/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include // FIXME: Thread safety. //#define MALLOC_DEBUG #define RECYCLE_BIG_ALLOCATIONS #define MAGIC_PAGE_HEADER 0x42657274 #define MAGIC_BIGALLOC_HEADER 0x42697267 #define PAGE_ROUND_UP(x) ((((size_t)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1))) static LibThread::Lock& malloc_lock() { static u32 lock_storage[sizeof(LibThread::Lock) / sizeof(u32)]; return *reinterpret_cast(&lock_storage); } constexpr size_t number_of_chunked_blocks_to_keep_around_per_size_class = 4; constexpr size_t number_of_big_blocks_to_keep_around_per_size_class = 8; static bool s_log_malloc = false; static bool s_scrub_malloc = true; static bool s_scrub_free = true; static bool s_profiling = false; static unsigned short size_classes[] = { 8, 16, 32, 64, 128, 252, 508, 1016, 2036, 4090, 8188, 16376, 32756, 0 }; static constexpr size_t num_size_classes = sizeof(size_classes) / sizeof(unsigned short); constexpr size_t block_size = 64 * KB; constexpr size_t block_mask = ~(block_size - 1); struct CommonHeader { size_t m_magic; size_t m_size; }; struct BigAllocationBlock : public CommonHeader { BigAllocationBlock(size_t size) { m_magic = MAGIC_BIGALLOC_HEADER; m_size = size; } unsigned char* m_slot[0]; }; struct FreelistEntry { FreelistEntry* next; }; struct ChunkedBlock : public CommonHeader , public InlineLinkedListNode { ChunkedBlock(size_t bytes_per_chunk) { m_magic = MAGIC_PAGE_HEADER; m_size = bytes_per_chunk; m_free_chunks = chunk_capacity(); m_freelist = (FreelistEntry*)chunk(0); for (size_t i = 0; i < chunk_capacity(); ++i) { auto* entry = (FreelistEntry*)chunk(i); if (i != chunk_capacity() - 1) entry->next = (FreelistEntry*)chunk(i + 1); else entry->next = nullptr; } } ChunkedBlock* m_prev { nullptr }; ChunkedBlock* m_next { nullptr }; FreelistEntry* m_freelist { nullptr }; unsigned short m_free_chunks { 0 }; unsigned char m_slot[0]; void* chunk(size_t index) { return &m_slot[index * m_size]; } bool is_full() const { return m_free_chunks == 0; } size_t bytes_per_chunk() const { return m_size; } size_t free_chunks() const { return m_free_chunks; } size_t used_chunks() const { return chunk_capacity() - m_free_chunks; } size_t chunk_capacity() const { return (block_size - sizeof(ChunkedBlock)) / m_size; } }; struct Allocator { size_t size { 0 }; size_t block_count { 0 }; size_t empty_block_count { 0 }; ChunkedBlock* empty_blocks[number_of_chunked_blocks_to_keep_around_per_size_class] { nullptr }; InlineLinkedList usable_blocks; InlineLinkedList full_blocks; }; struct BigAllocator { Vector blocks; }; // Allocators will be initialized in __malloc_init. // We can not rely on global constructors to initialize them, // because they must be initialized before other global constructors // are run. Similarly, we can not allow global destructors to destruct // them. We could have used AK::NeverDestoyed to prevent the latter, // but it would have not helped with the former. static u8 g_allocators_storage[sizeof(Allocator) * num_size_classes]; static u8 g_big_allocators_storage[sizeof(BigAllocator)]; static inline Allocator (&allocators())[num_size_classes] { return reinterpret_cast(g_allocators_storage); } static inline BigAllocator (&big_allocators())[1] { return reinterpret_cast(g_big_allocators_storage); } static Allocator* allocator_for_size(size_t size, size_t& good_size) { for (size_t i = 0; size_classes[i]; ++i) { if (size <= size_classes[i]) { good_size = size_classes[i]; return &allocators()[i]; } } good_size = PAGE_ROUND_UP(size); return nullptr; } static BigAllocator* big_allocator_for_size(size_t size) { if (size == 65536) return &big_allocators()[0]; return nullptr; } extern "C" { size_t malloc_good_size(size_t size) { for (size_t i = 0; size_classes[i]; ++i) { if (size < size_classes[i]) return size_classes[i]; } return PAGE_ROUND_UP(size); } static void* os_alloc(size_t size, const char* name) { auto* ptr = serenity_mmap(nullptr, size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_PURGEABLE, 0, 0, block_size, name); ASSERT(ptr != MAP_FAILED); return ptr; } static void os_free(void* ptr, size_t size) { int rc = munmap(ptr, size); assert(rc == 0); } static void* malloc_impl(size_t size) { LOCKER(malloc_lock()); if (s_log_malloc) dbgprintf("LibC: malloc(%zu)\n", size); if (!size) return nullptr; size_t good_size; auto* allocator = allocator_for_size(size, good_size); if (!allocator) { size_t real_size = round_up_to_power_of_two(sizeof(BigAllocationBlock) + size, block_size); #ifdef RECYCLE_BIG_ALLOCATIONS if (auto* allocator = big_allocator_for_size(real_size)) { if (!allocator->blocks.is_empty()) { auto* block = allocator->blocks.take_last(); int rc = madvise(block, real_size, MADV_SET_NONVOLATILE); bool this_block_was_purged = rc == 1; if (rc < 0) { perror("madvise"); ASSERT_NOT_REACHED(); } if (mprotect(block, real_size, PROT_READ | PROT_WRITE) < 0) { perror("mprotect"); ASSERT_NOT_REACHED(); } if (this_block_was_purged) new (block) BigAllocationBlock(real_size); return &block->m_slot[0]; } } #endif auto* block = (BigAllocationBlock*)os_alloc(real_size, "malloc: BigAllocationBlock"); new (block) BigAllocationBlock(real_size); return &block->m_slot[0]; } ChunkedBlock* block = nullptr; for (block = allocator->usable_blocks.head(); block; block = block->next()) { if (block->free_chunks()) break; } if (!block && allocator->empty_block_count) { block = allocator->empty_blocks[--allocator->empty_block_count]; int rc = madvise(block, block_size, MADV_SET_NONVOLATILE); bool this_block_was_purged = rc == 1; if (rc < 0) { perror("madvise"); ASSERT_NOT_REACHED(); } rc = mprotect(block, block_size, PROT_READ | PROT_WRITE); if (rc < 0) { perror("mprotect"); ASSERT_NOT_REACHED(); } if (this_block_was_purged) new (block) ChunkedBlock(good_size); allocator->usable_blocks.append(block); } if (!block) { char buffer[64]; snprintf(buffer, sizeof(buffer), "malloc: ChunkedBlock(%zu)", good_size); block = (ChunkedBlock*)os_alloc(block_size, buffer); new (block) ChunkedBlock(good_size); allocator->usable_blocks.append(block); ++allocator->block_count; } --block->m_free_chunks; void* ptr = block->m_freelist; block->m_freelist = block->m_freelist->next; if (block->is_full()) { #ifdef MALLOC_DEBUG dbgprintf("Block %p is now full in size class %zu\n", block, good_size); #endif allocator->usable_blocks.remove(block); allocator->full_blocks.append(block); } #ifdef MALLOC_DEBUG dbgprintf("LibC: allocated %p (chunk in block %p, size %zu)\n", ptr, block, block->bytes_per_chunk()); #endif if (s_scrub_malloc) memset(ptr, MALLOC_SCRUB_BYTE, block->m_size); return ptr; } static void free_impl(void* ptr) { ScopedValueRollback rollback(errno); if (!ptr) return; LOCKER(malloc_lock()); void* block_base = (void*)((FlatPtr)ptr & block_mask); size_t magic = *(size_t*)block_base; if (magic == MAGIC_BIGALLOC_HEADER) { auto* block = (BigAllocationBlock*)block_base; #ifdef RECYCLE_BIG_ALLOCATIONS if (auto* allocator = big_allocator_for_size(block->m_size)) { if (allocator->blocks.size() < number_of_big_blocks_to_keep_around_per_size_class) { allocator->blocks.append(block); size_t this_block_size = block->m_size; if (mprotect(block, this_block_size, PROT_NONE) < 0) { perror("mprotect"); ASSERT_NOT_REACHED(); } if (madvise(block, this_block_size, MADV_SET_VOLATILE) != 0) { perror("madvise"); ASSERT_NOT_REACHED(); } return; } } #endif os_free(block, block->m_size); return; } assert(magic == MAGIC_PAGE_HEADER); auto* block = (ChunkedBlock*)block_base; #ifdef MALLOC_DEBUG dbgprintf("LibC: freeing %p in allocator %p (size=%u, used=%u)\n", ptr, block, block->bytes_per_chunk(), block->used_chunks()); #endif if (s_scrub_free) memset(ptr, FREE_SCRUB_BYTE, block->bytes_per_chunk()); auto* entry = (FreelistEntry*)ptr; entry->next = block->m_freelist; block->m_freelist = entry; if (block->is_full()) { size_t good_size; auto* allocator = allocator_for_size(block->m_size, good_size); #ifdef MALLOC_DEBUG dbgprintf("Block %p no longer full in size class %u\n", block, good_size); #endif allocator->full_blocks.remove(block); allocator->usable_blocks.prepend(block); } ++block->m_free_chunks; if (!block->used_chunks()) { size_t good_size; auto* allocator = allocator_for_size(block->m_size, good_size); if (allocator->block_count < number_of_chunked_blocks_to_keep_around_per_size_class) { #ifdef MALLOC_DEBUG dbgprintf("Keeping block %p around for size class %u\n", block, good_size); #endif allocator->usable_blocks.remove(block); allocator->empty_blocks[allocator->empty_block_count++] = block; mprotect(block, block_size, PROT_NONE); madvise(block, block_size, MADV_SET_VOLATILE); return; } #ifdef MALLOC_DEBUG dbgprintf("Releasing block %p for size class %u\n", block, good_size); #endif allocator->usable_blocks.remove(block); --allocator->block_count; os_free(block, block_size); } } void* malloc(size_t size) { void* ptr = malloc_impl(size); if (s_profiling) perf_event(PERF_EVENT_MALLOC, size, reinterpret_cast(ptr)); return ptr; } void free(void* ptr) { if (s_profiling) perf_event(PERF_EVENT_FREE, reinterpret_cast(ptr), 0); free_impl(ptr); } void* calloc(size_t count, size_t size) { size_t new_size = count * size; auto* ptr = malloc(new_size); memset(ptr, 0, new_size); return ptr; } size_t malloc_size(void* ptr) { if (!ptr) return 0; LOCKER(malloc_lock()); void* page_base = (void*)((FlatPtr)ptr & block_mask); auto* header = (const CommonHeader*)page_base; auto size = header->m_size; if (header->m_magic == MAGIC_BIGALLOC_HEADER) size -= sizeof(CommonHeader); return size; } void* realloc(void* ptr, size_t size) { if (!ptr) return malloc(size); LOCKER(malloc_lock()); auto existing_allocation_size = malloc_size(ptr); if (size <= existing_allocation_size) return ptr; auto* new_ptr = malloc(size); memcpy(new_ptr, ptr, min(existing_allocation_size, size)); free(ptr); return new_ptr; } void __malloc_init() { new (&malloc_lock()) LibThread::Lock(); if (getenv("LIBC_NOSCRUB_MALLOC")) s_scrub_malloc = false; if (getenv("LIBC_NOSCRUB_FREE")) s_scrub_free = false; if (getenv("LIBC_LOG_MALLOC")) s_log_malloc = true; if (getenv("LIBC_PROFILE_MALLOC")) s_profiling = true; for (size_t i = 0; i < num_size_classes; ++i) { new (&allocators()[i]) Allocator(); allocators()[i].size = size_classes[i]; } new (&big_allocators()[0])(BigAllocator); } }