/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include namespace Audio { WavLoader::WavLoader(const StringView& path) : m_file(Core::File::construct(path)) { if (!m_file->open(Core::IODevice::ReadOnly)) { m_error_string = String::formatted("Can't open file: {}", m_file->error_string()); return; } if (!parse_header()) return; m_resampler = make(m_sample_rate, 44100); } RefPtr WavLoader::get_more_samples(size_t max_bytes_to_read_from_input) { #ifdef AWAVLOADER_DEBUG dbgln("Read WAV of format PCM with num_channels {} sample rate {}, bits per sample {}", m_num_channels, m_sample_rate, m_bits_per_sample); #endif auto raw_samples = m_file->read(max_bytes_to_read_from_input); if (raw_samples.is_empty()) return nullptr; auto buffer = Buffer::from_pcm_data(raw_samples, *m_resampler, m_num_channels, m_bits_per_sample); //Buffer contains normalized samples, but m_loaded_samples should contain the amount of actually loaded samples m_loaded_samples += static_cast(max_bytes_to_read_from_input) / (m_num_channels * (m_bits_per_sample / 8)); m_loaded_samples = min(m_total_samples, m_loaded_samples); return buffer; } void WavLoader::seek(const int position) { if (position < 0 || position > m_total_samples) return; m_loaded_samples = position; m_file->seek(position * m_num_channels * (m_bits_per_sample / 8)); } void WavLoader::reset() { seek(0); } bool WavLoader::parse_header() { Core::IODeviceStreamReader stream(*m_file); #define CHECK_OK(msg) \ do { \ if (stream.handle_read_failure()) { \ m_error_string = String::formatted("Premature stream EOF at {}", msg); \ return {}; \ } \ if (!ok) { \ m_error_string = String::formatted("Parsing failed: {}", msg); \ return {}; \ } else { \ dbgln("{} is OK!", msg); \ } \ } while (0); bool ok = true; u32 riff; stream >> riff; ok = ok && riff == 0x46464952; // "RIFF" CHECK_OK("RIFF header"); u32 sz; stream >> sz; ok = ok && sz < 1024 * 1024 * 1024; // arbitrary CHECK_OK("File size"); ASSERT(sz < 1024 * 1024 * 1024); u32 wave; stream >> wave; ok = ok && wave == 0x45564157; // "WAVE" CHECK_OK("WAVE header"); u32 fmt_id; stream >> fmt_id; ok = ok && fmt_id == 0x20746D66; // "FMT" CHECK_OK("FMT header"); u32 fmt_size; stream >> fmt_size; ok = ok && fmt_size == 16; CHECK_OK("FMT size"); ASSERT(fmt_size == 16); u16 audio_format; stream >> audio_format; CHECK_OK("Audio format"); // incomplete read check ok = ok && audio_format == 1; // WAVE_FORMAT_PCM ASSERT(audio_format == 1); CHECK_OK("Audio format"); // value check stream >> m_num_channels; ok = ok && (m_num_channels == 1 || m_num_channels == 2); CHECK_OK("Channel count"); stream >> m_sample_rate; CHECK_OK("Sample rate"); u32 byte_rate; stream >> byte_rate; CHECK_OK("Byte rate"); u16 block_align; stream >> block_align; CHECK_OK("Block align"); stream >> m_bits_per_sample; CHECK_OK("Bits per sample"); // incomplete read check ok = ok && (m_bits_per_sample == 8 || m_bits_per_sample == 16 || m_bits_per_sample == 24); ASSERT(m_bits_per_sample == 8 || m_bits_per_sample == 16 || m_bits_per_sample == 24); CHECK_OK("Bits per sample"); // value check // Read chunks until we find DATA bool found_data = false; u32 data_sz = 0; u8 search_byte = 0; while (true) { stream >> search_byte; CHECK_OK("Reading byte searching for data"); if (search_byte != 0x64) //D continue; stream >> search_byte; CHECK_OK("Reading next byte searching for data"); if (search_byte != 0x61) //A continue; u16 search_remaining = 0; stream >> search_remaining; CHECK_OK("Reading remaining bytes searching for data"); if (search_remaining != 0x6174) //TA continue; stream >> data_sz; found_data = true; break; } ok = ok && found_data; CHECK_OK("Found no data chunk"); ASSERT(found_data); ok = ok && data_sz < INT32_MAX; CHECK_OK("Data was too large"); int bytes_per_sample = (m_bits_per_sample / 8) * m_num_channels; m_total_samples = data_sz / bytes_per_sample; // Just make sure we're good before we read the data... ASSERT(!stream.handle_read_failure()); return true; } ResampleHelper::ResampleHelper(double source, double target) : m_ratio(source / target) { } void ResampleHelper::process_sample(double sample_l, double sample_r) { m_last_sample_l = sample_l; m_last_sample_r = sample_r; m_current_ratio += 1; } bool ResampleHelper::read_sample(double& next_l, double& next_r) { if (m_current_ratio > 0) { m_current_ratio -= m_ratio; next_l = m_last_sample_l; next_r = m_last_sample_r; return true; } return false; } template static void read_samples_from_stream(InputMemoryStream& stream, SampleReader read_sample, Vector& samples, ResampleHelper& resampler, int num_channels) { double norm_l = 0; double norm_r = 0; switch (num_channels) { case 1: for (;;) { while (resampler.read_sample(norm_l, norm_r)) { samples.append(Sample(norm_l)); } norm_l = read_sample(stream); if (stream.handle_any_error()) { break; } resampler.process_sample(norm_l, norm_r); } break; case 2: for (;;) { while (resampler.read_sample(norm_l, norm_r)) { samples.append(Sample(norm_l, norm_r)); } norm_l = read_sample(stream); norm_r = read_sample(stream); if (stream.handle_any_error()) { break; } resampler.process_sample(norm_l, norm_r); } break; default: ASSERT_NOT_REACHED(); } } static double read_norm_sample_24(InputMemoryStream& stream) { u8 byte = 0; stream >> byte; u32 sample1 = byte; stream >> byte; u32 sample2 = byte; stream >> byte; u32 sample3 = byte; i32 value = 0; value = sample1 << 8; value |= (sample2 << 16); value |= (sample3 << 24); return double(value) / NumericLimits::max(); } static double read_norm_sample_16(InputMemoryStream& stream) { LittleEndian sample; stream >> sample; return double(sample) / NumericLimits::max(); } static double read_norm_sample_8(InputMemoryStream& stream) { u8 sample = 0; stream >> sample; return double(sample) / NumericLimits::max(); } RefPtr Buffer::from_pcm_data(ReadonlyBytes data, ResampleHelper& resampler, int num_channels, int bits_per_sample) { InputMemoryStream stream { data }; Vector fdata; fdata.ensure_capacity(data.size() / (bits_per_sample / 8)); #ifdef AWAVLOADER_DEBUG dbgln("Reading {} bits and {} channels, total bytes: {}", bits_per_sample, num_channels, data.size()); #endif switch (bits_per_sample) { case 8: read_samples_from_stream(stream, read_norm_sample_8, fdata, resampler, num_channels); break; case 16: read_samples_from_stream(stream, read_norm_sample_16, fdata, resampler, num_channels); break; case 24: read_samples_from_stream(stream, read_norm_sample_24, fdata, resampler, num_channels); break; default: ASSERT_NOT_REACHED(); } // We should handle this in a better way above, but for now -- // just make sure we're good. Worst case we just write some 0s where they // don't belong. ASSERT(!stream.handle_any_error()); return Buffer::create_with_samples(move(fdata)); } }