/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "Devices/PATADiskDevice.h" #include "KSyms.h" #include "Process.h" #include "RTC.h" #include "Scheduler.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Defined in the linker script typedef void (*ctor_func_t)(); extern ctor_func_t start_ctors; extern ctor_func_t end_ctors; extern u32 __stack_chk_guard; u32 __stack_chk_guard; namespace Kernel { [[noreturn]] static void init_stage2(); static void setup_serial_debug(); static void setup_acpi(); static void setup_vmmouse(); static void setup_pci(); VirtualConsole* tty0; extern "C" [[noreturn]] void init() { setup_serial_debug(); cpu_setup(); kmalloc_init(); slab_alloc_init(); new KParams(String(reinterpret_cast(low_physical_to_virtual(multiboot_info_ptr->cmdline)))); MemoryManager::initialize(); bool text_debug = KParams::the().has("text_debug"); setup_acpi(); new VFS; new DebugLogDevice; new Console; kprintf("Starting SerenityOS...\n"); __stack_chk_guard = get_good_random(); RTC::initialize(); PIC::initialize(); gdt_init(); idt_init(); // call global constructors after gtd and itd init for (ctor_func_t* ctor = &start_ctors; ctor < &end_ctors; ctor++) (*ctor)(); new KeyboardDevice; new PS2MouseDevice; setup_vmmouse(); new SB16; new NullDevice; if (!get_serial_debug()) new SerialDevice(SERIAL_COM1_ADDR, 64); new SerialDevice(SERIAL_COM2_ADDR, 65); new SerialDevice(SERIAL_COM3_ADDR, 66); new SerialDevice(SERIAL_COM4_ADDR, 67); VirtualConsole::initialize(); tty0 = new VirtualConsole(0, VirtualConsole::AdoptCurrentVGABuffer); new VirtualConsole(1); VirtualConsole::switch_to(0); // Sample test to see if the ACPI parser is working... kprintf("ACPI: HPET table @ P 0x%x\n", ACPIParser::the().find_table("HPET")); setup_pci(); PIT::initialize(); if (text_debug) { dbgprintf("Text mode enabled\n"); } else { if (multiboot_info_ptr->framebuffer_type == 1 || multiboot_info_ptr->framebuffer_type == 2) { new MBVGADevice( PhysicalAddress((u32)(multiboot_info_ptr->framebuffer_addr)), multiboot_info_ptr->framebuffer_pitch, multiboot_info_ptr->framebuffer_width, multiboot_info_ptr->framebuffer_height); } else { new BXVGADevice; } } LoopbackAdapter::the(); Process::initialize(); Thread::initialize(); Thread* init_stage2_thread = nullptr; Process::create_kernel_process(init_stage2_thread, "init_stage2", init_stage2); Thread* syncd_thread = nullptr; Process::create_kernel_process(syncd_thread, "syncd", [] { for (;;) { VFS::the().sync(); Thread::current->sleep(1 * TICKS_PER_SECOND); } }); Process::create_kernel_process(g_finalizer, "Finalizer", [] { Thread::current->set_priority(THREAD_PRIORITY_LOW); for (;;) { { InterruptDisabler disabler; if (!g_finalizer_has_work) Thread::current->wait_on(*g_finalizer_wait_queue); ASSERT(g_finalizer_has_work); g_finalizer_has_work = false; } Thread::finalize_dying_threads(); } }); Scheduler::pick_next(); sti(); Scheduler::idle_loop(); ASSERT_NOT_REACHED(); } void init_stage2() { Syscall::initialize(); new ZeroDevice; new FullDevice; new RandomDevice; new PTYMultiplexer; bool dmi_unreliable = KParams::the().has("dmi_unreliable"); if (dmi_unreliable) { DMIDecoder::initialize_untrusted(); } else { DMIDecoder::initialize(); } bool text_debug = KParams::the().has("text_debug"); bool force_pio = KParams::the().has("force_pio"); auto root = KParams::the().get("root"); if (root.is_empty()) { root = "/dev/hda"; } if (!root.starts_with("/dev/hda")) { kprintf("init_stage2: root filesystem must be on the first IDE hard drive (/dev/hda)\n"); hang(); } auto pata0 = PATAChannel::create(PATAChannel::ChannelType::Primary, force_pio); NonnullRefPtr root_dev = *pata0->master_device(); root = root.substring(strlen("/dev/hda"), root.length() - strlen("/dev/hda")); if (root.length()) { bool ok; unsigned partition_number = root.to_uint(ok); if (!ok) { kprintf("init_stage2: couldn't parse partition number from root kernel parameter\n"); hang(); } MBRPartitionTable mbr(root_dev); if (!mbr.initialize()) { kprintf("init_stage2: couldn't read MBR from disk\n"); hang(); } if (mbr.is_protective_mbr()) { dbgprintf("GPT Partitioned Storage Detected!\n"); GPTPartitionTable gpt(root_dev); if (!gpt.initialize()) { kprintf("init_stage2: couldn't read GPT from disk\n"); hang(); } auto partition = gpt.partition(partition_number); if (!partition) { kprintf("init_stage2: couldn't get partition %d\n", partition_number); hang(); } root_dev = *partition; } else { dbgprintf("MBR Partitioned Storage Detected!\n"); if (mbr.contains_ebr()) { EBRPartitionTable ebr(root_dev); if (!ebr.initialize()) { kprintf("init_stage2: couldn't read EBR from disk\n"); hang(); } auto partition = ebr.partition(partition_number); if (!partition) { kprintf("init_stage2: couldn't get partition %d\n", partition_number); hang(); } root_dev = *partition; } else { if (partition_number < 1 || partition_number > 4) { kprintf("init_stage2: invalid partition number %d; expected 1 to 4\n", partition_number); hang(); } auto partition = mbr.partition(partition_number); if (!partition) { kprintf("init_stage2: couldn't get partition %d\n", partition_number); hang(); } root_dev = *partition; } } } auto e2fs = Ext2FS::create(root_dev); if (!e2fs->initialize()) { kprintf("init_stage2: couldn't open root filesystem\n"); hang(); } if (!VFS::the().mount_root(e2fs)) { kprintf("VFS::mount_root failed\n"); hang(); } Process::current->set_root_directory(VFS::the().root_custody()); dbgprintf("Load ksyms\n"); load_ksyms(); dbgprintf("Loaded ksyms\n"); // Now, detect whether or not there are actually any floppy disks attached to the system u8 detect = CMOS::read(0x10); RefPtr fd0; RefPtr fd1; if ((detect >> 4) & 0x4) { fd0 = FloppyDiskDevice::create(FloppyDiskDevice::DriveType::Master); kprintf("fd0 is 1.44MB floppy drive\n"); } else { kprintf("fd0 type unsupported! Type == 0x%x\n", detect >> 4); } if (detect & 0x0f) { fd1 = FloppyDiskDevice::create(FloppyDiskDevice::DriveType::Slave); kprintf("fd1 is 1.44MB floppy drive"); } else { kprintf("fd1 type unsupported! Type == 0x%x\n", detect & 0x0f); } int error; // SystemServer will start WindowServer, which will be doing graphics. // From this point on we don't want to touch the VGA text terminal or // accept keyboard input. if (text_debug) { tty0->set_graphical(false); Thread* thread = nullptr; Process::create_user_process(thread, "/bin/Shell", (uid_t)0, (gid_t)0, (pid_t)0, error, {}, {}, tty0); if (error != 0) { kprintf("init_stage2: error spawning Shell: %d\n", error); hang(); } thread->set_priority(THREAD_PRIORITY_HIGH); } else { tty0->set_graphical(true); Thread* thread = nullptr; Process::create_user_process(thread, "/bin/SystemServer", (uid_t)0, (gid_t)0, (pid_t)0, error, {}, {}, tty0); if (error != 0) { kprintf("init_stage2: error spawning SystemServer: %d\n", error); hang(); } thread->set_priority(THREAD_PRIORITY_HIGH); } { Thread* thread = nullptr; Process::create_kernel_process(thread, "NetworkTask", NetworkTask_main); } Process::current->sys$exit(0); ASSERT_NOT_REACHED(); } void setup_serial_debug() { // this is only used one time, directly below here. we can't use this part // of libc at this point in the boot process, or we'd just pull strstr in // from . auto bad_prefix_check = [](const char* str, const char* search) -> bool { while (*search) if (*search++ != *str++) return false; return true; }; // serial_debug will output all the kprintf and dbgprintf data to COM1 at // 8-N-1 57600 baud. this is particularly useful for debugging the boot // process on live hardware. // // note: it must be the first option in the boot cmdline. u32 cmdline = low_physical_to_virtual(multiboot_info_ptr->cmdline); if (cmdline && bad_prefix_check(reinterpret_cast(cmdline), "serial_debug")) set_serial_debug(true); } extern "C" { multiboot_info_t* multiboot_info_ptr; } // Define some Itanium C++ ABI methods to stop the linker from complaining // If we actually call these something has gone horribly wrong void* __dso_handle __attribute__((visibility("hidden"))); extern "C" int __cxa_atexit(void (*)(void*), void*, void*) { ASSERT_NOT_REACHED(); return 0; } void setup_acpi() { if (!KParams::the().has("acpi")) { ACPIDynamicParser::initialize_without_rsdp(); return; } auto acpi = KParams::the().get("acpi"); if (acpi == "off") { ACPIParser::initialize_limited(); return; } if (acpi == "on") { ACPIDynamicParser::initialize_without_rsdp(); return; } if (acpi == "limited") { ACPIStaticParser::initialize_without_rsdp(); return; } kprintf("acpi boot argmuent has an invalid value.\n"); hang(); } void setup_vmmouse() { VMWareBackdoor::initialize(); if (!KParams::the().has("vmmouse")) { VMWareBackdoor::the().enable_absolute_vmmouse(); return; } auto vmmouse = KParams::the().get("vmmouse"); if (vmmouse == "off") return; if (vmmouse == "on") { VMWareBackdoor::the().enable_absolute_vmmouse(); return; } kprintf("vmmouse boot argmuent has an invalid value.\n"); hang(); } void setup_pci() { if (!KParams::the().has("pci_mmio")) { PCI::Initializer::the().test_and_initialize(false); PCI::Initializer::the().dismiss(); return; } auto pci_mmio = KParams::the().get("pci_mmio"); if (pci_mmio == "on") { PCI::Initializer::the().test_and_initialize(false); } else if (pci_mmio == "off") { PCI::Initializer::the().test_and_initialize(true); } else { kprintf("pci_mmio boot argmuent has an invalid value.\n"); hang(); } PCI::Initializer::the().dismiss(); } }