/* * Copyright (c) 2020, Stephan Unverwerth * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #include #include #include namespace Gfx { template class Matrix4x4 final : public Matrix<4, T> { public: Matrix4x4() = default; Matrix4x4(T _11, T _12, T _13, T _14, T _21, T _22, T _23, T _24, T _31, T _32, T _33, T _34, T _41, T _42, T _43, T _44) : m_elements { _11, _12, _13, _14, _21, _22, _23, _24, _31, _32, _33, _34, _41, _42, _43, _44 } { } auto elements() const { return m_elements; } auto elements() { return m_elements; } Matrix4x4 operator*(const Matrix4x4& other) const { Matrix4x4 product; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { product.m_elements[i][j] = m_elements[0][j] * other.m_elements[i][0] + m_elements[1][j] * other.m_elements[i][1] + m_elements[2][j] * other.m_elements[i][2] + m_elements[3][j] * other.m_elements[i][3]; } } return product; } Vector3 transform_point(const Vector3& p) const { return Vector3( p.x() * m_elements[0][0] + p.y() * m_elements[1][0] + p.z() * m_elements[2][0] + m_elements[3][0], p.x() * m_elements[0][1] + p.y() * m_elements[1][1] + p.z() * m_elements[2][1] + m_elements[3][1], p.x() * m_elements[0][2] + p.y() * m_elements[1][2] + p.z() * m_elements[2][2] + m_elements[3][2]); } static Matrix4x4 translate(const Vector3& p) { return Matrix4x4( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, p.x(), p.y(), p.z(), 1); } static Matrix4x4 scale(const Vector3& s) { return Matrix4x4( s.x(), 0, 0, 0, 0, s.y(), 0, 0, 0, 0, s.z(), 0, 0, 0, 0, 1); } static Matrix4x4 rotate(const Vector3& axis, T angle) { T c = cos(angle); T s = sin(angle); T t = 1 - c; T x = axis.x(); T y = axis.y(); T z = axis.z(); return Matrix4x4( t * x * x + c, t * x * y - z * s, t * x * z + y * s, 0, t * x * y + z * s, t * y * y + c, t * y * z - x * s, 0, t * x * z - y * s, t * y * z + x * s, t * z * z + c, 0, 0, 0, 0, 1); } private: T m_elements[4][4]; }; typedef Matrix4x4 FloatMatrix4x4; typedef Matrix4x4 DoubleMatrix4x4; } using Gfx::DoubleMatrix4x4; using Gfx::FloatMatrix4x4; using Gfx::Matrix4x4;