/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern u8* start_of_kernel_image; extern u8* end_of_kernel_image; extern FlatPtr start_of_kernel_text; extern FlatPtr start_of_kernel_data; extern FlatPtr end_of_kernel_bss; extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16]; extern size_t multiboot_copy_boot_modules_count; // Treat the super pages as logically separate from .bss __attribute__((section(".super_pages"))) static u8 super_pages[1 * MiB]; namespace Kernel { // NOTE: We can NOT use AK::Singleton for this class, because // MemoryManager::initialize is called *before* global constructors are // run. If we do, then AK::Singleton would get re-initialized, causing // the memory manager to be initialized twice! static MemoryManager* s_the; RecursiveSpinLock s_mm_lock; const LogStream& operator<<(const LogStream& stream, const UsedMemoryRange& value) { return stream << UserMemoryRangeTypeNames[static_cast(value.type)] << " range @ " << value.start << " - " << value.end; } MemoryManager& MM { return *s_the; } bool MemoryManager::is_initialized() { return s_the != nullptr; } MemoryManager::MemoryManager() { ScopedSpinLock lock(s_mm_lock); m_kernel_page_directory = PageDirectory::create_kernel_page_directory(); parse_memory_map(); write_cr3(kernel_page_directory().cr3()); protect_kernel_image(); // We're temporarily "committing" to two pages that we need to allocate below if (!commit_user_physical_pages(2)) ASSERT_NOT_REACHED(); m_shared_zero_page = allocate_committed_user_physical_page(); // We're wasting a page here, we just need a special tag (physical // address) so that we know when we need to lazily allocate a page // that we should be drawing this page from the committed pool rather // than potentially failing if no pages are available anymore. // By using a tag we don't have to query the VMObject for every page // whether it was committed or not m_lazy_committed_page = allocate_committed_user_physical_page(); } MemoryManager::~MemoryManager() { } void MemoryManager::protect_kernel_image() { ScopedSpinLock page_lock(kernel_page_directory().get_lock()); // Disable writing to the kernel text and rodata segments. for (size_t i = (FlatPtr)&start_of_kernel_text; i < (FlatPtr)&start_of_kernel_data; i += PAGE_SIZE) { auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i)); pte.set_writable(false); } if (Processor::current().has_feature(CPUFeature::NX)) { // Disable execution of the kernel data, bss and heap segments. for (size_t i = (FlatPtr)&start_of_kernel_data; i < (FlatPtr)&end_of_kernel_image; i += PAGE_SIZE) { auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i)); pte.set_execute_disabled(true); } } } void MemoryManager::parse_memory_map() { RefPtr region; // Register used memory regions that we know of. m_used_memory_ranges.ensure_capacity(4); m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) }); m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical(FlatPtr(&start_of_kernel_image))), PhysicalAddress(PAGE_ROUND_UP(virtual_to_low_physical(FlatPtr(&end_of_kernel_image)))) }); if (multiboot_info_ptr->flags & 0x4) { auto* bootmods_start = multiboot_copy_boot_modules_array; auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count; for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) { m_used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) }); } } auto* mmap_begin = reinterpret_cast(low_physical_to_virtual(multiboot_info_ptr->mmap_addr)); auto* mmap_end = reinterpret_cast(low_physical_to_virtual(multiboot_info_ptr->mmap_addr) + multiboot_info_ptr->mmap_length); for (auto used_range : m_used_memory_ranges) { klog() << "MM: " << used_range; } for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) { klog() << "MM: Multiboot mmap: address = " << String::format("0x%016llx", mmap->addr) << ", length = " << String::format("0x%016llx", mmap->len) << ", type = 0x" << String::format("%x", mmap->type); if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE) continue; if ((mmap->addr + mmap->len) > 0xffffffff) continue; // Fix up unaligned memory regions. auto diff = (FlatPtr)mmap->addr % PAGE_SIZE; if (diff != 0) { klog() << "MM: got an unaligned region base from the bootloader; correcting " << String::format("%p", (void*)mmap->addr) << " by " << diff << " bytes"; diff = PAGE_SIZE - diff; mmap->addr += diff; mmap->len -= diff; } if ((mmap->len % PAGE_SIZE) != 0) { klog() << "MM: got an unaligned region length from the bootloader; correcting " << mmap->len << " by " << (mmap->len % PAGE_SIZE) << " bytes"; mmap->len -= mmap->len % PAGE_SIZE; } if (mmap->len < PAGE_SIZE) { klog() << "MM: memory region from bootloader is too small; we want >= " << PAGE_SIZE << " bytes, but got " << mmap->len << " bytes"; continue; } for (size_t page_base = mmap->addr; page_base <= (mmap->addr + mmap->len); page_base += PAGE_SIZE) { auto addr = PhysicalAddress(page_base); // Skip used memory ranges. bool should_skip = false; for (auto used_range : m_used_memory_ranges) { if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) { should_skip = true; break; } } if (should_skip) continue; // Assign page to user physical region. if (region.is_null() || region->upper().offset(PAGE_SIZE) != addr) { m_user_physical_regions.append(PhysicalRegion::create(addr, addr)); region = m_user_physical_regions.last(); } else { region->expand(region->lower(), addr); } } } // Append statically-allocated super physical region. m_super_physical_regions.append(PhysicalRegion::create( PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages))), PhysicalAddress(virtual_to_low_physical(FlatPtr(super_pages + sizeof(super_pages)))))); for (auto& region : m_super_physical_regions) { m_super_physical_pages += region.finalize_capacity(); klog() << "MM: Super physical region: " << region.lower() << " - " << region.upper(); } for (auto& region : m_user_physical_regions) { m_user_physical_pages += region.finalize_capacity(); klog() << "MM: User physical region: " << region.lower() << " - " << region.upper(); } ASSERT(m_super_physical_pages > 0); ASSERT(m_user_physical_pages > 0); // We start out with no committed pages m_user_physical_pages_uncommitted = m_user_physical_pages.load(); } PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(s_mm_lock.own_lock()); ASSERT(page_directory.get_lock().own_lock()); u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3; u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff; u32 page_table_index = (vaddr.get() >> 12) & 0x1ff; auto* pd = quickmap_pd(const_cast(page_directory), page_directory_table_index); const PageDirectoryEntry& pde = pd[page_directory_index]; if (!pde.is_present()) return nullptr; return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index]; } PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(s_mm_lock.own_lock()); ASSERT(page_directory.get_lock().own_lock()); u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3; u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff; u32 page_table_index = (vaddr.get() >> 12) & 0x1ff; auto* pd = quickmap_pd(page_directory, page_directory_table_index); PageDirectoryEntry& pde = pd[page_directory_index]; if (!pde.is_present()) { bool did_purge = false; auto page_table = allocate_user_physical_page(ShouldZeroFill::Yes, &did_purge); if (!page_table) { dbgln("MM: Unable to allocate page table to map {}", vaddr); return nullptr; } if (did_purge) { // If any memory had to be purged, ensure_pte may have been called as part // of the purging process. So we need to re-map the pd in this case to ensure // we're writing to the correct underlying physical page pd = quickmap_pd(page_directory, page_directory_table_index); ASSERT(&pde == &pd[page_directory_index]); // Sanity check ASSERT(!pde.is_present()); // Should have not changed } pde.set_page_table_base(page_table->paddr().get()); pde.set_user_allowed(true); pde.set_present(true); pde.set_writable(true); pde.set_global(&page_directory == m_kernel_page_directory.ptr()); // Use page_directory_table_index and page_directory_index as key // This allows us to release the page table entry when no longer needed auto result = page_directory.m_page_tables.set(vaddr.get() & ~0x1fffff, move(page_table)); ASSERT(result == AK::HashSetResult::InsertedNewEntry); } return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index]; } void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, bool is_last_release) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(s_mm_lock.own_lock()); ASSERT(page_directory.get_lock().own_lock()); u32 page_directory_table_index = (vaddr.get() >> 30) & 0x3; u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff; u32 page_table_index = (vaddr.get() >> 12) & 0x1ff; auto* pd = quickmap_pd(page_directory, page_directory_table_index); PageDirectoryEntry& pde = pd[page_directory_index]; if (pde.is_present()) { auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base())); auto& pte = page_table[page_table_index]; pte.clear(); if (is_last_release || page_table_index == 0x1ff) { // If this is the last PTE in a region or the last PTE in a page table then // check if we can also release the page table bool all_clear = true; for (u32 i = 0; i <= 0x1ff; i++) { if (!page_table[i].is_null()) { all_clear = false; break; } } if (all_clear) { pde.clear(); auto result = page_directory.m_page_tables.remove(vaddr.get() & ~0x1fffff); ASSERT(result); } } } } void MemoryManager::initialize(u32 cpu) { auto mm_data = new MemoryManagerData; Processor::current().set_mm_data(*mm_data); if (cpu == 0) { s_the = new MemoryManager; kmalloc_enable_expand(); } } Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr) { ScopedSpinLock lock(s_mm_lock); for (auto& region : MM.m_kernel_regions) { if (region.contains(vaddr)) return ®ion; } return nullptr; } Region* MemoryManager::user_region_from_vaddr(Process& process, VirtualAddress vaddr) { ScopedSpinLock lock(s_mm_lock); // FIXME: Use a binary search tree (maybe red/black?) or some other more appropriate data structure! for (auto& region : process.m_regions) { if (region.contains(vaddr)) return ®ion; } return nullptr; } Region* MemoryManager::find_region_from_vaddr(Process& process, VirtualAddress vaddr) { ScopedSpinLock lock(s_mm_lock); if (auto* region = user_region_from_vaddr(process, vaddr)) return region; return kernel_region_from_vaddr(vaddr); } const Region* MemoryManager::find_region_from_vaddr(const Process& process, VirtualAddress vaddr) { ScopedSpinLock lock(s_mm_lock); if (auto* region = user_region_from_vaddr(const_cast(process), vaddr)) return region; return kernel_region_from_vaddr(vaddr); } Region* MemoryManager::find_region_from_vaddr(VirtualAddress vaddr) { ScopedSpinLock lock(s_mm_lock); if (auto* region = kernel_region_from_vaddr(vaddr)) return region; auto page_directory = PageDirectory::find_by_cr3(read_cr3()); if (!page_directory) return nullptr; ASSERT(page_directory->process()); return user_region_from_vaddr(*page_directory->process(), vaddr); } PageFaultResponse MemoryManager::handle_page_fault(const PageFault& fault) { ASSERT_INTERRUPTS_DISABLED(); ScopedSpinLock lock(s_mm_lock); if (Processor::current().in_irq()) { dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}", Processor::id(), fault.code(), fault.vaddr(), Processor::current().in_irq()); dump_kernel_regions(); return PageFaultResponse::ShouldCrash; } #if PAGE_FAULT_DEBUG dbgln("MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::id(), fault.code(), fault.vaddr()); #endif auto* region = find_region_from_vaddr(fault.vaddr()); if (!region) { klog() << "CPU[" << Processor::id() << "] NP(error) fault at invalid address " << fault.vaddr(); return PageFaultResponse::ShouldCrash; } return region->handle_fault(fault); } OwnPtr MemoryManager::allocate_contiguous_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable) { ASSERT(!(size % PAGE_SIZE)); ScopedSpinLock lock(s_mm_lock); auto range = kernel_page_directory().range_allocator().allocate_anywhere(size); if (!range.has_value()) return {}; auto vmobject = ContiguousVMObject::create_with_size(size); return allocate_kernel_region_with_vmobject(range.value(), vmobject, name, access, user_accessible, cacheable); } OwnPtr MemoryManager::allocate_kernel_region(size_t size, const StringView& name, u8 access, bool user_accessible, AllocationStrategy strategy, bool cacheable) { ASSERT(!(size % PAGE_SIZE)); ScopedSpinLock lock(s_mm_lock); auto range = kernel_page_directory().range_allocator().allocate_anywhere(size); if (!range.has_value()) return {}; auto vmobject = AnonymousVMObject::create_with_size(size, strategy); if (!vmobject) return {}; return allocate_kernel_region_with_vmobject(range.value(), vmobject.release_nonnull(), name, access, user_accessible, cacheable); } OwnPtr MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable) { ASSERT(!(size % PAGE_SIZE)); ScopedSpinLock lock(s_mm_lock); auto range = kernel_page_directory().range_allocator().allocate_anywhere(size); if (!range.has_value()) return {}; auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size); if (!vmobject) return {}; return allocate_kernel_region_with_vmobject(range.value(), *vmobject, name, access, user_accessible, cacheable); } OwnPtr MemoryManager::allocate_kernel_region_identity(PhysicalAddress paddr, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable) { ASSERT(!(size % PAGE_SIZE)); ScopedSpinLock lock(s_mm_lock); auto range = kernel_page_directory().identity_range_allocator().allocate_specific(VirtualAddress(paddr.get()), size); if (!range.has_value()) return {}; auto vmobject = AnonymousVMObject::create_for_physical_range(paddr, size); if (!vmobject) return {}; return allocate_kernel_region_with_vmobject(range.value(), *vmobject, name, access, user_accessible, cacheable); } OwnPtr MemoryManager::allocate_user_accessible_kernel_region(size_t size, const StringView& name, u8 access, bool cacheable) { return allocate_kernel_region(size, name, access, true, AllocationStrategy::Reserve, cacheable); } OwnPtr MemoryManager::allocate_kernel_region_with_vmobject(const Range& range, VMObject& vmobject, const StringView& name, u8 access, bool user_accessible, bool cacheable) { ScopedSpinLock lock(s_mm_lock); OwnPtr region; if (user_accessible) region = Region::create_user_accessible(nullptr, range, vmobject, 0, name, access, cacheable, false); else region = Region::create_kernel_only(range, vmobject, 0, name, access, cacheable); if (region) region->map(kernel_page_directory()); return region; } OwnPtr MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, const StringView& name, u8 access, bool user_accessible, bool cacheable) { ASSERT(!(size % PAGE_SIZE)); ScopedSpinLock lock(s_mm_lock); auto range = kernel_page_directory().range_allocator().allocate_anywhere(size); if (!range.has_value()) return {}; return allocate_kernel_region_with_vmobject(range.value(), vmobject, name, access, user_accessible, cacheable); } bool MemoryManager::commit_user_physical_pages(size_t page_count) { ASSERT(page_count > 0); ScopedSpinLock lock(s_mm_lock); if (m_user_physical_pages_uncommitted < page_count) return false; m_user_physical_pages_uncommitted -= page_count; m_user_physical_pages_committed += page_count; return true; } void MemoryManager::uncommit_user_physical_pages(size_t page_count) { ASSERT(page_count > 0); ScopedSpinLock lock(s_mm_lock); ASSERT(m_user_physical_pages_committed >= page_count); m_user_physical_pages_uncommitted += page_count; m_user_physical_pages_committed -= page_count; } void MemoryManager::deallocate_user_physical_page(const PhysicalPage& page) { ScopedSpinLock lock(s_mm_lock); for (auto& region : m_user_physical_regions) { if (!region.contains(page)) continue; region.return_page(page); --m_user_physical_pages_used; // Always return pages to the uncommitted pool. Pages that were // committed and allocated are only freed upon request. Once // returned there is no guarantee being able to get them back. ++m_user_physical_pages_uncommitted; return; } klog() << "MM: deallocate_user_physical_page couldn't figure out region for user page @ " << page.paddr(); ASSERT_NOT_REACHED(); } RefPtr MemoryManager::find_free_user_physical_page(bool committed) { ASSERT(s_mm_lock.is_locked()); RefPtr page; if (committed) { // Draw from the committed pages pool. We should always have these pages available ASSERT(m_user_physical_pages_committed > 0); m_user_physical_pages_committed--; } else { // We need to make sure we don't touch pages that we have committed to if (m_user_physical_pages_uncommitted == 0) return {}; m_user_physical_pages_uncommitted--; } for (auto& region : m_user_physical_regions) { page = region.take_free_page(false); if (!page.is_null()) { ++m_user_physical_pages_used; break; } } ASSERT(!committed || !page.is_null()); return page; } NonnullRefPtr MemoryManager::allocate_committed_user_physical_page(ShouldZeroFill should_zero_fill) { ScopedSpinLock lock(s_mm_lock); auto page = find_free_user_physical_page(true); if (should_zero_fill == ShouldZeroFill::Yes) { auto* ptr = quickmap_page(*page); memset(ptr, 0, PAGE_SIZE); unquickmap_page(); } return page.release_nonnull(); } RefPtr MemoryManager::allocate_user_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge) { ScopedSpinLock lock(s_mm_lock); auto page = find_free_user_physical_page(false); bool purged_pages = false; if (!page) { // We didn't have a single free physical page. Let's try to free something up! // First, we look for a purgeable VMObject in the volatile state. for_each_vmobject([&](auto& vmobject) { if (!vmobject.is_anonymous()) return IterationDecision::Continue; int purged_page_count = static_cast(vmobject).purge_with_interrupts_disabled({}); if (purged_page_count) { klog() << "MM: Purge saved the day! Purged " << purged_page_count << " pages from AnonymousVMObject{" << &vmobject << "}"; page = find_free_user_physical_page(false); purged_pages = true; ASSERT(page); return IterationDecision::Break; } return IterationDecision::Continue; }); if (!page) { klog() << "MM: no user physical pages available"; return {}; } } if (should_zero_fill == ShouldZeroFill::Yes) { auto* ptr = quickmap_page(*page); memset(ptr, 0, PAGE_SIZE); unquickmap_page(); } if (did_purge) *did_purge = purged_pages; return page; } void MemoryManager::deallocate_supervisor_physical_page(const PhysicalPage& page) { ScopedSpinLock lock(s_mm_lock); for (auto& region : m_super_physical_regions) { if (!region.contains(page)) { klog() << "MM: deallocate_supervisor_physical_page: " << page.paddr() << " not in " << region.lower() << " -> " << region.upper(); continue; } region.return_page(page); --m_super_physical_pages_used; return; } klog() << "MM: deallocate_supervisor_physical_page couldn't figure out region for super page @ " << page.paddr(); ASSERT_NOT_REACHED(); } NonnullRefPtrVector MemoryManager::allocate_contiguous_supervisor_physical_pages(size_t size) { ASSERT(!(size % PAGE_SIZE)); ScopedSpinLock lock(s_mm_lock); size_t count = ceil_div(size, PAGE_SIZE); NonnullRefPtrVector physical_pages; for (auto& region : m_super_physical_regions) { physical_pages = region.take_contiguous_free_pages((count), true); if (!physical_pages.is_empty()) break; } if (physical_pages.is_empty()) { if (m_super_physical_regions.is_empty()) { klog() << "MM: no super physical regions available (?)"; } klog() << "MM: no super physical pages available"; ASSERT_NOT_REACHED(); return {}; } auto cleanup_region = MM.allocate_kernel_region(physical_pages[0].paddr(), PAGE_SIZE * count, "MemoryManager Allocation Sanitization", Region::Access::Read | Region::Access::Write); fast_u32_fill((u32*)cleanup_region->vaddr().as_ptr(), 0, (PAGE_SIZE * count) / sizeof(u32)); m_super_physical_pages_used += count; return physical_pages; } RefPtr MemoryManager::allocate_supervisor_physical_page() { ScopedSpinLock lock(s_mm_lock); RefPtr page; for (auto& region : m_super_physical_regions) { page = region.take_free_page(true); if (!page.is_null()) break; } if (!page) { if (m_super_physical_regions.is_empty()) { klog() << "MM: no super physical regions available (?)"; } klog() << "MM: no super physical pages available"; ASSERT_NOT_REACHED(); return {}; } fast_u32_fill((u32*)page->paddr().offset(0xc0000000).as_ptr(), 0, PAGE_SIZE / sizeof(u32)); ++m_super_physical_pages_used; return page; } void MemoryManager::enter_process_paging_scope(Process& process) { auto current_thread = Thread::current(); ASSERT(current_thread != nullptr); ScopedSpinLock lock(s_mm_lock); current_thread->tss().cr3 = process.page_directory().cr3(); write_cr3(process.page_directory().cr3()); } void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count) { Processor::flush_tlb_local(vaddr, page_count); } void MemoryManager::flush_tlb(const PageDirectory* page_directory, VirtualAddress vaddr, size_t page_count) { Processor::flush_tlb(page_directory, vaddr, page_count); } extern "C" PageTableEntry boot_pd3_pt1023[1024]; PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index) { ASSERT(s_mm_lock.own_lock()); auto& mm_data = get_data(); auto& pte = boot_pd3_pt1023[4]; auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr(); if (pte.physical_page_base() != pd_paddr.as_ptr()) { pte.set_physical_page_base(pd_paddr.get()); pte.set_present(true); pte.set_writable(true); pte.set_user_allowed(false); // Because we must continue to hold the MM lock while we use this // mapping, it is sufficient to only flush on the current CPU. Other // CPUs trying to use this API must wait on the MM lock anyway flush_tlb_local(VirtualAddress(0xffe04000)); } else { // Even though we don't allow this to be called concurrently, it's // possible that this PD was mapped on a different CPU and we don't // broadcast the flush. If so, we still need to flush the TLB. if (mm_data.m_last_quickmap_pd != pd_paddr) flush_tlb_local(VirtualAddress(0xffe04000)); } mm_data.m_last_quickmap_pd = pd_paddr; return (PageDirectoryEntry*)0xffe04000; } PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr) { ASSERT(s_mm_lock.own_lock()); auto& mm_data = get_data(); auto& pte = boot_pd3_pt1023[0]; if (pte.physical_page_base() != pt_paddr.as_ptr()) { pte.set_physical_page_base(pt_paddr.get()); pte.set_present(true); pte.set_writable(true); pte.set_user_allowed(false); // Because we must continue to hold the MM lock while we use this // mapping, it is sufficient to only flush on the current CPU. Other // CPUs trying to use this API must wait on the MM lock anyway flush_tlb_local(VirtualAddress(0xffe00000)); } else { // Even though we don't allow this to be called concurrently, it's // possible that this PT was mapped on a different CPU and we don't // broadcast the flush. If so, we still need to flush the TLB. if (mm_data.m_last_quickmap_pt != pt_paddr) flush_tlb_local(VirtualAddress(0xffe00000)); } mm_data.m_last_quickmap_pt = pt_paddr; return (PageTableEntry*)0xffe00000; } u8* MemoryManager::quickmap_page(PhysicalPage& physical_page) { ASSERT_INTERRUPTS_DISABLED(); auto& mm_data = get_data(); mm_data.m_quickmap_prev_flags = mm_data.m_quickmap_in_use.lock(); ScopedSpinLock lock(s_mm_lock); u32 pte_idx = 8 + Processor::id(); VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE); auto& pte = boot_pd3_pt1023[pte_idx]; if (pte.physical_page_base() != physical_page.paddr().as_ptr()) { pte.set_physical_page_base(physical_page.paddr().get()); pte.set_present(true); pte.set_writable(true); pte.set_user_allowed(false); flush_tlb_local(vaddr); } return vaddr.as_ptr(); } void MemoryManager::unquickmap_page() { ASSERT_INTERRUPTS_DISABLED(); ScopedSpinLock lock(s_mm_lock); auto& mm_data = get_data(); ASSERT(mm_data.m_quickmap_in_use.is_locked()); u32 pte_idx = 8 + Processor::id(); VirtualAddress vaddr(0xffe00000 + pte_idx * PAGE_SIZE); auto& pte = boot_pd3_pt1023[pte_idx]; pte.clear(); flush_tlb_local(vaddr); mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_prev_flags); } template bool MemoryManager::validate_range(const Process& process, VirtualAddress base_vaddr, size_t size) const { ASSERT(s_mm_lock.is_locked()); ASSERT(size); if (base_vaddr > base_vaddr.offset(size)) { dbgln("Shenanigans! Asked to validate wrappy {} size={}", base_vaddr, size); return false; } VirtualAddress vaddr = base_vaddr.page_base(); VirtualAddress end_vaddr = base_vaddr.offset(size - 1).page_base(); if (end_vaddr < vaddr) { dbgln("Shenanigans! Asked to validate {} size={}", base_vaddr, size); return false; } const Region* region = nullptr; while (vaddr <= end_vaddr) { if (!region || !region->contains(vaddr)) { if (space == AccessSpace::Kernel) region = kernel_region_from_vaddr(vaddr); if (!region || !region->contains(vaddr)) region = user_region_from_vaddr(const_cast(process), vaddr); if (!region || (space == AccessSpace::User && !region->is_user_accessible()) || (access_type == AccessType::Read && !region->is_readable()) || (access_type == AccessType::Write && !region->is_writable())) { return false; } } vaddr = region->range().end(); } return true; } bool MemoryManager::validate_user_stack(const Process& process, VirtualAddress vaddr) const { if (!is_user_address(vaddr)) return false; ScopedSpinLock lock(s_mm_lock); auto* region = user_region_from_vaddr(const_cast(process), vaddr); return region && region->is_user_accessible() && region->is_stack(); } void MemoryManager::register_vmobject(VMObject& vmobject) { ScopedSpinLock lock(s_mm_lock); m_vmobjects.append(&vmobject); } void MemoryManager::unregister_vmobject(VMObject& vmobject) { ScopedSpinLock lock(s_mm_lock); m_vmobjects.remove(&vmobject); } void MemoryManager::register_region(Region& region) { ScopedSpinLock lock(s_mm_lock); if (region.is_kernel()) m_kernel_regions.append(®ion); else m_user_regions.append(®ion); } void MemoryManager::unregister_region(Region& region) { ScopedSpinLock lock(s_mm_lock); if (region.is_kernel()) m_kernel_regions.remove(®ion); else m_user_regions.remove(®ion); } void MemoryManager::dump_kernel_regions() { klog() << "Kernel regions:"; klog() << "BEGIN END SIZE ACCESS NAME"; ScopedSpinLock lock(s_mm_lock); for (auto& region : MM.m_kernel_regions) { klog() << String::format("%08x", region.vaddr().get()) << " -- " << String::format("%08x", region.vaddr().offset(region.size() - 1).get()) << " " << String::format("%08zx", region.size()) << " " << (region.is_readable() ? 'R' : ' ') << (region.is_writable() ? 'W' : ' ') << (region.is_executable() ? 'X' : ' ') << (region.is_shared() ? 'S' : ' ') << (region.is_stack() ? 'T' : ' ') << (region.vmobject().is_anonymous() ? 'A' : ' ') << " " << region.name().characters(); } } }