/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include //#define VRA_DEBUG #define VM_GUARD_PAGES RangeAllocator::RangeAllocator() { } void RangeAllocator::initialize_with_range(VirtualAddress base, size_t size) { m_total_range = { base, size }; m_available_ranges.append({ base, size }); #ifdef VRA_DEBUG dump(); #endif } void RangeAllocator::initialize_from_parent(const RangeAllocator& parent_allocator) { m_total_range = parent_allocator.m_total_range; m_available_ranges = parent_allocator.m_available_ranges; } RangeAllocator::~RangeAllocator() { } void RangeAllocator::dump() const { dbgprintf("RangeAllocator{%p}\n", this); for (auto& range : m_available_ranges) { dbgprintf(" %x -> %x\n", range.base().get(), range.end().get() - 1); } } Vector Range::carve(const Range& taken) { Vector parts; if (taken == *this) return {}; if (taken.base() > base()) parts.append({ base(), taken.base().get() - base().get() }); if (taken.end() < end()) parts.append({ taken.end(), end().get() - taken.end().get() }); #ifdef VRA_DEBUG dbgprintf("VRA: carve: take %x-%x from %x-%x\n", taken.base().get(), taken.end().get() - 1, base().get(), end().get() - 1); for (int i = 0; i < parts.size(); ++i) dbgprintf(" %x-%x\n", parts[i].base().get(), parts[i].end().get() - 1); #endif return parts; } void RangeAllocator::carve_at_index(int index, const Range& range) { auto remaining_parts = m_available_ranges[index].carve(range); ASSERT(remaining_parts.size() >= 1); m_available_ranges[index] = remaining_parts[0]; if (remaining_parts.size() == 2) m_available_ranges.insert(index + 1, move(remaining_parts[1])); } Range RangeAllocator::allocate_anywhere(size_t size) { #ifdef VM_GUARD_PAGES // NOTE: We pad VM allocations with a guard page on each side. size_t effective_size = size + PAGE_SIZE * 2; size_t offset_from_effective_base = PAGE_SIZE; #else size_t effective_size = size; size_t offset_from_effective_base = 0; #endif for (int i = 0; i < m_available_ranges.size(); ++i) { auto& available_range = m_available_ranges[i]; if (available_range.size() < effective_size) continue; Range allocated_range(available_range.base().offset(offset_from_effective_base), size); if (available_range.size() == effective_size) { #ifdef VRA_DEBUG dbgprintf("VRA: Allocated perfect-fit anywhere(%u): %x\n", size, allocated_range.base().get()); #endif m_available_ranges.remove(i); return allocated_range; } carve_at_index(i, allocated_range); #ifdef VRA_DEBUG dbgprintf("VRA: Allocated anywhere(%u): %x\n", size, allocated_range.base().get()); dump(); #endif return allocated_range; } kprintf("VRA: Failed to allocate anywhere: %u\n", size); return {}; } Range RangeAllocator::allocate_specific(VirtualAddress base, size_t size) { Range allocated_range(base, size); for (int i = 0; i < m_available_ranges.size(); ++i) { auto& available_range = m_available_ranges[i]; if (!available_range.contains(base, size)) continue; if (available_range == allocated_range) { m_available_ranges.remove(i); return allocated_range; } carve_at_index(i, allocated_range); #ifdef VRA_DEBUG dbgprintf("VRA: Allocated specific(%u): %x\n", size, available_range.base().get()); dump(); #endif return allocated_range; } kprintf("VRA: Failed to allocate specific range: %x(%u)\n", base.get(), size); return {}; } void RangeAllocator::deallocate(Range range) { ASSERT(m_total_range.contains(range)); ASSERT(range.size()); ASSERT(range.base() < range.end()); #ifdef VRA_DEBUG dbgprintf("VRA: Deallocate: %x(%u)\n", range.base().get(), range.size()); dump(); #endif ASSERT(!m_available_ranges.is_empty()); int nearby_index = 0; auto* existing_range = binary_search( m_available_ranges.data(), m_available_ranges.size(), range, [](auto& a, auto& b) { return a.base().get() - b.end().get(); }, &nearby_index); int inserted_index = 0; if (existing_range) { existing_range->m_size += range.size(); inserted_index = nearby_index; } else { m_available_ranges.insert_before_matching( Range(range), [&](auto& entry) { return entry.base() >= range.end(); }, nearby_index, &inserted_index); } if (inserted_index < (m_available_ranges.size() - 1)) { // We already merged with previous. Try to merge with next. auto& inserted_range = m_available_ranges[inserted_index]; auto& next_range = m_available_ranges[inserted_index + 1]; if (inserted_range.end() == next_range.base()) { inserted_range.m_size += next_range.size(); m_available_ranges.remove(inserted_index + 1); return; } } #ifdef VRA_DEBUG dbgprintf("VRA: After deallocate\n"); dump(); #endif }