/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include namespace Gfx { static bool load_gif_frame_descriptors(GIFLoadingContext&); struct RGB { u8 r; u8 g; u8 b; }; struct ImageDescriptor { u16 x; u16 y; u16 width; u16 height; bool use_global_color_map; RGB color_map[256]; u8 lzw_min_code_size; Vector lzw_encoded_bytes; RefPtr bitmap; // Fields from optional graphic control extension block enum DisposalMethod : u8 { None = 0, InPlace = 1, RestoreBackground = 2, RestorePrevious = 3, }; DisposalMethod disposal_method { None }; u8 transparency_index { 0 }; u16 duration { 0 }; bool transparent { false }; bool user_input { false }; }; struct LogicalScreen { u16 width; u16 height; RGB color_map[256]; }; struct GIFLoadingContext { enum State { NotDecoded = 0, Error, FrameDescriptorsLoaded, }; State state { NotDecoded }; size_t frames_decoded { 0 }; const u8* data { nullptr }; size_t data_size { 0 }; LogicalScreen logical_screen {}; u8 background_color_index { 0 }; NonnullOwnPtrVector images {}; size_t loops { 1 }; }; RefPtr load_gif(const StringView& path) { MappedFile mapped_file(path); if (!mapped_file.is_valid()) return nullptr; GIFImageDecoderPlugin gif_decoder((const u8*)mapped_file.data(), mapped_file.size()); auto bitmap = gif_decoder.bitmap(); if (bitmap) bitmap->set_mmap_name(String::format("Gfx::Bitmap [%dx%d] - Decoded GIF: %s", bitmap->width(), bitmap->height(), canonicalized_path(path).characters())); return bitmap; } RefPtr load_gif_from_memory(const u8* data, size_t length) { GIFImageDecoderPlugin gif_decoder(data, length); auto bitmap = gif_decoder.bitmap(); if (bitmap) bitmap->set_mmap_name(String::format("Gfx::Bitmap [%dx%d] - Decoded GIF: ", bitmap->width(), bitmap->height())); return bitmap; } enum class GIFFormat { GIF87a, GIF89a, }; Optional decode_gif_header(BufferStream& stream) { static const char valid_header_87[] = "GIF87a"; static const char valid_header_89[] = "GIF89a"; char header[6]; for (int i = 0; i < 6; ++i) stream >> header[i]; if (stream.handle_read_failure()) return {}; if (!memcmp(header, valid_header_87, sizeof(header))) return GIFFormat::GIF87a; else if (!memcmp(header, valid_header_89, sizeof(header))) return GIFFormat::GIF89a; return {}; } class LZWDecoder { private: static constexpr int max_code_size = 12; public: explicit LZWDecoder(const Vector& lzw_bytes, u8 min_code_size) : m_lzw_bytes(lzw_bytes) , m_code_size(min_code_size) , m_original_code_size(min_code_size) , m_table_capacity(pow(2, min_code_size)) { init_code_table(); } u16 add_control_code() { const u16 control_code = m_code_table.size(); m_code_table.append(Vector {}); m_original_code_table.append(Vector {}); if (m_code_table.size() >= m_table_capacity && m_code_size < max_code_size) { ++m_code_size; ++m_original_code_size; m_table_capacity *= 2; } return control_code; } void reset() { m_code_table.clear(); m_code_table.append(m_original_code_table); m_code_size = m_original_code_size; m_table_capacity = pow(2, m_code_size); m_output.clear(); } Optional next_code() { size_t current_byte_index = m_current_bit_index / 8; if (current_byte_index >= m_lzw_bytes.size()) { return {}; } // Extract the code bits using a 32-bit mask to cover the possibility that if // the current code size > 9 bits then the code can span 3 bytes. u8 current_bit_offset = m_current_bit_index % 8; u32 mask = (u32)(m_table_capacity - 1) << current_bit_offset; // Make a padded copy of the final bytes in the data to ensure we don't read past the end. if (current_byte_index + sizeof(mask) > m_lzw_bytes.size()) { u8 padded_last_bytes[sizeof(mask)] = { 0 }; for (int i = 0; current_byte_index + i < m_lzw_bytes.size(); ++i) { padded_last_bytes[i] = m_lzw_bytes[current_byte_index + i]; } const u32* addr = (const u32*)&padded_last_bytes; m_current_code = (*addr & mask) >> current_bit_offset; } else { const u32* addr = (const u32*)&m_lzw_bytes.at(current_byte_index); m_current_code = (*addr & mask) >> current_bit_offset; } if (m_current_code > m_code_table.size()) { dbg() << "Corrupted LZW stream, invalid code: " << m_current_code << " at bit index: " << m_current_bit_index << ", code table size: " << m_code_table.size(); return {}; } m_current_bit_index += m_code_size; return m_current_code; } Vector& get_output() { ASSERT(m_current_code <= m_code_table.size()); if (m_current_code < m_code_table.size()) { Vector new_entry = m_output; m_output = m_code_table.at(m_current_code); new_entry.append(m_output[0]); extend_code_table(new_entry); } else if (m_current_code == m_code_table.size()) { m_output.append(m_output[0]); extend_code_table(m_output); } return m_output; } private: void init_code_table() { m_code_table.clear(); for (u16 i = 0; i < m_table_capacity; ++i) { m_code_table.append({ (u8)i }); } m_original_code_table = m_code_table; } void extend_code_table(const Vector& entry) { if (entry.size() > 1 && m_code_table.size() < 4096) { m_code_table.append(entry); if (m_code_table.size() >= m_table_capacity && m_code_size < max_code_size) { ++m_code_size; m_table_capacity *= 2; } } } const Vector& m_lzw_bytes; int m_current_bit_index { 0 }; Vector> m_code_table {}; Vector> m_original_code_table {}; u8 m_code_size { 0 }; u8 m_original_code_size { 0 }; u32 m_table_capacity { 0 }; u16 m_current_code { 0 }; Vector m_output {}; }; bool decode_frames_up_to_index(GIFLoadingContext& context, size_t frame_index) { if (frame_index >= context.images.size()) { return false; } for (size_t i = context.frames_decoded; i <= frame_index; ++i) { auto& image = context.images.at(i); printf("Image %zu: %d,%d %dx%d %zu bytes LZW-encoded\n", i, image.x, image.y, image.width, image.height, image.lzw_encoded_bytes.size()); dbg() << "Decoding frame: " << i + 1 << " of " << context.images.size(); LZWDecoder decoder(image.lzw_encoded_bytes, image.lzw_min_code_size); // Add GIF-specific control codes const int clear_code = decoder.add_control_code(); const int end_of_information_code = decoder.add_control_code(); auto background_rgb = context.logical_screen.color_map[context.background_color_index]; Color background_color = Color(background_rgb.r, background_rgb.g, background_rgb.b); image.bitmap = Bitmap::create_purgeable(BitmapFormat::RGBA32, { context.logical_screen.width, context.logical_screen.height }); image.bitmap->fill(background_color); if (i > 0 && image.disposal_method == ImageDescriptor::DisposalMethod::InPlace) { for (int y = 0; y < image.bitmap->height(); ++y) { for (int x = 0; x < image.bitmap->width(); ++x) { image.bitmap->set_pixel(x, y, context.images.at(i - 1).bitmap->get_pixel(x, y)); } } } int pixel_index = 0; while (true) { Optional code = decoder.next_code(); if (!code.has_value()) { dbg() << "Unexpectedly reached end of gif frame data"; return false; } if (code.value() == clear_code) { decoder.reset(); continue; } else if (code.value() == end_of_information_code) { break; } auto colors = decoder.get_output(); for (const auto& color : colors) { if (!image.transparent || color != image.transparency_index) { auto rgb = context.logical_screen.color_map[color]; int x = pixel_index % image.width + image.x; int y = pixel_index / image.width + image.y; Color c = Color(rgb.r, rgb.g, rgb.b); image.bitmap->set_pixel(x, y, c); } ++pixel_index; } } ++context.frames_decoded; } return true; } bool load_gif_frame_descriptors(GIFLoadingContext& context) { if (context.data_size < 32) return false; auto buffer = ByteBuffer::wrap(context.data, context.data_size); BufferStream stream(buffer); Optional format = decode_gif_header(stream); if (!format.has_value()) { return false; } printf("Format is %s\n", format.value() == GIFFormat::GIF89a ? "GIF89a" : "GIF87a"); stream >> context.logical_screen.width; stream >> context.logical_screen.height; if (stream.handle_read_failure()) return false; u8 gcm_info = 0; stream >> gcm_info; if (stream.handle_read_failure()) return false; bool global_color_map_follows_descriptor = gcm_info & 0x80; u8 bits_per_pixel = (gcm_info & 7) + 1; u8 bits_of_color_resolution = (gcm_info >> 4) & 7; printf("LogicalScreen: %dx%d\n", context.logical_screen.width, context.logical_screen.height); printf("global_color_map_follows_descriptor: %u\n", global_color_map_follows_descriptor); printf("bits_per_pixel: %u\n", bits_per_pixel); printf("bits_of_color_resolution: %u\n", bits_of_color_resolution); stream >> context.background_color_index; if (stream.handle_read_failure()) return false; printf("background_color: %u\n", context.background_color_index); u8 pixel_aspect_ratio = 0; stream >> pixel_aspect_ratio; if (stream.handle_read_failure()) return false; int color_map_entry_count = 1; for (int i = 0; i < bits_per_pixel; ++i) color_map_entry_count *= 2; printf("color_map_entry_count: %d\n", color_map_entry_count); for (int i = 0; i < color_map_entry_count; ++i) { stream >> context.logical_screen.color_map[i].r; stream >> context.logical_screen.color_map[i].g; stream >> context.logical_screen.color_map[i].b; } if (stream.handle_read_failure()) return false; for (int i = 0; i < color_map_entry_count; ++i) { auto& rgb = context.logical_screen.color_map[i]; printf("[%02x]: %s\n", i, Color(rgb.r, rgb.g, rgb.b).to_string().characters()); } NonnullOwnPtr current_image = make(); for (;;) { u8 sentinel = 0; stream >> sentinel; printf("Sentinel: %02x\n", sentinel); if (sentinel == 0x21) { u8 extension_type = 0; stream >> extension_type; if (stream.handle_read_failure()) return false; printf("Extension block of type %02x\n", extension_type); u8 sub_block_length = 0; Vector sub_block {}; for (;;) { stream >> sub_block_length; if (stream.handle_read_failure()) return false; if (sub_block_length == 0) break; u8 dummy; for (u16 i = 0; i < sub_block_length; ++i) { stream >> dummy; sub_block.append(dummy); } if (stream.handle_read_failure()) return false; } if (extension_type == 0xF9) { if (sub_block.size() != 4) { dbg() << "Unexpected graphic control size"; continue; } u8 disposal_method = (sub_block[0] & 0x1C) >> 2; current_image->disposal_method = (ImageDescriptor::DisposalMethod)disposal_method; u8 user_input = (sub_block[0] & 0x2) >> 1; current_image->user_input = user_input == 1; u8 transparent = sub_block[0] & 1; current_image->transparent = transparent == 1; u16 duration = sub_block[1] + ((u16)sub_block[2] >> 8); current_image->duration = duration; current_image->transparency_index = sub_block[3]; } if (extension_type == 0xFF) { if (sub_block.size() != 14) { dbg() << "Unexpected application extension size: " << sub_block.size(); continue; } if (sub_block[11] != 1) { dbg() << "Unexpected application extension format"; continue; } u16 loops = sub_block[12] + (sub_block[13] << 8); context.loops = loops; } continue; } if (sentinel == 0x2c) { context.images.append(move(current_image)); auto& image = context.images.last(); u8 packed_fields { 0 }; stream >> image.x; stream >> image.y; stream >> image.width; stream >> image.height; stream >> packed_fields; if (stream.handle_read_failure()) return false; printf("Image descriptor: %d,%d %dx%d, %02x\n", image.x, image.y, image.width, image.height, packed_fields); stream >> image.lzw_min_code_size; printf("min code size: %u\n", image.lzw_min_code_size); u8 lzw_encoded_bytes_expected = 0; for (;;) { stream >> lzw_encoded_bytes_expected; if (stream.handle_read_failure()) return false; if (lzw_encoded_bytes_expected == 0) break; u8 buffer[256]; for (int i = 0; i < lzw_encoded_bytes_expected; ++i) { stream >> buffer[i]; } if (stream.handle_read_failure()) return false; for (int i = 0; i < lzw_encoded_bytes_expected; ++i) { image.lzw_encoded_bytes.append(buffer[i]); } } current_image = make(); continue; } if (sentinel == 0x3b) { printf("Trailer! Awesome :)\n"); break; } return false; } context.state = GIFLoadingContext::State::FrameDescriptorsLoaded; return true; } GIFImageDecoderPlugin::GIFImageDecoderPlugin(const u8* data, size_t size) { m_context = make(); m_context->data = data; m_context->data_size = size; } GIFImageDecoderPlugin::~GIFImageDecoderPlugin() {} Size GIFImageDecoderPlugin::size() { if (m_context->state == GIFLoadingContext::State::Error) { return {}; } if (m_context->state < GIFLoadingContext::State::FrameDescriptorsLoaded) { if (!load_gif_frame_descriptors(*m_context)) { m_context->state = GIFLoadingContext::State::Error; return {}; } } return { m_context->logical_screen.width, m_context->logical_screen.height }; } RefPtr GIFImageDecoderPlugin::bitmap() { return frame(0).image; } void GIFImageDecoderPlugin::set_volatile() { for (size_t i = 0; i < m_context->frames_decoded; ++i) { m_context->images.at(i).bitmap->set_volatile(); } } bool GIFImageDecoderPlugin::set_nonvolatile() { if (m_context->images.is_empty()) { return false; } bool success = true; for (size_t i = 0; i < m_context->frames_decoded; ++i) { success &= m_context->images.at(i).bitmap->set_nonvolatile(); } return success; } bool GIFImageDecoderPlugin::sniff() { auto buffer = ByteBuffer::wrap(m_context->data, m_context->data_size); BufferStream stream(buffer); return decode_gif_header(stream).has_value(); } bool GIFImageDecoderPlugin::is_animated() { if (m_context->state < GIFLoadingContext::State::FrameDescriptorsLoaded) { if (!load_gif_frame_descriptors(*m_context)) { m_context->state = GIFLoadingContext::State::Error; return false; } } return m_context->images.size() > 1; } size_t GIFImageDecoderPlugin::loop_count() { if (m_context->state < GIFLoadingContext::State::FrameDescriptorsLoaded) { if (!load_gif_frame_descriptors(*m_context)) { m_context->state = GIFLoadingContext::State::Error; return 0; } } return m_context->loops; } size_t GIFImageDecoderPlugin::frame_count() { if (m_context->state < GIFLoadingContext::State::FrameDescriptorsLoaded) { if (!load_gif_frame_descriptors(*m_context)) { m_context->state = GIFLoadingContext::State::Error; return 1; } } return m_context->images.size(); } ImageFrameDescriptor GIFImageDecoderPlugin::frame(size_t i) { if (m_context->state == GIFLoadingContext::State::Error) { return {}; } if (m_context->state < GIFLoadingContext::State::FrameDescriptorsLoaded) { if (!load_gif_frame_descriptors(*m_context)) { m_context->state = GIFLoadingContext::State::Error; return {}; } } if (!decode_frames_up_to_index(*m_context, i)) { m_context->state = GIFLoadingContext::State::Error; return {}; } ImageFrameDescriptor frame {}; frame.image = m_context->images.at(i).bitmap; frame.duration = m_context->images.at(i).duration * 10; if (frame.duration <= 10) { frame.duration = 100; } return frame; } }