/* * Copyright (c) 2018-2020, Andreas Kling * Copyright (c) 2020, Sergey Bugaev * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct FILE { public: FILE(int fd, int mode) : m_fd(fd) , m_mode(mode) { } ~FILE(); static FILE* create(int fd, int mode); void setbuf(u8* data, int mode, size_t size) { m_buffer.setbuf(data, mode, size); } bool flush(); bool close(); int fileno() const { return m_fd; } bool eof() const { return m_eof; } int error() const { return m_error; } void clear_err() { m_error = 0; } size_t read(u8*, size_t); size_t write(const u8*, size_t); bool gets(u8*, size_t); bool ungetc(u8 byte) { return m_buffer.enqueue_front(byte); } int seek(long offset, int whence); long tell(); pid_t popen_child() { return m_popen_child; } void set_popen_child(pid_t child_pid) { m_popen_child = child_pid; } private: struct Buffer { // A ringbuffer that also transparently implements ungetc(). public: ~Buffer(); int mode() const { return m_mode; } void setbuf(u8* data, int mode, size_t size); // Make sure to call realize() before enqueuing any data. // Dequeuing can be attempted without it. void realize(int fd); void drop(); bool may_use() const { return m_ungotten || m_mode != _IONBF; } bool is_not_empty() const { return m_ungotten || !m_empty; } size_t buffered_size() const; const u8* begin_dequeue(size_t& available_size) const; void did_dequeue(size_t actual_size); u8* begin_enqueue(size_t& available_size) const; void did_enqueue(size_t actual_size); bool enqueue_front(u8 byte); private: // Note: the fields here are arranged this way // to make sizeof(Buffer) smaller. u8* m_data { nullptr }; size_t m_capacity { BUFSIZ }; size_t m_begin { 0 }; size_t m_end { 0 }; int m_mode { -1 }; u8 m_unget_buffer { 0 }; bool m_ungotten : 1 { false }; bool m_data_is_malloced : 1 { false }; // When m_begin == m_end, we want to distinguish whether // the buffer is full or empty. bool m_empty : 1 { true }; }; // Read or write using the underlying fd, bypassing the buffer. ssize_t do_read(u8*, size_t); ssize_t do_write(const u8*, size_t); // Read some data into the buffer. bool read_into_buffer(); // Flush *some* data from the buffer. bool write_from_buffer(); int m_fd { -1 }; int m_mode { 0 }; int m_error { 0 }; bool m_eof { false }; pid_t m_popen_child { -1 }; Buffer m_buffer; }; FILE::~FILE() { bool already_closed = m_fd == -1; ASSERT(already_closed); } FILE* FILE::create(int fd, int mode) { void* file = calloc(1, sizeof(FILE)); new (file) FILE(fd, mode); return (FILE*)file; } bool FILE::close() { bool flush_ok = flush(); int rc = ::close(m_fd); m_fd = -1; if (!flush_ok) { // Restore the original error from flush(). errno = m_error; } return flush_ok && rc == 0; } bool FILE::flush() { if (m_mode & O_WRONLY && m_buffer.may_use()) { // When open for writing, write out all the buffered data. while (m_buffer.is_not_empty()) { bool ok = write_from_buffer(); if (!ok) return false; } } if (m_mode & O_RDONLY) { // When open for reading, just drop the buffered data. size_t had_buffered = m_buffer.buffered_size(); m_buffer.drop(); // Attempt to reset the underlying file position to what the user // expects. int rc = lseek(m_fd, -had_buffered, SEEK_CUR); if (rc < 0) { if (errno == ESPIPE) { // We can't set offset on this file; oh well, the user will just // have to cope. errno = 0; } else { return false; } } } return true; } ssize_t FILE::do_read(u8* data, size_t size) { int nread = ::read(m_fd, data, size); if (nread < 0) { m_error = errno; } else if (nread == 0) { m_eof = true; } return nread; } ssize_t FILE::do_write(const u8* data, size_t size) { int nwritten = ::write(m_fd, data, size); if (nwritten < 0) m_error = errno; return nwritten; } bool FILE::read_into_buffer() { m_buffer.realize(m_fd); size_t available_size; u8* data = m_buffer.begin_enqueue(available_size); // If we want to read, the buffer must have some space! ASSERT(available_size); ssize_t nread = do_read(data, available_size); if (nread <= 0) return false; m_buffer.did_enqueue(nread); return true; } bool FILE::write_from_buffer() { size_t size; const u8* data = m_buffer.begin_dequeue(size); // If we want to write, the buffer must have something in it! ASSERT(size); ssize_t nwritten = do_write(data, size); if (nwritten < 0) return false; m_buffer.did_dequeue(nwritten); return true; } size_t FILE::read(u8* data, size_t size) { size_t total_read = 0; while (size > 0) { size_t actual_size; if (m_buffer.may_use()) { // Let's see if the buffer has something queued for us. size_t queued_size; const u8* queued_data = m_buffer.begin_dequeue(queued_size); if (queued_size == 0) { // Nothing buffered; we're going to have to read some. bool read_some_more = read_into_buffer(); if (read_some_more) { // Great, now try this again. continue; } return total_read; } actual_size = min(size, queued_size); memcpy(data, queued_data, actual_size); m_buffer.did_dequeue(actual_size); } else { // Read directly into the user buffer. ssize_t nread = do_read(data, size); if (nread <= 0) return total_read; actual_size = nread; } total_read += actual_size; data += actual_size; size -= actual_size; } return total_read; } size_t FILE::write(const u8* data, size_t size) { size_t total_written = 0; while (size > 0) { size_t actual_size; if (m_buffer.may_use()) { m_buffer.realize(m_fd); // Try writing into the buffer. size_t available_size; u8* buffer_data = m_buffer.begin_enqueue(available_size); if (available_size == 0) { // There's no space in the buffer; we're going to free some. bool freed_some_space = write_from_buffer(); if (freed_some_space) { // Great, now try this again. continue; } return total_written; } actual_size = min(size, available_size); memcpy(buffer_data, data, actual_size); m_buffer.did_enqueue(actual_size); // See if we have to flush it. if (m_buffer.mode() == _IOLBF) { bool includes_newline = memchr(data, '\n', actual_size); if (includes_newline) flush(); } } else { // Write directly from the user buffer. ssize_t nwritten = do_write(data, size); if (nwritten < 0) return total_written; actual_size = nwritten; } total_written += actual_size; data += actual_size; size -= actual_size; } return total_written; } bool FILE::gets(u8* data, size_t size) { // gets() is a lot like read(), but it is different enough in how it // processes newlines and null-terminates the buffer that it deserves a // separate implementation. size_t total_read = 0; if (size == 0) return false; while (size > 1) { if (m_buffer.may_use()) { // Let's see if the buffer has something queued for us. size_t queued_size; const u8* queued_data = m_buffer.begin_dequeue(queued_size); if (queued_size == 0) { // Nothing buffered; we're going to have to read some. bool read_some_more = read_into_buffer(); if (read_some_more) { // Great, now try this again. continue; } *data = 0; return total_read > 0; } size_t actual_size = min(size - 1, queued_size); u8* newline = reinterpret_cast(memchr(queued_data, '\n', actual_size)); if (newline) actual_size = newline - queued_data + 1; memcpy(data, queued_data, actual_size); m_buffer.did_dequeue(actual_size); total_read += actual_size; data += actual_size; size -= actual_size; if (newline) break; } else { // Sadly, we have to actually read these characters one by one. u8 byte; ssize_t nread = do_read(&byte, 1); if (nread <= 0) { *data = 0; return total_read > 0; } ASSERT(nread == 1); *data = byte; total_read++; data++; size--; if (byte == '\n') break; } } *data = 0; return total_read > 0; } int FILE::seek(long offset, int whence) { bool ok = flush(); if (!ok) return -1; off_t off = lseek(m_fd, offset, whence); if (off < 0) { // Note: do not set m_error. return off; } m_eof = false; return 0; } long FILE::tell() { bool ok = flush(); if (!ok) return -1; return lseek(m_fd, 0, SEEK_CUR); } FILE::Buffer::~Buffer() { if (m_data_is_malloced) free(m_data); } void FILE::Buffer::realize(int fd) { if (m_mode == -1) m_mode = isatty(fd) ? _IOLBF : _IOFBF; if (m_mode != _IONBF && m_data == nullptr) { m_data = reinterpret_cast(malloc(m_capacity)); m_data_is_malloced = true; } } void FILE::Buffer::setbuf(u8* data, int mode, size_t size) { drop(); m_mode = mode; if (data != nullptr) { m_data = data; m_capacity = size; } } void FILE::Buffer::drop() { if (m_data_is_malloced) { free(m_data); m_data = nullptr; m_data_is_malloced = false; } m_begin = m_end = 0; m_empty = true; m_ungotten = false; } size_t FILE::Buffer::buffered_size() const { // Note: does not include the ungetc() buffer. if (m_empty) return 0; if (m_begin < m_end) return m_end - m_begin; else return m_capacity - (m_begin - m_end); } const u8* FILE::Buffer::begin_dequeue(size_t& available_size) const { if (m_ungotten) { available_size = 1; return &m_unget_buffer; } if (m_empty) { available_size = 0; return nullptr; } if (m_begin < m_end) available_size = m_end - m_begin; else available_size = m_capacity - m_begin; return &m_data[m_begin]; } void FILE::Buffer::did_dequeue(size_t actual_size) { ASSERT(actual_size > 0); if (m_ungotten) { ASSERT(actual_size == 1); m_ungotten = false; return; } m_begin += actual_size; ASSERT(m_begin <= m_capacity); if (m_begin == m_capacity) { // Wrap around. m_begin = 0; } if (m_begin == m_end) { m_empty = true; // As an optimization, move both pointers to the beginning of the // buffer, so that more consecutive space is available next time. m_begin = m_end = 0; } } u8* FILE::Buffer::begin_enqueue(size_t& available_size) const { ASSERT(m_data != nullptr); if (m_begin < m_end || m_empty) available_size = m_capacity - m_end; else available_size = m_begin - m_end; return const_cast(&m_data[m_end]); } void FILE::Buffer::did_enqueue(size_t actual_size) { ASSERT(m_data != nullptr); ASSERT(actual_size > 0); m_end += actual_size; ASSERT(m_end <= m_capacity); if (m_end == m_capacity) { // Wrap around. m_end = 0; } m_empty = false; } bool FILE::Buffer::enqueue_front(u8 byte) { if (m_ungotten) { // Sorry, the place is already taken! return false; } m_ungotten = true; m_unget_buffer = byte; return true; } extern "C" { static u8 default_streams[3][sizeof(FILE)]; FILE* stdin = reinterpret_cast(&default_streams[0]); FILE* stdout = reinterpret_cast(&default_streams[1]); FILE* stderr = reinterpret_cast(&default_streams[2]); void __stdio_init() { new (stdin) FILE(0, O_RDONLY); new (stdout) FILE(1, O_WRONLY); new (stderr) FILE(2, O_WRONLY); stderr->setbuf(nullptr, _IONBF, 0); } int setvbuf(FILE* stream, char* buf, int mode, size_t size) { ASSERT(stream); if (mode != _IONBF && mode != _IOLBF && mode != _IOFBF) { errno = EINVAL; return -1; } stream->setbuf(reinterpret_cast(buf), mode, size); return 0; } void setbuf(FILE* stream, char* buf) { setvbuf(stream, buf, buf ? _IOFBF : _IONBF, BUFSIZ); } void setlinebuf(FILE* stream) { setvbuf(stream, nullptr, _IOLBF, 0); } int fileno(FILE* stream) { ASSERT(stream); return stream->fileno(); } int feof(FILE* stream) { ASSERT(stream); return stream->eof(); } int fflush(FILE* stream) { if (!stream) { dbg() << "FIXME: fflush(nullptr) should flush all open streams"; return 0; } return stream->flush() ? 0 : EOF; } char* fgets(char* buffer, int size, FILE* stream) { ASSERT(stream); bool ok = stream->gets(reinterpret_cast(buffer), size); return ok ? buffer : nullptr; } int fgetc(FILE* stream) { ASSERT(stream); char ch; size_t nread = fread(&ch, sizeof(char), 1, stream); if (nread == 1) return ch; return EOF; } int getc(FILE* stream) { return fgetc(stream); } int getc_unlocked(FILE* stream) { return fgetc(stream); } int getchar() { return getc(stdin); } ssize_t getdelim(char** lineptr, size_t* n, int delim, FILE* stream) { char *ptr, *eptr; if (*lineptr == nullptr || *n == 0) { *n = BUFSIZ; if ((*lineptr = static_cast(malloc(*n))) == nullptr) { return -1; } } for (ptr = *lineptr, eptr = *lineptr + *n;;) { int c = fgetc(stream); if (c == -1) { if (feof(stream)) { *ptr = '\0'; return ptr == *lineptr ? -1 : ptr - *lineptr; } else { return -1; } } *ptr++ = c; if (c == delim) { *ptr = '\0'; return ptr - *lineptr; } if (ptr + 2 >= eptr) { char* nbuf; size_t nbuf_sz = *n * 2; ssize_t d = ptr - *lineptr; if ((nbuf = static_cast(realloc(*lineptr, nbuf_sz))) == nullptr) { return -1; } *lineptr = nbuf; *n = nbuf_sz; eptr = nbuf + nbuf_sz; ptr = nbuf + d; } } } ssize_t getline(char** lineptr, size_t* n, FILE* stream) { return getdelim(lineptr, n, '\n', stream); } int ungetc(int c, FILE* stream) { ASSERT(stream); bool ok = stream->ungetc(c); return ok ? c : EOF; } int fputc(int ch, FILE* stream) { ASSERT(stream); u8 byte = ch; size_t nwritten = stream->write(&byte, 1); if (nwritten == 0) return EOF; ASSERT(nwritten == 1); return byte; } int putc(int ch, FILE* stream) { return fputc(ch, stream); } int putchar(int ch) { return putc(ch, stdout); } int fputs(const char* s, FILE* stream) { ASSERT(stream); size_t len = strlen(s); size_t nwritten = stream->write(reinterpret_cast(s), len); if (nwritten < len) return EOF; return 1; } int puts(const char* s) { int rc = fputs(s, stdout); if (rc == EOF) return EOF; return fputc('\n', stdout); } void clearerr(FILE* stream) { ASSERT(stream); stream->clear_err(); } int ferror(FILE* stream) { ASSERT(stream); return stream->error(); } size_t fread(void* ptr, size_t size, size_t nmemb, FILE* stream) { ASSERT(stream); ASSERT(!Checked::multiplication_would_overflow(size, nmemb)); size_t nread = stream->read(reinterpret_cast(ptr), size * nmemb); return nread / size; } size_t fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream) { ASSERT(stream); ASSERT(!Checked::multiplication_would_overflow(size, nmemb)); size_t nwritten = stream->write(reinterpret_cast(ptr), size * nmemb); return nwritten / size; } int fseek(FILE* stream, long offset, int whence) { ASSERT(stream); return stream->seek(offset, whence); } long ftell(FILE* stream) { ASSERT(stream); return stream->tell(); } int fgetpos(FILE* stream, fpos_t* pos) { ASSERT(stream); ASSERT(pos); long val = stream->tell(); if (val == -1L) return 1; *pos = val; return 0; } int fsetpos(FILE* stream, const fpos_t* pos) { ASSERT(stream); ASSERT(pos); return stream->seek((long)*pos, SEEK_SET); } void rewind(FILE* stream) { ASSERT(stream); int rc = stream->seek(0, SEEK_SET); ASSERT(rc == 0); } int vdbgprintf(const char* fmt, va_list ap) { return printf_internal([](char*&, char ch) { dbgputch(ch); }, nullptr, fmt, ap); } int dbgprintf(const char* fmt, ...) { va_list ap; va_start(ap, fmt); int ret = printf_internal([](char*&, char ch) { dbgputch(ch); }, nullptr, fmt, ap); va_end(ap); return ret; } ALWAYS_INLINE void stdout_putch(char*&, char ch) { putchar(ch); } static FILE* __current_stream = nullptr; ALWAYS_INLINE static void stream_putch(char*&, char ch) { fputc(ch, __current_stream); } int vfprintf(FILE* stream, const char* fmt, va_list ap) { __current_stream = stream; return printf_internal(stream_putch, nullptr, fmt, ap); } int fprintf(FILE* stream, const char* fmt, ...) { va_list ap; va_start(ap, fmt); int ret = vfprintf(stream, fmt, ap); va_end(ap); return ret; } int vprintf(const char* fmt, va_list ap) { return printf_internal(stdout_putch, nullptr, fmt, ap); } int printf(const char* fmt, ...) { va_list ap; va_start(ap, fmt); int ret = vprintf(fmt, ap); va_end(ap); return ret; } static void buffer_putch(char*& bufptr, char ch) { *bufptr++ = ch; } int vsprintf(char* buffer, const char* fmt, va_list ap) { int ret = printf_internal(buffer_putch, buffer, fmt, ap); buffer[ret] = '\0'; return ret; } int sprintf(char* buffer, const char* fmt, ...) { va_list ap; va_start(ap, fmt); int ret = vsprintf(buffer, fmt, ap); va_end(ap); return ret; } static size_t __vsnprintf_space_remaining; ALWAYS_INLINE void sized_buffer_putch(char*& bufptr, char ch) { if (__vsnprintf_space_remaining) { *bufptr++ = ch; --__vsnprintf_space_remaining; } } int vsnprintf(char* buffer, size_t size, const char* fmt, va_list ap) { __vsnprintf_space_remaining = size; int ret = printf_internal(sized_buffer_putch, buffer, fmt, ap); if (__vsnprintf_space_remaining) { buffer[ret] = '\0'; } return ret; } int snprintf(char* buffer, size_t size, const char* fmt, ...) { va_list ap; va_start(ap, fmt); int ret = vsnprintf(buffer, size, fmt, ap); va_end(ap); return ret; } void perror(const char* s) { int saved_errno = errno; dbg() << "perror(): " << s << ": " << strerror(saved_errno); fprintf(stderr, "%s: %s\n", s, strerror(saved_errno)); } static int parse_mode(const char* mode) { int flags = 0; // NOTE: rt is a non-standard mode which opens a file for read, explicitly // specifying that it's a text file for (auto* ptr = mode; *ptr; ++ptr) { switch (*ptr) { case 'r': flags |= O_RDONLY; break; case 'w': flags |= O_WRONLY | O_CREAT | O_TRUNC; break; case 'a': flags |= O_WRONLY | O_APPEND | O_CREAT; break; case '+': flags |= O_RDWR; break; case 'e': flags |= O_CLOEXEC; break; case 'b': // Ok... break; case 't': // Ok... break; default: dbg() << "Potentially unsupported fopen mode _" << mode << "_ (because of '" << *ptr << "')"; } } return flags; } FILE* fopen(const char* pathname, const char* mode) { int flags = parse_mode(mode); int fd = open(pathname, flags, 0666); if (fd < 0) return nullptr; return FILE::create(fd, flags); } FILE* freopen(const char* pathname, const char* mode, FILE* stream) { (void)pathname; (void)mode; (void)stream; ASSERT_NOT_REACHED(); } FILE* fdopen(int fd, const char* mode) { int flags = parse_mode(mode); // FIXME: Verify that the mode matches how fd is already open. if (fd < 0) return nullptr; return FILE::create(fd, flags); } static inline bool is_default_stream(FILE* stream) { return stream == stdin || stream == stdout || stream == stderr; } int fclose(FILE* stream) { ASSERT(stream); bool ok = stream->close(); ScopedValueRollback errno_restorer(errno); stream->~FILE(); if (!is_default_stream(stream)) free(stream); return ok ? 0 : EOF; } int rename(const char* oldpath, const char* newpath) { if (!oldpath || !newpath) { errno = EFAULT; return -1; } Syscall::SC_rename_params params { { oldpath, strlen(oldpath) }, { newpath, strlen(newpath) } }; int rc = syscall(SC_rename, ¶ms); __RETURN_WITH_ERRNO(rc, rc, -1); } void dbgputch(char ch) { syscall(SC_dbgputch, ch); } ssize_t dbgputstr(const char* characters, ssize_t length) { int rc = syscall(SC_dbgputstr, characters, length); __RETURN_WITH_ERRNO(rc, rc, -1); } char* tmpnam(char*) { ASSERT_NOT_REACHED(); } FILE* popen(const char* command, const char* type) { if (!type || (*type != 'r' && *type != 'w')) { errno = EINVAL; return nullptr; } int pipe_fds[2]; int rc = pipe(pipe_fds); if (rc < 0) { ScopedValueRollback rollback(errno); perror("pipe"); return nullptr; } pid_t child_pid = fork(); if (child_pid < 0) { ScopedValueRollback rollback(errno); perror("fork"); close(pipe_fds[0]); close(pipe_fds[1]); return nullptr; } else if (child_pid == 0) { if (*type == 'r') { int rc = dup2(pipe_fds[1], STDOUT_FILENO); if (rc < 0) { perror("dup2"); exit(1); } close(pipe_fds[0]); close(pipe_fds[1]); } else if (*type == 'w') { int rc = dup2(pipe_fds[0], STDIN_FILENO); if (rc < 0) { perror("dup2"); exit(1); } close(pipe_fds[0]); close(pipe_fds[1]); } int rc = execl("/bin/sh", "sh", "-c", command, nullptr); if (rc < 0) perror("execl"); exit(1); } FILE* file = nullptr; if (*type == 'r') { file = FILE::create(pipe_fds[0], O_RDONLY); close(pipe_fds[1]); } else if (*type == 'w') { file = FILE::create(pipe_fds[1], O_WRONLY); close(pipe_fds[0]); } file->set_popen_child(child_pid); return file; } int pclose(FILE* stream) { ASSERT(stream); ASSERT(stream->popen_child() != 0); int wstatus = 0; int rc = waitpid(stream->popen_child(), &wstatus, 0); if (rc < 0) return rc; return wstatus; } int remove(const char* pathname) { int rc = unlink(pathname); if (rc < 0 && errno != EISDIR) return -1; return rmdir(pathname); } int scanf(const char* fmt, ...) { va_list ap; va_start(ap, fmt); int count = vfscanf(stdin, fmt, ap); va_end(ap); return count; } int fscanf(FILE* stream, const char* fmt, ...) { va_list ap; va_start(ap, fmt); int count = vfscanf(stream, fmt, ap); va_end(ap); return count; } int sscanf(const char* buffer, const char* fmt, ...) { va_list ap; va_start(ap, fmt); int count = vsscanf(buffer, fmt, ap); va_end(ap); return count; } int vfscanf(FILE* stream, const char* fmt, va_list ap) { char buffer[BUFSIZ]; if (!fgets(buffer, sizeof(buffer) - 1, stream)) return -1; return vsscanf(buffer, fmt, ap); } void flockfile(FILE* filehandle) { (void)filehandle; dbgprintf("FIXME: Implement flockfile()\n"); } void funlockfile(FILE* filehandle) { (void)filehandle; dbgprintf("FIXME: Implement funlockfile()\n"); } FILE* tmpfile() { char tmp_path[] = "/tmp/XXXXXX"; if (__generate_unique_filename(tmp_path) < 0) return nullptr; int fd = open(tmp_path, O_CREAT | O_EXCL | O_RDWR, S_IWUSR | S_IRUSR); if (fd < 0) return nullptr; // FIXME: instead of using this hack, implement with O_TMPFILE or similar unlink(tmp_path); return fdopen(fd, "rw"); } }