixel*)bitmap.scanline(y - 1); for (int i = 0; i < bitmap.width(); ++i) { auto& x = pixels[i]; swap(x.r, x.b); const Pixel& b = pixels_y_minus_1[i]; x.v[0] += b.v[0]; x.v[1] += b.v[1]; x.v[2] += b.v[2]; if constexpr (has_alpha) x.v[3] += b.v[3]; } return; } if constexpr (filter_type == 3) { auto* pixels = (Pixel*)bitmap.scanline(y); auto* pixels_y_minus_1 = y == 0 ? dummy_scanline : (const Pixel*)bitmap.scanline(y - 1); for (int i = 0; i < bitmap.width(); ++i) { auto& x = pixels[i]; swap(x.r, x.b); Pixel a; if (i != 0) a = pixels[i - 1]; const Pixel& b = pixels_y_minus_1[i]; x.v[0] = x.v[0] + ((a.v[0] + b.v[0]) / 2); x.v[1] = x.v[1] + ((a.v[1] + b.v[1]) / 2); x.v[2] = x.v[2] + ((a.v[2] + b.v[2]) / 2); if constexpr (has_alpha) x.v[3] = x.v[3] + ((a.v[3] + b.v[3]) / 2); } return; } if constexpr (filter_type == 4) { auto* pixels = (Pixel*)bitmap.scanline(y); auto* pixels_y_minus_1 = y == 0 ? dummy_scanline : (Pixel*)bitmap.scanline(y - 1); for (int i = 0; i < bitmap.width(); ++i) { auto& x = pixels[i]; swap(x.r, x.b); Pixel a; const Pixel& b = pixels_y_minus_1[i]; Pixel c; if (i != 0) { a = pixels[i - 1]; c = pixels_y_minus_1[i - 1]; } x.v[0] += paeth_predictor(a.v[0], b.v[0], c.v[0]); x.v[1] += paeth_predictor(a.v[1], b.v[1], c.v[1]); x.v[2] += paeth_predictor(a.v[2], b.v[2], c.v[2]); if constexpr (has_alpha) x.v[3] += paeth_predictor(a.v[3], b.v[3], c.v[3]); } } } template ALWAYS_INLINE static void unpack_grayscale_without_alpha(PNGLoadingContext& context) { for (int y = 0; y < context.height; ++y) { auto* gray_values = reinterpret_cast(context.scanlines[y].data.data()); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; pixel.r = gray_values[i]; pixel.g = gray_values[i]; pixel.b = gray_values[i]; pixel.a = 0xff; } } } template ALWAYS_INLINE static void unpack_grayscale_with_alpha(PNGLoadingContext& context) { for (int y = 0; y < context.height; ++y) { auto* tuples = reinterpret_cast*>(context.scanlines[y].data.data()); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; pixel.r = tuples[i].gray; pixel.g = tuples[i].gray; pixel.b = tuples[i].gray; pixel.a = tuples[i].a; } } } template ALWAYS_INLINE static void unpack_triplets_without_alpha(PNGLoadingContext& context) { for (int y = 0; y < context.height; ++y) { auto* triplets = reinterpret_cast*>(context.scanlines[y].data.data()); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; pixel.r = triplets[i].r; pixel.g = triplets[i].g; pixel.b = triplets[i].b; pixel.a = 0xff; } } } NEVER_INLINE FLATTEN static void unfilter(PNGLoadingContext& context) { // First unpack the scanlines to RGBA: switch (context.color_type) { case 0: if (context.bit_depth == 8) { unpack_grayscale_without_alpha(context); } else if (context.bit_depth == 16) { unpack_grayscale_without_alpha(context); } else if (context.bit_depth == 1 || context.bit_depth == 2 || context.bit_depth == 4) { auto pixels_per_byte = 8 / context.bit_depth; auto mask = (1 << context.bit_depth) - 1; for (int y = 0; y < context.height; ++y) { auto* gray_values = (u8*)context.scanlines[y].data.data(); for (int x = 0; x < context.width; ++x) { auto bit_offset = (8 - context.bit_depth) - (context.bit_depth * (x % pixels_per_byte)); auto value = (gray_values[x / pixels_per_byte] >> bit_offset) & mask; auto& pixel = (Pixel&)context.bitmap->scanline(y)[x]; pixel.r = value * (0xff / pow(context.bit_depth, 2)); pixel.g = value * (0xff / pow(context.bit_depth, 2)); pixel.b = value * (0xff / pow(context.bit_depth, 2)); pixel.a = 0xff; } } } else { ASSERT_NOT_REACHED(); } break; case 4: if (context.bit_depth == 8) { unpack_grayscale_with_alpha(context); } else if (context.bit_depth == 16) { unpack_grayscale_with_alpha(context); } else { ASSERT_NOT_REACHED(); } break; case 2: if (context.bit_depth == 8) { unpack_triplets_without_alpha(context); } else if (context.bit_depth == 16) { unpack_triplets_without_alpha(context); } else { ASSERT_NOT_REACHED(); } break; case 6: if (context.bit_depth == 8) { for (int y = 0; y < context.height; ++y) { memcpy(context.bitmap->scanline(y), context.scanlines[y].data.data(), context.scanlines[y].data.size()); } } else if (context.bit_depth == 16) { for (int y = 0; y < context.height; ++y) { auto* triplets = reinterpret_cast*>(context.scanlines[y].data.data()); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; pixel.r = triplets[i].r & 0xFF; pixel.g = triplets[i].g & 0xFF; pixel.b = triplets[i].b & 0xFF; pixel.a = triplets[i].a & 0xFF; } } } else { ASSERT_NOT_REACHED(); } break; case 3: if (context.bit_depth == 8) { for (int y = 0; y < context.height; ++y) { auto* palette_index = (u8*)context.scanlines[y].data.data(); for (int i = 0; i < context.width; ++i) { auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; auto& color = context.palette_data.at((int)palette_index[i]); auto transparency = context.palette_transparency_data.size() >= palette_index[i] + 1u ? context.palette_transparency_data.data()[palette_index[i]] : 0xff; pixel.r = color.r; pixel.g = color.g; pixel.b = color.b; pixel.a = transparency; } } } else if (context.bit_depth == 1 || context.bit_depth == 2 || context.bit_depth == 4) { auto pixels_per_byte = 8 / context.bit_depth; auto mask = (1 << context.bit_depth) - 1; for (int y = 0; y < context.height; ++y) { auto* palette_indexes = (u8*)context.scanlines[y].data.data(); for (int i = 0; i < context.width; ++i) { auto bit_offset = (8 - context.bit_depth) - (context.bit_depth * (i % pixels_per_byte)); auto palette_index = (palette_indexes[i / pixels_per_byte] >> bit_offset) & mask; auto& pixel = (Pixel&)context.bitmap->scanline(y)[i]; auto& color = context.palette_data.at(palette_index); auto transparency = context.palette_transparency_data.size() >= palette_index + 1u ? context.palette_transparency_data.data()[palette_index] : 0xff; pixel.r = color.r; pixel.g = color.g; pixel.b = color.b; pixel.a = transparency; } } } else { ASSERT_NOT_REACHED(); } break; default: ASSERT_NOT_REACHED(); break; } auto dummy_scanline = ByteBuffer::create_zeroed(context.width * sizeof(RGBA32)); for (int y = 0; y < context.height; ++y) { auto filter = context.scanlines[y].filter; if (filter == 0) { if (context.has_alpha()) unfilter_impl(*context.bitmap, y, dummy_scanline.data()); else unfilter_impl(*context.bitmap, y, dummy_scanline.data()); continue; } if (filter == 1) { if (context.has_alpha()) unfilter_impl(*context.bitmap, y, dummy_scanline.data()); else unfilter_impl(*context.bitmap, y, dummy_scanline.data()); continue; } if (filter == 2) { if (context.has_alpha()) unfilter_impl(*context.bitmap, y, dummy_scanline.data()); else unfilter_impl(*context.bitmap, y, dummy_scanline.data()); continue; } if (filter == 3) { if (context.has_alpha()) unfilter_impl(*context.bitmap, y, dummy_scanline.data()); else unfilter_impl(*context.bitmap, y, dummy_scanline.data()); continue; } if (filter == 4) { if (context.has_alpha()) unfilter_impl(*context.bitmap, y, dummy_scanline.data()); else unfilter_impl(*context.bitmap, y, dummy_scanline.data()); continue; } } } static bool decode_png_header(PNGLoadingContext& context) { if (context.state >= PNGLoadingContext::HeaderDecoded) return true; if (!context.data || context.data_size < sizeof(png_header)) { #ifdef PNG_DEBUG dbg() << "Missing PNG header"; #endif context.state = PNGLoadingContext::State::Error; return false; } if (memcmp(context.data, png_header, sizeof(png_header)) != 0) { #ifdef PNG_DEBUG dbg() << "Invalid PNG header"; #endif context.state = PNGLoadingContext::State::Error; return false; } context.state = PNGLoadingContext::HeaderDecoded; return true; } static bool decode_png_size(PNGLoadingContext& context) { if (context.state >= PNGLoadingContext::SizeDecoded) return true; if (context.state < PNGLoadingContext::HeaderDecoded) { if (!decode_png_header(context)) return false; } const u8* data_ptr = context.data + sizeof(png_header); size_t data_remaining = context.data_size - sizeof(png_header); Streamer streamer(data_ptr, data_remaining); while (!streamer.at_end()) { if (!process_chunk(streamer, context)) { context.state = PNGLoadingContext::State::Error; return false; } if (context.width && context.height) { context.state = PNGLoadingContext::State::SizeDecoded; return true; } } return false; } static bool decode_png_chunks(PNGLoadingContext& context) { if (context.state >= PNGLoadingContext::State::ChunksDecoded) return true; if (context.state < PNGLoadingContext::HeaderDecoded) { if (!decode_png_header(context)) return false; } const u8* data_ptr = context.data + sizeof(png_header); int data_remaining = context.data_size - sizeof(png_header); context.compressed_data.ensure_capacity(context.data_size); Streamer streamer(data_ptr, data_remaining); while (!streamer.at_end()) { if (!process_chunk(streamer, context)) { context.state = PNGLoadingContext::State::Error; return false; } } context.state = PNGLoadingContext::State::ChunksDecoded; return true; } static bool decode_png_bitmap_simple(PNGLoadingContext& context) { Streamer streamer(context.decompression_buffer, context.decompression_buffer_size); for (int y = 0; y < context.height; ++y) { u8 filter; if (!streamer.read(filter)) { context.state = PNGLoadingContext::State::Error; return false; } if (filter > 4) { dbg() << "Invalid PNG filter: " << filter; context.state = PNGLoadingContext::State::Error; return false; } context.scanlines.append({ filter }); auto& scanline_buffer = context.scanlines.last().data; auto row_size = ((context.width * context.channels * context.bit_depth) + 7) / 8; if (!streamer.wrap_bytes(scanline_buffer, row_size)) { context.state = PNGLoadingContext::State::Error; return false; } } context.bitmap = Bitmap::create_purgeable(context.has_alpha() ? BitmapFormat::RGBA32 : BitmapFormat::RGB32, { context.width, context.height }); unfilter(context); return true; } static int adam7_height(PNGLoadingContext& context, int pass) { switch (pass) { case 1: return (context.height + 7) / 8; case 2: return (context.height + 7) / 8; case 3: return (context.height + 3) / 8; case 4: return (context.height + 3) / 4; case 5: return (context.height + 1) / 4; case 6: return (context.height + 1) / 2; case 7: return context.height / 2; default: ASSERT_NOT_REACHED(); } } static int adam7_width(PNGLoadingContext& context, int pass) { switch (pass) { case 1: return (context.width + 7) / 8; case 2: return (context.width + 3) / 8; case 3: return (context.width + 3) / 4; case 4: return (context.width + 1) / 4; case 5: return (context.width + 1) / 2; case 6: return context.width / 2; case 7: return context.width; default: ASSERT_NOT_REACHED(); } } // Index 0 unused (non-interlaced case) static int adam7_starty[8] = { 0, 0, 0, 4, 0, 2, 0, 1 }; static int adam7_startx[8] = { 0, 0, 4, 0, 2, 0, 1, 0 }; static int adam7_stepy[8] = { 1, 8, 8, 8, 4, 4, 2, 2 }; static int adam7_stepx[8] = { 1, 8, 8, 4, 4, 2, 2, 1 }; static bool decode_adam7_pass(PNGLoadingContext& context, Streamer& streamer, int pass) { PNGLoadingContext subimage_context; subimage_context.width = adam7_width(context, pass); subimage_context.height = adam7_height(context, pass); subimage_context.channels = context.channels; subimage_context.color_type = context.color_type; subimage_context.palette_data = context.palette_data; subimage_context.palette_transparency_data = context.palette_transparency_data; subimage_context.bit_depth = context.bit_depth; subimage_context.filter_method = context.filter_method; // For small images, some passes might be empty if (!subimage_context.width || !subimage_context.height) return true; subimage_context.scanlines.clear_with_capacity(); for (int y = 0; y < subimage_context.height; ++y) { u8 filter; if (!streamer.read(filter)) { context.state = PNGLoadingContext::State::Error; return false; } if (filter > 4) { dbg() << "Invalid PNG filter: " << filter; context.state = PNGLoadingContext::State::Error; return false; } subimage_context.scanlines.append({ filter }); auto& scanline_buffer = subimage_context.scanlines.last().data; auto row_size = ((subimage_context.width * context.channels * context.bit_depth) + 7) / 8; if (!streamer.wrap_bytes(scanline_buffer, row_size)) { context.state = PNGLoadingContext::State::Error; return false; } } subimage_context.bitmap = Bitmap::create(context.bitmap->format(), { subimage_context.width, subimage_context.height }); unfilter(subimage_context); // Copy the subimage data into the main image according to the pass pattern for (int y = 0, dy = adam7_starty[pass]; y < subimage_context.height && dy < context.height; ++y, dy += adam7_stepy[pass]) { for (int x = 0, dx = adam7_startx[pass]; x < subimage_context.width && dy < context.width; ++x, dx += adam7_stepx[pass]) { context.bitmap->set_pixel(dx, dy, subimage_context.bitmap->get_pixel(x, y)); } } return true; } static bool decode_png_adam7(PNGLoadingContext& context) { Streamer streamer(context.decompression_buffer, context.decompression_buffer_size); context.bitmap = Bitmap::create_purgeable(context.has_alpha() ? BitmapFormat::RGBA32 : BitmapFormat::RGB32, { context.width, context.height }); for (int pass = 1; pass <= 7; ++pass) { if (!decode_adam7_pass(context, streamer, pass)) return false; } return true; } static bool decode_png_bitmap(PNGLoadingContext& context) { if (context.state < PNGLoadingContext::State::ChunksDecoded) { if (!decode_png_chunks(context)) return false; } if (context.state >= PNGLoadingContext::State::BitmapDecoded) return true; unsigned long srclen = context.compressed_data.size() - 6; unsigned long destlen = 0; int ret = puff(NULL, &destlen, context.compressed_data.data() + 2, &srclen); if (ret != 0) { context.state = PNGLoadingContext::State::Error; return false; } context.decompression_buffer_size = destlen; #ifdef __serenity__ context.decompression_buffer = (u8*)mmap_with_name(nullptr, context.decompression_buffer_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0, "PNG decompression buffer"); #else context.decompression_buffer = (u8*)mmap(nullptr, context.decompression_buffer_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); #endif ret = puff(context.decompression_buffer, &destlen, context.compressed_data.data() + 2, &srclen); if (ret != 0) { context.state = PNGLoadingContext::State::Error; return false; } context.compressed_data.clear(); context.scanlines.ensure_capacity(context.height); switch (context.interlace_method) { case PngInterlaceMethod::Null: if (!decode_png_bitmap_simple(context)) return false; break; case PngInterlaceMethod::Adam7: if (!decode_png_adam7(context)) return false; break; default: ASSERT_NOT_REACHED(); } munmap(context.decompression_buffer, context.decompression_buffer_size); context.decompression_buffer = nullptr; context.decompression_buffer_size = 0; context.state = PNGLoadingContext::State::BitmapDecoded; return true; } static RefPtr load_png_impl(const u8* data, size_t data_size) { PNGLoadingContext context; context.data = data; context.data_size = data_size; if (!decode_png_chunks(context)) return nullptr; if (!decode_png_bitmap(context)) return nullptr; return context.bitmap; } static bool process_IHDR(const ByteBuffer& data, PNGLoadingContext& context) { if (data.size() < (int)sizeof(PNG_IHDR)) return false; auto& ihdr = *(const PNG_IHDR*)data.data(); context.width = ihdr.width; context.height = ihdr.height; context.bit_depth = ihdr.bit_depth; context.color_type = ihdr.color_type; context.compression_method = ihdr.compression_method; context.filter_method = ihdr.filter_method; context.interlace_method = ihdr.interlace_method; #ifdef PNG_DEBUG printf("PNG: %dx%d (%d bpp)\n", context.width, context.height, context.bit_depth); printf(" Color type: %d\n", context.color_type); printf("Compress Method: %d\n", context.compression_method); printf(" Filter Method: %d\n", context.filter_method); printf(" Interlace type: %d\n", context.interlace_method); #endif if (context.interlace_method != PngInterlaceMethod::Null && context.interlace_method != PngInterlaceMethod::Adam7) { dbgprintf("PNGLoader::process_IHDR: unknown interlace method: %d\n", context.interlace_method); return false; } switch (context.color_type) { case 0: // Each pixel is a grayscale sample. context.channels = 1; break; case 4: // Each pixel is a grayscale sample, followed by an alpha sample. context.channels = 2; break; case 2: // Each pixel is an RGB sample context.channels = 3; break; case 3: // Each pixel is a palette index; a PLTE chunk must appear. context.channels = 1; break; case 6: // Each pixel is an RGB sample, followed by an alpha sample. context.channels = 4; break; default: ASSERT_NOT_REACHED(); } return true; } static bool process_IDAT(const ByteBuffer& data, PNGLoadingContext& context) { context.compressed_data.append(data.data(), data.size()); return true; } static bool process_PLTE(const ByteBuffer& data, PNGLoadingContext& context) { context.palette_data.append((const PaletteEntry*)data.data(), data.size() / 3); return true; } static bool process_tRNS(const ByteBuffer& data, PNGLoadingContext& context) { switch (context.color_type) { case 3: context.palette_transparency_data.append(data.data(), data.size()); break; } return true; } static bool process_chunk(Streamer& streamer, PNGLoadingContext& context) { u32 chunk_size; if (!streamer.read(chunk_size)) { printf("Bail at chunk_size\n"); return false; } u8 chunk_type[5]; chunk_type[4] = '\0'; if (!streamer.read_bytes(chunk_type, 4)) { printf("Bail at chunk_type\n"); return false; } ByteBuffer chunk_data; if (!streamer.wrap_bytes(chunk_data, chunk_size)) { printf("Bail at chunk_data\n"); return false; } u32 chunk_crc; if (!streamer.read(chunk_crc)) { printf("Bail at chunk_crc\n"); return false; } #ifdef PNG_DEBUG printf("Chunk type: '%s', size: %u, crc: %x\n", chunk_type, chunk_size, chunk_crc); #endif if (!strcmp((const char*)chunk_type, "IHDR")) return process_IHDR(chunk_data, context); if (!strcmp((const char*)chunk_type, "IDAT")) return process_IDAT(chunk_data, context); if (!strcmp((const char*)chunk_type, "PLTE")) return process_PLTE(chunk_data, context); if (!strcmp((const char*)chunk_type, "tRNS")) return process_tRNS(chunk_data, context); return true; } PNGImageDecoderPlugin::PNGImageDecoderPlugin(const u8* data, size_t size) { m_context = make(); m_context->data = data; m_context->data_size = size; } PNGImageDecoderPlugin::~PNGImageDecoderPlugin() { } IntSize PNGImageDecoderPlugin::size() { if (m_context->state == PNGLoadingContext::State::Error) return {}; if (m_context->state < PNGLoadingContext::State::SizeDecoded) { bool success = decode_png_size(*m_context); if (!success) return {}; } return { m_context->width, m_context->height }; } RefPtr PNGImageDecoderPlugin::bitmap() { if (m_context->state == PNGLoadingContext::State::Error) return nullptr; if (m_context->state < PNGLoadingContext::State::BitmapDecoded) { // NOTE: This forces the chunk decoding to happen. bool success = decode_png_bitmap(*m_context); if (!success) return nullptr; } ASSERT(m_context->bitmap); return m_context->bitmap; } void PNGImageDecoderPlugin::set_volatile() { if (m_context->bitmap) m_context->bitmap->set_volatile(); } bool PNGImageDecoderPlugin::set_nonvolatile() { if (!m_context->bitmap) return false; return m_context->bitmap->set_nonvolatile(); } bool PNGImageDecoderPlugin::sniff() { return decode_png_header(*m_context); } bool PNGImageDecoderPlugin::is_animated() { return false; } size_t PNGImageDecoderPlugin::loop_count() { return 0; } size_t PNGImageDecoderPlugin::frame_count() { return 1; } ImageFrameDescriptor PNGImageDecoderPlugin::frame(size_t i) { if (i > 0) { return { bitmap(), 0 }; } return {}; } }