/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include extern "C" { time_t time(time_t* tloc) { struct timeval tv; struct timezone tz; if (gettimeofday(&tv, &tz) < 0) return (time_t)-1; if (tloc) *tloc = tv.tv_sec; return tv.tv_sec; } int gettimeofday(struct timeval* __restrict__ tv, void* __restrict__) { int rc = syscall(SC_gettimeofday, tv); __RETURN_WITH_ERRNO(rc, rc, -1); } char* ctime(const time_t* t) { return asctime(localtime(t)); } static inline bool __is_leap_year(int year) { return ((year % 4 == 0) && ((year % 100 != 0) || (year % 400) == 0)); } static const int __days_per_month[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; static const int __seconds_per_day = 60 * 60 * 24; static void time_to_tm(struct tm* tm, time_t t) { int days = t / __seconds_per_day; int remaining = t % __seconds_per_day; tm->tm_sec = remaining % 60; remaining /= 60; tm->tm_min = remaining % 60; tm->tm_hour = remaining / 60; tm->tm_wday = (4 + days) % 7; int year; for (year = 1970; days >= 365 + __is_leap_year(year); ++year) days -= 365 + __is_leap_year(year); tm->tm_year = year - 1900; tm->tm_yday = days; tm->tm_mday = 1; if (__is_leap_year(year) && days == 59) ++tm->tm_mday; if (__is_leap_year(year) && days >= 59) --days; int month; for (month = 0; month < 11 && days >= __days_per_month[month]; ++month) days -= __days_per_month[month]; tm->tm_mon = month; tm->tm_mday += days; } time_t mktime(struct tm* tm) { int days = 0; int seconds = tm->tm_hour * 3600 + tm->tm_min * 60 + tm->tm_sec; for (int year = 70; year < tm->tm_year; ++year) days += 365 + __is_leap_year(1900 + year); tm->tm_yday = tm->tm_mday - 1; for (int month = 0; month < tm->tm_mon; ++month) tm->tm_yday += __days_per_month[month]; if (tm->tm_mon > 1 && __is_leap_year(1900 + tm->tm_year)) ++tm->tm_yday; days += tm->tm_yday; return days * __seconds_per_day + seconds + timezone; } struct tm* localtime(const time_t* t) { static struct tm tm_buf; return localtime_r(t, &tm_buf); } struct tm* localtime_r(const time_t* t, struct tm* tm) { if (!t) return nullptr; time_to_tm(tm, (*t) - timezone); return tm; } struct tm* gmtime(const time_t* t) { static struct tm tm_buf; return gmtime_r(t, &tm_buf); } struct tm* gmtime_r(const time_t* t, struct tm* tm) { if (!t) return nullptr; time_to_tm(tm, *t); return tm; } char* asctime(const struct tm* tm) { static char buffer[69]; strftime(buffer, sizeof buffer, "%a %b %e %T %Y", tm); return buffer; } //FIXME: Some formats are not supported. size_t strftime(char* destination, size_t max_size, const char* format, const struct tm* tm) { const char wday_short_names[7][4] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" }; const char wday_long_names[7][10] = { "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday" }; const char mon_short_names[12][4] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; const char mon_long_names[12][10] = { "January", "February", "March", "April", "May", "June", "July", "Auguest", "September", "October", "November", "December" }; StringBuilder builder { max_size - 1 }; const int format_len = strlen(format); for (int i = 0; i < format_len; ++i) { if (format[i] != '%') { builder.append(format[i]); } else { if (++i >= format_len) return 0; switch (format[i]) { case 'a': builder.append(wday_short_names[tm->tm_wday]); break; case 'A': builder.append(wday_long_names[tm->tm_wday]); break; case 'b': builder.append(mon_short_names[tm->tm_mon]); break; case 'B': builder.append(mon_long_names[tm->tm_mon]); break; case 'C': builder.appendf("%02d", (tm->tm_year + 1900) / 100); break; case 'd': builder.appendf("%02d", tm->tm_mday); break; case 'D': builder.appendf("%02d/%02d/%02d", tm->tm_mon + 1, tm->tm_mday, (tm->tm_year + 1900) % 100); break; case 'e': builder.appendf("%2d", tm->tm_mday); break; case 'h': builder.append(mon_short_names[tm->tm_mon]); break; case 'H': builder.appendf("%02d", tm->tm_hour); break; case 'I': builder.appendf("%02d", tm->tm_hour % 12); break; case 'j': builder.appendf("%03d", tm->tm_yday + 1); break; case 'm': builder.appendf("%02d", tm->tm_mon + 1); break; case 'M': builder.appendf("%02d", tm->tm_min); break; case 'n': builder.append('\n'); break; case 'p': builder.append(tm->tm_hour < 12 ? "a.m." : "p.m."); break; case 'r': builder.appendf("%02d:%02d:%02d %s", tm->tm_hour % 12, tm->tm_min, tm->tm_sec, tm->tm_hour < 12 ? "a.m." : "p.m."); break; case 'R': builder.appendf("%02d:%02d", tm->tm_hour, tm->tm_min); break; case 'S': builder.appendf("%02d", tm->tm_sec); break; case 't': builder.append('\t'); break; case 'T': builder.appendf("%02d:%02d:%02d", tm->tm_hour, tm->tm_min, tm->tm_sec); break; case 'u': builder.appendf("%d", tm->tm_wday ? tm->tm_wday : 7); break; case 'U': { const int wday_of_year_beginning = (tm->tm_wday + 6 * tm->tm_yday) % 7; const int week_number = (tm->tm_yday + wday_of_year_beginning) / 7; builder.appendf("%02d", week_number); break; } case 'V': { const int wday_of_year_beginning = (tm->tm_wday + 6 + 6 * tm->tm_yday) % 7; int week_number = (tm->tm_yday + wday_of_year_beginning) / 7 + 1; if (wday_of_year_beginning > 3) { if (tm->tm_yday >= 7 - wday_of_year_beginning) --week_number; else { const int days_of_last_year = 365 + __is_leap_year(tm->tm_year + 1900 - 1); const int wday_of_last_year_beginning = (wday_of_year_beginning + 6 * days_of_last_year) % 7; week_number = (days_of_last_year + wday_of_last_year_beginning) / 7 + 1; if (wday_of_last_year_beginning > 3) --week_number; } } builder.appendf("%02d", week_number); break; } case 'w': builder.appendf("%d", tm->tm_wday); break; case 'W': { const int wday_of_year_beginning = (tm->tm_wday + 6 + 6 * tm->tm_yday) % 7; const int week_number = (tm->tm_yday + wday_of_year_beginning) / 7; builder.appendf("%02d", week_number); break; } case 'y': builder.appendf("%02d", (tm->tm_year + 1900) % 100); break; case 'Y': builder.appendf("%d", tm->tm_year + 1900); break; case '%': builder.append('%'); break; default: return 0; } } if (builder.length() > max_size - 1) return 0; } strcpy(destination, builder.build().characters()); return builder.length(); } long timezone = 0; long altzone; char* tzname[2]; int daylight; void tzset() { //FIXME: Here we prepend we are in UTC+0. timezone = 0; } clock_t clock() { struct tms tms; times(&tms); return tms.tms_utime + tms.tms_stime; } int clock_gettime(clockid_t clock_id, struct timespec* ts) { int rc = syscall(SC_clock_gettime, clock_id, ts); __RETURN_WITH_ERRNO(rc, rc, -1); } int clock_settime(clockid_t clock_id, struct timespec* ts) { int rc = syscall(SC_clock_settime, clock_id, ts); __RETURN_WITH_ERRNO(rc, rc, -1); } int clock_nanosleep(clockid_t clock_id, int flags, const struct timespec* requested_sleep, struct timespec* remaining_sleep) { Syscall::SC_clock_nanosleep_params params { clock_id, flags, requested_sleep, remaining_sleep }; int rc = syscall(SC_clock_nanosleep, ¶ms); __RETURN_WITH_ERRNO(rc, rc, -1); } int nanosleep(const struct timespec* requested_sleep, struct timespec* remaining_sleep) { return clock_nanosleep(CLOCK_REALTIME, 0, requested_sleep, remaining_sleep); } int clock_getres(clockid_t, struct timespec*) { ASSERT_NOT_REACHED(); } }