/* * Copyright (c) 2020, Itamar S. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "UnsignedBigInteger.h" #include namespace Crypto { UnsignedBigInteger UnsignedBigInteger::create_invalid() { UnsignedBigInteger invalid(0); invalid.invalidate(); return invalid; } // FIXME: in great need of optimisation UnsignedBigInteger UnsignedBigInteger::import_data(const u8* ptr, size_t length) { UnsignedBigInteger integer { 0 }; for (size_t i = 0; i < length; ++i) { auto part = UnsignedBigInteger { ptr[length - i - 1] }.shift_left(8 * i); integer = integer.plus(part); } return integer; } size_t UnsignedBigInteger::export_data(AK::ByteBuffer& data) const { UnsignedBigInteger copy { *this }; UnsignedBigInteger quotient; UnsignedBigInteger remainder; size_t size = trimmed_length() * sizeof(u32); size_t i = 0; for (; i < size; ++i) { if (copy.trimmed_length() == 0) break; data[size - i - 1] = copy.m_words[0] & 0xff; divide_u16_without_allocation(copy, 256, quotient, remainder); copy.set_to(quotient); } return i; } UnsignedBigInteger UnsignedBigInteger::from_base10(const String& str) { UnsignedBigInteger result; UnsignedBigInteger ten { 10 }; for (auto& c : str) { result = result.multiplied_by(ten).plus(c - '0'); } return result; } String UnsignedBigInteger::to_base10() const { StringBuilder builder; UnsignedBigInteger temp(*this); UnsignedBigInteger quotient; UnsignedBigInteger remainder; while (temp != UnsignedBigInteger { 0 }) { divide_u16_without_allocation(temp, 10, quotient, remainder); ASSERT(remainder.words()[0] < 10); builder.append(static_cast(remainder.words()[0] + '0')); temp.set_to(quotient); } auto reversed_string = builder.to_string(); builder.clear(); for (int i = reversed_string.length() - 1; i >= 0; --i) { builder.append(reversed_string[i]); } return builder.to_string(); } void UnsignedBigInteger::set_to_0() { m_words.clear_with_capacity(); m_is_invalid = false; m_cached_trimmed_length = {}; } void UnsignedBigInteger::set_to(u32 other) { m_is_invalid = false; m_words.resize_and_keep_capacity(1); m_words[0] = other; m_cached_trimmed_length = {}; } void UnsignedBigInteger::set_to(const UnsignedBigInteger& other) { m_is_invalid = other.m_is_invalid; m_words.resize_and_keep_capacity(other.m_words.size()); __builtin_memcpy(m_words.data(), other.m_words.data(), other.m_words.size() * sizeof(u32)); m_cached_trimmed_length = {}; } size_t UnsignedBigInteger::trimmed_length() const { if (!m_cached_trimmed_length.has_value()) { size_t num_leading_zeroes = 0; for (int i = length() - 1; i >= 0; --i, ++num_leading_zeroes) { if (m_words[i] != 0) break; } m_cached_trimmed_length = length() - num_leading_zeroes; } return m_cached_trimmed_length.value(); } FLATTEN UnsignedBigInteger UnsignedBigInteger::plus(const UnsignedBigInteger& other) const { UnsignedBigInteger result; add_without_allocation(*this, other, result); return result; } FLATTEN UnsignedBigInteger UnsignedBigInteger::minus(const UnsignedBigInteger& other) const { UnsignedBigInteger result; subtract_without_allocation(*this, other, result); return result; } FLATTEN UnsignedBigInteger UnsignedBigInteger::shift_left(size_t num_bits) const { UnsignedBigInteger output; UnsignedBigInteger temp_result; UnsignedBigInteger temp_plus; shift_left_without_allocation(*this, num_bits, temp_result, temp_plus, output); return output; } FLATTEN UnsignedBigInteger UnsignedBigInteger::multiplied_by(const UnsignedBigInteger& other) const { UnsignedBigInteger result; UnsignedBigInteger temp_shift_result; UnsignedBigInteger temp_shift_plus; UnsignedBigInteger temp_shift; UnsignedBigInteger temp_plus; multiply_without_allocation(*this, other, temp_shift_result, temp_shift_plus, temp_shift, temp_plus, result); return result; } FLATTEN UnsignedDivisionResult UnsignedBigInteger::divided_by(const UnsignedBigInteger& divisor) const { UnsignedBigInteger quotient; UnsignedBigInteger remainder; // If we actually have a u16-compatible divisor, short-circuit to the // less computationally-intensive "divide_u16_without_allocation" method. if (divisor.trimmed_length() == 1 && divisor.m_words[0] < (1 << 16)) { divide_u16_without_allocation(*this, divisor.m_words[0], quotient, remainder); return UnsignedDivisionResult { quotient, remainder }; } UnsignedBigInteger temp_shift_result; UnsignedBigInteger temp_shift_plus; UnsignedBigInteger temp_shift; UnsignedBigInteger temp_minus; divide_without_allocation(*this, divisor, temp_shift_result, temp_shift_plus, temp_shift, temp_minus, quotient, remainder); return UnsignedDivisionResult { quotient, remainder }; } void UnsignedBigInteger::set_bit_inplace(size_t bit_index) { const size_t word_index = bit_index / UnsignedBigInteger::BITS_IN_WORD; const size_t inner_word_index = bit_index % UnsignedBigInteger::BITS_IN_WORD; m_words.ensure_capacity(word_index); for (size_t i = length(); i <= word_index; ++i) { m_words.unchecked_append(0); } m_words[word_index] |= (1 << inner_word_index); m_cached_trimmed_length = {}; } bool UnsignedBigInteger::operator==(const UnsignedBigInteger& other) const { if (is_invalid() != other.is_invalid()) return false; auto length = trimmed_length(); if (length != other.trimmed_length()) return false; return !__builtin_memcmp(m_words.data(), other.words().data(), length); } bool UnsignedBigInteger::operator!=(const UnsignedBigInteger& other) const { return !(*this == other); } bool UnsignedBigInteger::operator<(const UnsignedBigInteger& other) const { auto length = trimmed_length(); auto other_length = other.trimmed_length(); if (length < other_length) { return true; } if (length > other_length) { return false; } if (length == 0) { return false; } for (int i = length - 1; i >= 0; --i) { if (m_words[i] == other.m_words[i]) continue; return m_words[i] < other.m_words[i]; } return false; } /** * Complexity: O(N) where N is the number of words in the larger number */ void UnsignedBigInteger::add_without_allocation( const UnsignedBigInteger& left, const UnsignedBigInteger& right, UnsignedBigInteger& output) { const UnsignedBigInteger* const longer = (left.length() > right.length()) ? &left : &right; const UnsignedBigInteger* const shorter = (longer == &right) ? &left : &right; u8 carry = 0; output.set_to_0(); output.m_words.resize_and_keep_capacity(longer->length()); for (size_t i = 0; i < shorter->length(); ++i) { u32 word_addition_result = shorter->m_words[i] + longer->m_words[i]; u8 carry_out = 0; // if there was a carry, the result will be smaller than any of the operands if (word_addition_result + carry < shorter->m_words[i]) { carry_out = 1; } if (carry) { word_addition_result++; } carry = carry_out; output.m_words[i] = word_addition_result; } for (size_t i = shorter->length(); i < longer->length(); ++i) { u32 word_addition_result = longer->m_words[i] + carry; carry = 0; if (word_addition_result < longer->m_words[i]) { carry = 1; } output.m_words[i] = word_addition_result; } if (carry) { output.m_words.append(carry); } } /** * Complexity: O(N) where N is the number of words in the larger number */ void UnsignedBigInteger::subtract_without_allocation( const UnsignedBigInteger& left, const UnsignedBigInteger& right, UnsignedBigInteger& output) { if (left < right) { output.invalidate(); return; } u8 borrow = 0; auto own_length = left.length(); auto other_length = right.length(); output.set_to_0(); output.m_words.resize_and_keep_capacity(own_length); for (size_t i = 0; i < own_length; ++i) { u32 other_word = (i < other_length) ? right.m_words[i] : 0; i64 temp = static_cast(left.m_words[i]) - static_cast(other_word) - static_cast(borrow); // If temp < 0, we had an underflow borrow = (temp >= 0) ? 0 : 1; if (temp < 0) { temp += (UINT32_MAX + 1); } output.m_words[i] = temp; } // This assertion should not fail, because we verified that *this>=other at the beginning of the function ASSERT(borrow == 0); } /** * Complexity : O(N + num_bits % 8) where N is the number of words in the number * Shift method : * Start by shifting by whole words in num_bits (by putting missing words at the start), * then shift the number's words two by two by the remaining amount of bits. */ FLATTEN void UnsignedBigInteger::shift_left_without_allocation( const UnsignedBigInteger& number, size_t num_bits, UnsignedBigInteger& temp_result, UnsignedBigInteger& temp_plus, UnsignedBigInteger& output) { // We can only do shift operations on individual words // where the shift amount is <= size of word (32). // But we do know how to shift by a multiple of word size (e.g 64=32*2) // So we first shift the result by how many whole words fit in 'num_bits' shift_left_by_n_words(number, num_bits / UnsignedBigInteger::BITS_IN_WORD, temp_result); output.set_to(temp_result); // And now we shift by the leftover amount of bits num_bits %= UnsignedBigInteger::BITS_IN_WORD; if (num_bits == 0) { return; } for (size_t i = 0; i < temp_result.length(); ++i) { u32 current_word_of_temp_result = shift_left_get_one_word(temp_result, num_bits, i); output.m_words[i] = current_word_of_temp_result; } // Shifting the last word can produce a carry u32 carry_word = shift_left_get_one_word(temp_result, num_bits, temp_result.length()); if (carry_word != 0) { // output += (carry_word << temp_result.length()) // FIXME : Using temp_plus this way to transform carry_word into a bigint is not // efficient nor pretty. Maybe we should have an "add_with_shift" method ? temp_plus.set_to_0(); temp_plus.m_words.append(carry_word); shift_left_by_n_words(temp_plus, temp_result.length(), temp_result); add_without_allocation(output, temp_result, temp_plus); output.set_to(temp_plus); } } /** * Complexity: O(N^2) where N is the number of words in the larger number * Multiplication method: * An integer is equal to the sum of the powers of two * according to the indexes of its 'on' bits. * So to multiple x*y, we go over each '1' bit in x (say the i'th bit), * and add y<= 0; --word_index) { for (int bit_index = UnsignedBigInteger::BITS_IN_WORD - 1; bit_index >= 0; --bit_index) { const size_t shift_amount = word_index * UnsignedBigInteger::BITS_IN_WORD + bit_index; shift_left_without_allocation(denominator, shift_amount, temp_shift_result, temp_shift_plus, temp_shift); subtract_without_allocation(remainder, temp_shift, temp_minus); if (!temp_minus.is_invalid()) { remainder.set_to(temp_minus); quotient.set_bit_inplace(shift_amount); } } } } /** * Complexity : O(N) where N is the number of digits in the numerator * Division method : * Starting from the most significant one, for each half-word of the numerator, combine it * with the existing remainder if any, divide the combined number as a u32 operation and * update the quotient / remainder as needed. */ FLATTEN void UnsignedBigInteger::divide_u16_without_allocation( const UnsignedBigInteger& numerator, u32 denominator, UnsignedBigInteger& quotient, UnsignedBigInteger& remainder) { ASSERT(denominator < (1 << 16)); u32 remainder_word = 0; auto numerator_length = numerator.trimmed_length(); quotient.set_to_0(); quotient.m_words.resize(numerator_length); for (int word_index = numerator_length - 1; word_index >= 0; --word_index) { auto word_high = numerator.m_words[word_index] >> 16; auto word_low = numerator.m_words[word_index] & ((1 << 16) - 1); auto number_to_divide_high = (remainder_word << 16) | word_high; auto quotient_high = number_to_divide_high / denominator; remainder_word = number_to_divide_high % denominator; auto number_to_divide_low = remainder_word << 16 | word_low; auto quotient_low = number_to_divide_low / denominator; remainder_word = number_to_divide_low % denominator; quotient.m_words[word_index] = (quotient_high << 16) | quotient_low; } remainder.set_to(remainder_word); } ALWAYS_INLINE void UnsignedBigInteger::shift_left_by_n_words( const UnsignedBigInteger& number, const size_t number_of_words, UnsignedBigInteger& output) { // shifting left by N words means just inserting N zeroes to the beginning of the words vector output.set_to_0(); output.m_words.resize_and_keep_capacity(number_of_words + number.length()); __builtin_memset(output.m_words.data(), 0, number_of_words * sizeof(unsigned)); __builtin_memcpy(&output.m_words.data()[number_of_words], number.m_words.data(), number.m_words.size() * sizeof(unsigned)); } /** * Returns the word at a requested index in the result of a shift operation */ ALWAYS_INLINE u32 UnsignedBigInteger::shift_left_get_one_word( const UnsignedBigInteger& number, const size_t num_bits, const size_t result_word_index) { // "<= length()" (rather than length() - 1) is intentional, // The result inedx of length() is used when calculating the carry word ASSERT(result_word_index <= number.length()); ASSERT(num_bits <= UnsignedBigInteger::BITS_IN_WORD); u32 result = 0; // we need to check for "num_bits != 0" since shifting right by 32 is apparently undefined behaviour! if (result_word_index > 0 && num_bits != 0) { result += number.m_words[result_word_index - 1] >> (UnsignedBigInteger::BITS_IN_WORD - num_bits); } if (result_word_index < number.length() && num_bits < 32) { result += number.m_words[result_word_index] << num_bits; } return result; } }