/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include namespace Kernel { static AK::Singleton> s_cr3_map; static HashMap& cr3_map() { VERIFY_INTERRUPTS_DISABLED(); return *s_cr3_map; } RefPtr PageDirectory::find_by_cr3(FlatPtr cr3) { ScopedSpinLock lock(s_mm_lock); return cr3_map().get(cr3).value_or({}); } #if ARCH(X86_64) extern "C" PageDirectoryEntry boot_pml4t[1024]; #endif extern "C" PageDirectoryEntry* boot_pdpt[4]; extern "C" PageDirectoryEntry boot_pd0[1024]; extern "C" PageDirectoryEntry boot_pd3[1024]; UNMAP_AFTER_INIT PageDirectory::PageDirectory() { m_range_allocator.initialize_with_range(VirtualAddress(KERNEL_BASE + KERNEL_PD_OFFSET), KERNEL_PD_END - (KERNEL_BASE + KERNEL_PD_OFFSET)); m_identity_range_allocator.initialize_with_range(VirtualAddress(FlatPtr(0x00000000)), 0x00200000); } UNMAP_AFTER_INIT void PageDirectory::allocate_kernel_directory() { // Adopt the page tables already set up by boot.S #if ARCH(X86_64) PhysicalAddress boot_pml4t_paddr(virtual_to_low_physical((FlatPtr)boot_pml4t)); dmesgln("MM: boot_pml4t @ {}", boot_pml4t_paddr); m_pml4t = PhysicalPage::create(boot_pml4t_paddr, true, false); #endif PhysicalAddress boot_pdpt_paddr(virtual_to_low_physical((FlatPtr)boot_pdpt)); PhysicalAddress boot_pd0_paddr(virtual_to_low_physical((FlatPtr)boot_pd0)); PhysicalAddress boot_pd3_paddr(virtual_to_low_physical((FlatPtr)boot_pd3)); dmesgln("MM: boot_pdpt @ {}", boot_pdpt_paddr); dmesgln("MM: boot_pd0 @ {}", boot_pd0_paddr); dmesgln("MM: boot_pd3 @ {}", boot_pd3_paddr); m_directory_table = PhysicalPage::create(boot_pdpt_paddr, true, false); m_directory_pages[0] = PhysicalPage::create(boot_pd0_paddr, true, false); m_directory_pages[3] = PhysicalPage::create(boot_pd3_paddr, true, false); } PageDirectory::PageDirectory(const RangeAllocator* parent_range_allocator) { constexpr FlatPtr userspace_range_base = 0x00800000; constexpr FlatPtr userspace_range_ceiling = 0xbe000000; ScopedSpinLock lock(s_mm_lock); if (parent_range_allocator) { m_range_allocator.initialize_from_parent(*parent_range_allocator); } else { size_t random_offset = (get_fast_random() % 32 * MiB) & PAGE_MASK; u32 base = userspace_range_base + random_offset; m_range_allocator.initialize_with_range(VirtualAddress(base), userspace_range_ceiling - base); } // Set up a userspace page directory #if ARCH(X86_64) m_pml4t = MM.allocate_user_physical_page(); if (!m_pml4t) return; #endif m_directory_table = MM.allocate_user_physical_page(); if (!m_directory_table) return; m_directory_pages[0] = MM.allocate_user_physical_page(); if (!m_directory_pages[0]) return; m_directory_pages[1] = MM.allocate_user_physical_page(); if (!m_directory_pages[1]) return; m_directory_pages[2] = MM.allocate_user_physical_page(); if (!m_directory_pages[2]) return; // Share the top 1 GiB of kernel-only mappings (>=3GiB or >=KERNEL_BASE) m_directory_pages[3] = MM.kernel_page_directory().m_directory_pages[3]; #if ARCH(X86_64) { auto& table = *(PageDirectoryPointerTable*)MM.quickmap_page(*m_pml4t); table.raw[0] = (FlatPtr)m_directory_table->paddr().as_ptr() | 7; MM.unquickmap_page(); } #endif { auto& table = *(PageDirectoryPointerTable*)MM.quickmap_page(*m_directory_table); #if ARCH(I386) table.raw[0] = (FlatPtr)m_directory_pages[0]->paddr().as_ptr() | 1; table.raw[1] = (FlatPtr)m_directory_pages[1]->paddr().as_ptr() | 1; table.raw[2] = (FlatPtr)m_directory_pages[2]->paddr().as_ptr() | 1; table.raw[3] = (FlatPtr)m_directory_pages[3]->paddr().as_ptr() | 1; #else table.raw[0] = (FlatPtr)m_directory_pages[0]->paddr().as_ptr() | 7; table.raw[1] = (FlatPtr)m_directory_pages[1]->paddr().as_ptr() | 7; table.raw[2] = (FlatPtr)m_directory_pages[2]->paddr().as_ptr() | 7; table.raw[3] = (FlatPtr)m_directory_pages[3]->paddr().as_ptr() | 7; #endif // 2 ** MAXPHYADDR - 1 // Where MAXPHYADDR = physical_address_bit_width u64 max_physical_address = (1ULL << Processor::current().physical_address_bit_width()) - 1; // bit 63 = no execute // bit 7 = page size // bit 5 = accessed // bit 4 = cache disable // bit 3 = write through // bit 2 = user/supervisor // bit 1 = read/write // bit 0 = present constexpr u64 pdpte_bit_flags = 0x80000000000000BF; // This is to notify us of bugs where we're: // 1. Going over what the processor is capable of. // 2. Writing into the reserved bits (51:MAXPHYADDR), where doing so throws a GPF // when writing out the PDPT pointer to CR3. // The reason we're not checking the page directory's physical address directly is because // we're checking for sign extension when putting it into a PDPTE. See issue #4584. VERIFY((table.raw[0] & ~pdpte_bit_flags) <= max_physical_address); VERIFY((table.raw[1] & ~pdpte_bit_flags) <= max_physical_address); VERIFY((table.raw[2] & ~pdpte_bit_flags) <= max_physical_address); VERIFY((table.raw[3] & ~pdpte_bit_flags) <= max_physical_address); MM.unquickmap_page(); } // Clone bottom 2 MiB of mappings from kernel_page_directory PageDirectoryEntry buffer; auto* kernel_pd = MM.quickmap_pd(MM.kernel_page_directory(), 0); memcpy(&buffer, kernel_pd, sizeof(PageDirectoryEntry)); auto* new_pd = MM.quickmap_pd(*this, 0); memcpy(new_pd, &buffer, sizeof(PageDirectoryEntry)); // If we got here, we successfully created it. Set m_space now m_valid = true; cr3_map().set(cr3(), this); } PageDirectory::~PageDirectory() { ScopedSpinLock lock(s_mm_lock); if (m_space) cr3_map().remove(cr3()); } }