#include "types.h" #include "kmalloc.h" #include "i386.h" #include "i8253.h" #include "Keyboard.h" #include "Process.h" #include "system.h" #include "PIC.h" #include "StdLib.h" #include "Syscall.h" #include "CMOS.h" #include "IDEDiskDevice.h" #include #include #include #include #include #include #include #include #include "MemoryManager.h" #include "Console.h" #include "ProcFileSystem.h" #include "RTC.h" #include "VirtualConsole.h" #include "Scheduler.h" #define KSYMS #define SPAWN_MULTIPLE_SHELLS //#define STRESS_TEST_SPAWNING system_t system; VirtualConsole* tty0; VirtualConsole* tty1; VirtualConsole* tty2; VirtualConsole* tty3; Keyboard* keyboard; static byte parseHexDigit(char nibble) { if (nibble >= '0' && nibble <= '9') return nibble - '0'; ASSERT(nibble >= 'a' && nibble <= 'f'); return 10 + (nibble - 'a'); } #ifdef KSYMS static Vector* s_ksyms; static bool s_ksyms_ready; Vector& ksyms() { return *s_ksyms; } bool ksyms_ready() { return s_ksyms_ready; } const KSym* ksymbolicate(dword address) { if (address < ksyms().first().address || address > ksyms().last().address) return nullptr; for (unsigned i = 0; i < ksyms().size(); ++i) { if (address < ksyms()[i + 1].address) return &ksyms()[i]; } return nullptr; } static void loadKsyms(const ByteBuffer& buffer) { // FIXME: It's gross that this vector grows dynamically rather than being sized-to-fit. // We're wasting that eternal kmalloc memory. s_ksyms = new Vector; auto* bufptr = (const char*)buffer.pointer(); auto* startOfName = bufptr; dword address = 0; dword ksym_count = 0; for (unsigned i = 0; i < 8; ++i) ksym_count = (ksym_count << 4) | parseHexDigit(*(bufptr++)); s_ksyms->ensureCapacity(ksym_count); ++bufptr; // skip newline kprintf("Loading ksyms: \033[s"); while (bufptr < buffer.end_pointer()) { for (unsigned i = 0; i < 8; ++i) address = (address << 4) | parseHexDigit(*(bufptr++)); bufptr += 3; startOfName = bufptr; while (*(++bufptr)) { if (*bufptr == '\n') { break; } } // FIXME: The Strings here should be eternally allocated too. ksyms().append({ address, String(startOfName, bufptr - startOfName) }); if ((ksyms().size() % 10) == 0 || ksym_count == ksyms().size()) kprintf("\033[u\033[s%u/%u", ksyms().size(), ksym_count); ++bufptr; } kprintf("\n"); s_ksyms_ready = true; } void dump_backtrace(bool use_ksyms) { if (!current) { HANG; return; } if (use_ksyms && !ksyms_ready()) { HANG; return; } struct RecognizedSymbol { dword address; const KSym* ksym; }; Vector recognizedSymbols; if (use_ksyms) { for (dword* stackPtr = (dword*)&use_ksyms; current->isValidAddressForKernel(LinearAddress((dword)stackPtr)); stackPtr = (dword*)*stackPtr) { dword retaddr = stackPtr[1]; if (auto* ksym = ksymbolicate(retaddr)) recognizedSymbols.append({ retaddr, ksym }); } } else{ for (dword* stackPtr = (dword*)&use_ksyms; current->isValidAddressForKernel(LinearAddress((dword)stackPtr)); stackPtr = (dword*)*stackPtr) { dword retaddr = stackPtr[1]; kprintf("%x (next: %x)\n", retaddr, stackPtr ? (dword*)*stackPtr : 0); } return; } size_t bytesNeeded = 0; for (auto& symbol : recognizedSymbols) { bytesNeeded += symbol.ksym->name.length() + 8 + 16; } for (auto& symbol : recognizedSymbols) { unsigned offset = symbol.address - symbol.ksym->address; dbgprintf("%p %s +%u\n", symbol.address, symbol.ksym->name.characters(), offset); } } #endif #ifdef STRESS_TEST_SPAWNING static void spawn_stress() NORETURN; static void spawn_stress() { dword lastAlloc = sum_alloc; for (unsigned i = 0; i < 10000; ++i) { int error; Process::create_user_process("/bin/id", (uid_t)100, (gid_t)100, (pid_t)0, error, Vector(), Vector(), tty0); kprintf("malloc stats: alloc:%u free:%u page_aligned:%u eternal:%u\n", sum_alloc, sum_free, kmalloc_page_aligned, kmalloc_sum_eternal); kprintf("delta:%u\n", sum_alloc - lastAlloc); lastAlloc = sum_alloc; sleep(60); } for (;;) { asm volatile("hlt"); } } #endif static void syncd() NORETURN; static void syncd() { for (;;) { Syscall::sync(); sleep(10 * TICKS_PER_SECOND); } } static void init_stage2() NORETURN; static void init_stage2() { Syscall::initialize(); auto vfs = make(); auto dev_zero = make(); vfs->register_character_device(*dev_zero); auto dev_null = make(); vfs->register_character_device(*dev_null); auto dev_full = make(); vfs->register_character_device(*dev_full); auto dev_random = make(); vfs->register_character_device(*dev_random); vfs->register_character_device(*keyboard); vfs->register_character_device(*tty0); vfs->register_character_device(*tty1); vfs->register_character_device(*tty2); vfs->register_character_device(*tty3); auto dev_hd0 = IDEDiskDevice::create(); auto e2fs = Ext2FS::create(dev_hd0.copyRef()); e2fs->initialize(); vfs->mount_root(e2fs.copyRef()); #ifdef KSYMS { int error; auto descriptor = vfs->open("/kernel.map", error); if (!descriptor) { kprintf("Failed to open /kernel.map\n"); } else { auto buffer = descriptor->read_entire_file(); ASSERT(buffer); loadKsyms(buffer); } } #endif vfs->mount(ProcFS::the(), "/proc"); Vector environment; environment.append("TERM=ansi"); int error; Process::create_user_process("/bin/sh", (uid_t)100, (gid_t)100, (pid_t)0, error, Vector(), move(environment), tty0); #ifdef SPAWN_MULTIPLE_SHELLS Process::create_user_process("/bin/sh", (uid_t)100, (gid_t)100, (pid_t)0, error, Vector(), Vector(), tty1); Process::create_user_process("/bin/sh", (uid_t)100, (gid_t)100, (pid_t)0, error, Vector(), Vector(), tty2); Process::create_user_process("/bin/sh", (uid_t)100, (gid_t)100, (pid_t)0, error, Vector(), Vector(), tty3); #endif #ifdef STRESS_TEST_SPAWNING Process::create_kernel_process(spawn_stress, "spawn_stress"); #endif current->sys$exit(0); ASSERT_NOT_REACHED(); } void init() NORETURN; void init() { cli(); #ifdef KSYMS s_ksyms = nullptr; s_ksyms_ready = false; #endif kmalloc_init(); auto console = make(); RTC::initialize(); PIC::initialize(); gdt_init(); idt_init(); keyboard = new Keyboard; VirtualConsole::initialize(); tty0 = new VirtualConsole(0, VirtualConsole::AdoptCurrentVGABuffer); tty1 = new VirtualConsole(1); tty2 = new VirtualConsole(2); tty3 = new VirtualConsole(3); VirtualConsole::switch_to(0); kprintf("Starting Serenity Operating System...\n"); MemoryManager::initialize(); VFS::initialize_globals(); StringImpl::initialize_globals(); PIT::initialize(); memset(&system, 0, sizeof(system)); word base_memory = (CMOS::read(0x16) << 8) | CMOS::read(0x15); word ext_memory = (CMOS::read(0x18) << 8) | CMOS::read(0x17); kprintf("%u kB base memory\n", base_memory); kprintf("%u kB extended memory\n", ext_memory); auto procfs = ProcFS::create(); procfs->initialize(); Process::initialize(); Process::create_kernel_process(init_stage2, "init_stage2"); Process::create_kernel_process(syncd, "syncd"); Scheduler::pick_next(); sti(); // This now becomes the idle process :^) for (;;) { asm("hlt"); } } void log_try_lock(const char* where) { kprintf("[%u] >>> locking... (%s)\n", current->pid(), where); } void log_locked(const char* where) { kprintf("[%u] >>> locked() in %s\n", current->pid(), where); } void log_unlocked(const char* where) { kprintf("[%u] <<< unlocked()\n", current->pid(), where); }