/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Defined in the linker script typedef void (*ctor_func_t)(); extern ctor_func_t start_heap_ctors; extern ctor_func_t end_heap_ctors; extern ctor_func_t start_ctors; extern ctor_func_t end_ctors; extern u32 __stack_chk_guard; u32 __stack_chk_guard; multiboot_module_entry_t multiboot_copy_boot_modules_array[16]; size_t multiboot_copy_boot_modules_count; namespace Kernel { [[noreturn]] static void init_stage2(void*); static void setup_serial_debug(); // boot.S expects these functions precisely this this. We declare them here // to ensure the signatures don't accidentally change. extern "C" void init_finished(u32 cpu); extern "C" [[noreturn]] void init_ap(u32 cpu, Processor* processor_info); extern "C" [[noreturn]] void init(); VirtualConsole* tty0; static Processor s_bsp_processor; // global but let's keep it "private" // SerenityOS Kernel C++ entry point :^) // // This is where C++ execution begins, after boot.S transfers control here. // // The purpose of init() is to start multi-tasking. It does the bare minimum // amount of work needed to start the scheduler. // // Once multi-tasking is ready, we spawn a new thread that starts in the // init_stage2() function. Initialization continues there. extern "C" [[noreturn]] void init() { setup_serial_debug(); // We need to copy the command line before kmalloc is initialized, // as it may overwrite parts of multiboot! CommandLine::early_initialize(reinterpret_cast(low_physical_to_virtual(multiboot_info_ptr->cmdline))); memcpy(multiboot_copy_boot_modules_array, (u8*)low_physical_to_virtual(multiboot_info_ptr->mods_addr), multiboot_info_ptr->mods_count * sizeof(multiboot_module_entry_t)); multiboot_copy_boot_modules_count = multiboot_info_ptr->mods_count; s_bsp_processor.early_initialize(0); // Invoke the constructors needed for the kernel heap for (ctor_func_t* ctor = &start_heap_ctors; ctor < &end_heap_ctors; ctor++) (*ctor)(); kmalloc_init(); slab_alloc_init(); s_bsp_processor.initialize(0); CommandLine::initialize(); MemoryManager::initialize(0); // Invoke all static global constructors in the kernel. // Note that we want to do this as early as possible. for (ctor_func_t* ctor = &start_ctors; ctor < &end_ctors; ctor++) (*ctor)(); APIC::initialize(); InterruptManagement::initialize(); ACPI::initialize(); VFS::initialize(); I8042Controller::initialize(); Console::initialize(); klog() << "Starting SerenityOS..."; TimeManagement::initialize(0); __stack_chk_guard = get_fast_random(); NullDevice::initialize(); if (!get_serial_debug()) new SerialDevice(SERIAL_COM1_ADDR, 64); new SerialDevice(SERIAL_COM2_ADDR, 65); new SerialDevice(SERIAL_COM3_ADDR, 66); new SerialDevice(SERIAL_COM4_ADDR, 67); VirtualConsole::initialize(); tty0 = new VirtualConsole(0); for (unsigned i = 1; i < s_max_virtual_consoles; i++) { new VirtualConsole(i); } VirtualConsole::switch_to(0); Thread::initialize(); Process::initialize(); Scheduler::initialize(); { RefPtr init_stage2_thread; Process::create_kernel_process(init_stage2_thread, "init_stage2", init_stage2, nullptr); // We need to make sure we drop the reference for init_stage2_thread // before calling into Scheduler::start, otherwise we will have a // dangling Thread that never gets cleaned up } Scheduler::start(); ASSERT_NOT_REACHED(); } // // This is where C++ execution begins for APs, after boot.S transfers control here. // // The purpose of init_ap() is to initialize APs for multi-tasking. // extern "C" [[noreturn]] void init_ap(u32 cpu, Processor* processor_info) { processor_info->early_initialize(cpu); processor_info->initialize(cpu); MemoryManager::initialize(cpu); Scheduler::set_idle_thread(APIC::the().get_idle_thread(cpu)); Scheduler::start(); ASSERT_NOT_REACHED(); } // // This method is called once a CPU enters the scheduler and its idle thread // At this point the initial boot stack can be freed // extern "C" void init_finished(u32 cpu) { if (cpu == 0) { // TODO: we can reuse the boot stack, maybe for kmalloc()? } else { APIC::the().init_finished(cpu); TimeManagement::initialize(cpu); } } void init_stage2(void*) { if (APIC::initialized() && APIC::the().enabled_processor_count() > 1) { // We can't start the APs until we have a scheduler up and running. // We need to be able to process ICI messages, otherwise another // core may send too many and end up deadlocking once the pool is // exhausted APIC::the().boot_aps(); } SyncTask::spawn(); FinalizerTask::spawn(); PCI::initialize(); bool text_mode = kernel_command_line().lookup("boot_mode").value_or("graphical") == "text"; if (text_mode) { dbgln("Text mode enabled"); } else { bool bxvga_found = false; PCI::enumerate([&](const PCI::Address&, PCI::ID id) { if ((id.vendor_id == 0x1234 && id.device_id == 0x1111) || (id.vendor_id == 0x80ee && id.device_id == 0xbeef)) bxvga_found = true; }); if (bxvga_found) { BXVGADevice::initialize(); } else { if (multiboot_info_ptr->framebuffer_type == MULTIBOOT_FRAMEBUFFER_TYPE_RGB || multiboot_info_ptr->framebuffer_type == MULTIBOOT_FRAMEBUFFER_TYPE_EGA_TEXT) { new MBVGADevice( PhysicalAddress((u32)(multiboot_info_ptr->framebuffer_addr)), multiboot_info_ptr->framebuffer_pitch, multiboot_info_ptr->framebuffer_width, multiboot_info_ptr->framebuffer_height); } else { BXVGADevice::initialize(); } } } USB::UHCIController::detect(); DMIExpose::initialize(); E1000NetworkAdapter::detect(); RTL8139NetworkAdapter::detect(); LoopbackAdapter::the(); Syscall::initialize(); new MemoryDevice; new ZeroDevice; new FullDevice; new RandomDevice; PTYMultiplexer::initialize(); new SB16; VMWareBackdoor::the(); // don't wait until first mouse packet bool force_pio = kernel_command_line().contains("force_pio"); auto root = kernel_command_line().lookup("root").value_or("/dev/hda"); StorageManagement::initialize(root, force_pio); if (!VFS::the().mount_root(StorageManagement::the().root_filesystem())) { klog() << "VFS::mount_root failed"; Processor::halt(); } Process::current()->set_root_directory(VFS::the().root_custody()); load_kernel_symbol_table(); int error; // FIXME: It would be nicer to set the mode from userspace. tty0->set_graphical(!text_mode); RefPtr thread; auto userspace_init = kernel_command_line().lookup("init").value_or("/bin/SystemServer"); auto init_args = kernel_command_line().lookup("init_args").value_or("").split(','); if (!init_args.is_empty()) init_args.prepend(userspace_init); Process::create_user_process(thread, userspace_init, (uid_t)0, (gid_t)0, ProcessID(0), error, move(init_args), {}, tty0); if (error != 0) { klog() << "init_stage2: error spawning SystemServer: " << error; Processor::halt(); } thread->set_priority(THREAD_PRIORITY_HIGH); NetworkTask::spawn(); Process::current()->sys$exit(0); ASSERT_NOT_REACHED(); } void setup_serial_debug() { // serial_debug will output all the klog() and dbgln() data to COM1 at // 8-N-1 57600 baud. this is particularly useful for debugging the boot // process on live hardware. u32 cmdline = low_physical_to_virtual(multiboot_info_ptr->cmdline); if (cmdline && StringView(reinterpret_cast(cmdline)).contains("serial_debug")) set_serial_debug(true); } extern "C" { multiboot_info_t* multiboot_info_ptr; } // Define some Itanium C++ ABI methods to stop the linker from complaining. // If we actually call these something has gone horribly wrong void* __dso_handle __attribute__((visibility("hidden"))); }