/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include namespace Kernel { RefPtr AnonymousVMObject::try_clone() { // We need to acquire our lock so we copy a sane state ScopedSpinLock lock(m_lock); // We're the parent. Since we're about to become COW we need to // commit the number of pages that we need to potentially allocate // so that the parent is still guaranteed to be able to have all // non-volatile memory available. size_t need_cow_pages = 0; // We definitely need to commit non-volatile areas for_each_nonvolatile_range([&](VolatilePageRange const& nonvolatile_range) { need_cow_pages += nonvolatile_range.count; }); dbgln_if(COMMIT_DEBUG, "Cloning {:p}, need {} committed cow pages", this, need_cow_pages); if (!MM.commit_user_physical_pages(need_cow_pages)) return {}; // Create or replace the committed cow pages. When cloning a previously // cloned vmobject, we want to essentially "fork", leaving us and the // new clone with one set of shared committed cow pages, and the original // one would keep the one it still has. This ensures that the original // one and this one, as well as the clone have sufficient resources // to cow all pages as needed m_shared_committed_cow_pages = try_create(need_cow_pages); if (!m_shared_committed_cow_pages) { MM.uncommit_user_physical_pages(need_cow_pages); return {}; } // Both original and clone become COW. So create a COW map for ourselves // or reset all pages to be copied again if we were previously cloned ensure_or_reset_cow_map(); // FIXME: If this allocation fails, we need to rollback all changes. return adopt_ref_if_nonnull(new (nothrow) AnonymousVMObject(*this)); } RefPtr AnonymousVMObject::try_create_with_size(size_t size, AllocationStrategy commit) { if (commit == AllocationStrategy::Reserve || commit == AllocationStrategy::AllocateNow) { // We need to attempt to commit before actually creating the object if (!MM.commit_user_physical_pages(ceil_div(size, static_cast(PAGE_SIZE)))) return {}; } return adopt_ref_if_nonnull(new (nothrow) AnonymousVMObject(size, commit)); } RefPtr AnonymousVMObject::try_create_with_physical_pages(Span> physical_pages) { return adopt_ref_if_nonnull(new (nothrow) AnonymousVMObject(physical_pages)); } RefPtr AnonymousVMObject::try_create_for_physical_range(PhysicalAddress paddr, size_t size) { if (paddr.offset(size) < paddr) { dbgln("Shenanigans! try_create_for_physical_range({}, {}) would wrap around", paddr, size); return nullptr; } return adopt_ref_if_nonnull(new (nothrow) AnonymousVMObject(paddr, size)); } AnonymousVMObject::AnonymousVMObject(size_t size, AllocationStrategy strategy) : VMObject(size) , m_volatile_ranges_cache({ 0, page_count() }) , m_unused_committed_pages(strategy == AllocationStrategy::Reserve ? page_count() : 0) { if (strategy == AllocationStrategy::AllocateNow) { // Allocate all pages right now. We know we can get all because we committed the amount needed for (size_t i = 0; i < page_count(); ++i) physical_pages()[i] = MM.allocate_committed_user_physical_page(MemoryManager::ShouldZeroFill::Yes); } else { auto& initial_page = (strategy == AllocationStrategy::Reserve) ? MM.lazy_committed_page() : MM.shared_zero_page(); for (size_t i = 0; i < page_count(); ++i) physical_pages()[i] = initial_page; } } AnonymousVMObject::AnonymousVMObject(PhysicalAddress paddr, size_t size) : VMObject(size) , m_volatile_ranges_cache({ 0, page_count() }) { VERIFY(paddr.page_base() == paddr); for (size_t i = 0; i < page_count(); ++i) physical_pages()[i] = PhysicalPage::create(paddr.offset(i * PAGE_SIZE), MayReturnToFreeList::No); } AnonymousVMObject::AnonymousVMObject(Span> physical_pages) : VMObject(physical_pages.size() * PAGE_SIZE) , m_volatile_ranges_cache({ 0, page_count() }) { for (size_t i = 0; i < physical_pages.size(); ++i) { m_physical_pages[i] = physical_pages[i]; } } AnonymousVMObject::AnonymousVMObject(AnonymousVMObject const& other) : VMObject(other) , m_volatile_ranges_cache({ 0, page_count() }) // do *not* clone this , m_volatile_ranges_cache_dirty(true) // do *not* clone this , m_purgeable_ranges() // do *not* clone this , m_unused_committed_pages(other.m_unused_committed_pages) , m_cow_map() // do *not* clone this , m_shared_committed_cow_pages(other.m_shared_committed_cow_pages) // share the pool { // We can't really "copy" a spinlock. But we're holding it. Clear in the clone VERIFY(other.m_lock.is_locked()); m_lock.initialize(); // The clone also becomes COW ensure_or_reset_cow_map(); if (m_unused_committed_pages > 0) { // The original vmobject didn't use up all committed pages. When // cloning (fork) we will overcommit. For this purpose we drop all // lazy-commit references and replace them with shared zero pages. for (size_t i = 0; i < page_count(); i++) { auto& phys_page = m_physical_pages[i]; if (phys_page && phys_page->is_lazy_committed_page()) { phys_page = MM.shared_zero_page(); if (--m_unused_committed_pages == 0) break; } } VERIFY(m_unused_committed_pages == 0); } } AnonymousVMObject::~AnonymousVMObject() { // Return any unused committed pages if (m_unused_committed_pages > 0) MM.uncommit_user_physical_pages(m_unused_committed_pages); } int AnonymousVMObject::purge() { int purged_page_count = 0; ScopedSpinLock lock(m_lock); for_each_volatile_range([&](auto const& range) { int purged_in_range = 0; auto range_end = range.base + range.count; for (size_t i = range.base; i < range_end; i++) { auto& phys_page = m_physical_pages[i]; if (phys_page && !phys_page->is_shared_zero_page()) { VERIFY(!phys_page->is_lazy_committed_page()); ++purged_in_range; } phys_page = MM.shared_zero_page(); } if (purged_in_range > 0) { purged_page_count += purged_in_range; set_was_purged(range); for_each_region([&](auto& region) { if (auto owner = region.get_owner()) { // we need to hold a reference the process here (if there is one) as we may not own this region dmesgln("Purged {} pages from region {} owned by {} at {} - {}", purged_in_range, region.name(), *owner, region.vaddr_from_page_index(range.base), region.vaddr_from_page_index(range.base + range.count)); } else { dmesgln("Purged {} pages from region {} (no ownership) at {} - {}", purged_in_range, region.name(), region.vaddr_from_page_index(range.base), region.vaddr_from_page_index(range.base + range.count)); } region.remap_vmobject_page_range(range.base, range.count); }); } }); return purged_page_count; } void AnonymousVMObject::set_was_purged(VolatilePageRange const& range) { VERIFY(m_lock.is_locked()); for (auto* purgeable_ranges : m_purgeable_ranges) purgeable_ranges->set_was_purged(range); } void AnonymousVMObject::register_purgeable_page_ranges(PurgeablePageRanges& purgeable_page_ranges) { ScopedSpinLock lock(m_lock); purgeable_page_ranges.set_vmobject(this); VERIFY(!m_purgeable_ranges.contains_slow(&purgeable_page_ranges)); m_purgeable_ranges.append(&purgeable_page_ranges); } void AnonymousVMObject::unregister_purgeable_page_ranges(PurgeablePageRanges& purgeable_page_ranges) { ScopedSpinLock lock(m_lock); for (size_t i = 0; i < m_purgeable_ranges.size(); i++) { if (m_purgeable_ranges[i] != &purgeable_page_ranges) continue; purgeable_page_ranges.set_vmobject(nullptr); m_purgeable_ranges.remove(i); return; } VERIFY_NOT_REACHED(); } bool AnonymousVMObject::is_any_volatile() const { ScopedSpinLock lock(m_lock); for (auto& volatile_ranges : m_purgeable_ranges) { ScopedSpinLock lock(volatile_ranges->m_volatile_ranges_lock); if (!volatile_ranges->is_empty()) return true; } return false; } size_t AnonymousVMObject::remove_lazy_commit_pages(VolatilePageRange const& range) { VERIFY(m_lock.is_locked()); size_t removed_count = 0; auto range_end = range.base + range.count; for (size_t i = range.base; i < range_end; i++) { auto& phys_page = m_physical_pages[i]; if (phys_page && phys_page->is_lazy_committed_page()) { phys_page = MM.shared_zero_page(); removed_count++; VERIFY(m_unused_committed_pages > 0); if (--m_unused_committed_pages == 0) break; } } return removed_count; } void AnonymousVMObject::update_volatile_cache() { VERIFY(m_lock.is_locked()); VERIFY(m_volatile_ranges_cache_dirty); m_volatile_ranges_cache.clear(); for_each_nonvolatile_range([&](VolatilePageRange const& range) { m_volatile_ranges_cache.add_unchecked(range); }); m_volatile_ranges_cache_dirty = false; } void AnonymousVMObject::range_made_volatile(VolatilePageRange const& range) { VERIFY(m_lock.is_locked()); if (m_unused_committed_pages == 0) return; // We need to check this range for any pages that are marked for // lazy committed allocation and turn them into shared zero pages // and also adjust the m_unused_committed_pages for each such page. // Take into account all the other views as well. size_t uncommit_page_count = 0; for_each_volatile_range([&](auto const& r) { auto intersected = range.intersected(r); if (!intersected.is_empty()) { uncommit_page_count += remove_lazy_commit_pages(intersected); if (m_unused_committed_pages == 0) return IterationDecision::Break; } return IterationDecision::Continue; }); // Return those committed pages back to the system if (uncommit_page_count > 0) { dbgln_if(COMMIT_DEBUG, "Uncommit {} lazy-commit pages from {:p}", uncommit_page_count, this); MM.uncommit_user_physical_pages(uncommit_page_count); } m_volatile_ranges_cache_dirty = true; } void AnonymousVMObject::range_made_nonvolatile(VolatilePageRange const&) { VERIFY(m_lock.is_locked()); m_volatile_ranges_cache_dirty = true; } size_t AnonymousVMObject::count_needed_commit_pages_for_nonvolatile_range(VolatilePageRange const& range) { VERIFY(m_lock.is_locked()); VERIFY(!range.is_empty()); size_t need_commit_pages = 0; auto range_end = range.base + range.count; for (size_t page_index = range.base; page_index < range_end; page_index++) { // COW pages are accounted for in m_shared_committed_cow_pages if (!m_cow_map.is_null() && m_cow_map.get(page_index)) continue; auto& phys_page = m_physical_pages[page_index]; if (phys_page && phys_page->is_shared_zero_page()) need_commit_pages++; } return need_commit_pages; } size_t AnonymousVMObject::mark_committed_pages_for_nonvolatile_range(VolatilePageRange const& range, size_t mark_total) { VERIFY(m_lock.is_locked()); VERIFY(!range.is_empty()); VERIFY(mark_total > 0); size_t pages_updated = 0; auto range_end = range.base + range.count; for (size_t page_index = range.base; page_index < range_end; page_index++) { // COW pages are accounted for in m_shared_committed_cow_pages if (!m_cow_map.is_null() && m_cow_map.get(page_index)) continue; auto& phys_page = m_physical_pages[page_index]; if (phys_page && phys_page->is_shared_zero_page()) { phys_page = MM.lazy_committed_page(); if (++pages_updated == mark_total) break; } } dbgln_if(COMMIT_DEBUG, "Added {} lazy-commit pages to {:p}", pages_updated, this); m_unused_committed_pages += pages_updated; return pages_updated; } NonnullRefPtr AnonymousVMObject::allocate_committed_page(Badge, size_t page_index) { { ScopedSpinLock lock(m_lock); VERIFY(m_unused_committed_pages > 0); // We shouldn't have any committed page tags in volatile regions VERIFY([&]() { for (auto* purgeable_ranges : m_purgeable_ranges) { if (purgeable_ranges->is_volatile(page_index)) return false; } return true; }()); m_unused_committed_pages--; } return MM.allocate_committed_user_physical_page(MemoryManager::ShouldZeroFill::Yes); } Bitmap& AnonymousVMObject::ensure_cow_map() { if (m_cow_map.is_null()) m_cow_map = Bitmap { page_count(), true }; return m_cow_map; } void AnonymousVMObject::ensure_or_reset_cow_map() { if (m_cow_map.is_null()) ensure_cow_map(); else m_cow_map.fill(true); } bool AnonymousVMObject::should_cow(size_t page_index, bool is_shared) const { auto& page = physical_pages()[page_index]; if (page && (page->is_shared_zero_page() || page->is_lazy_committed_page())) return true; if (is_shared) return false; return !m_cow_map.is_null() && m_cow_map.get(page_index); } void AnonymousVMObject::set_should_cow(size_t page_index, bool cow) { ensure_cow_map().set(page_index, cow); } size_t AnonymousVMObject::cow_pages() const { if (m_cow_map.is_null()) return 0; return m_cow_map.count_slow(true); } bool AnonymousVMObject::is_nonvolatile(size_t page_index) { if (m_volatile_ranges_cache_dirty) update_volatile_cache(); return !m_volatile_ranges_cache.contains(page_index); } PageFaultResponse AnonymousVMObject::handle_cow_fault(size_t page_index, VirtualAddress vaddr) { VERIFY_INTERRUPTS_DISABLED(); ScopedSpinLock lock(m_lock); auto& page_slot = physical_pages()[page_index]; bool have_committed = m_shared_committed_cow_pages && is_nonvolatile(page_index); if (page_slot->ref_count() == 1) { dbgln_if(PAGE_FAULT_DEBUG, " >> It's a COW page but nobody is sharing it anymore. Remap r/w"); set_should_cow(page_index, false); if (have_committed) { if (m_shared_committed_cow_pages->return_one()) m_shared_committed_cow_pages = nullptr; } return PageFaultResponse::Continue; } RefPtr page; if (have_committed) { dbgln_if(PAGE_FAULT_DEBUG, " >> It's a committed COW page and it's time to COW!"); page = m_shared_committed_cow_pages->allocate_one(); } else { dbgln_if(PAGE_FAULT_DEBUG, " >> It's a COW page and it's time to COW!"); page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No); if (page.is_null()) { dmesgln("MM: handle_cow_fault was unable to allocate a physical page"); return PageFaultResponse::OutOfMemory; } } u8* dest_ptr = MM.quickmap_page(*page); dbgln_if(PAGE_FAULT_DEBUG, " >> COW {} <- {}", page->paddr(), page_slot->paddr()); { SmapDisabler disabler; void* fault_at; if (!safe_memcpy(dest_ptr, vaddr.as_ptr(), PAGE_SIZE, fault_at)) { if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE) dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to write to page at {}", page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at)); else if ((u8*)fault_at >= vaddr.as_ptr() && (u8*)fault_at <= vaddr.as_ptr() + PAGE_SIZE) dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to read from page at {}", page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at)); else VERIFY_NOT_REACHED(); } } page_slot = move(page); MM.unquickmap_page(); set_should_cow(page_index, false); return PageFaultResponse::Continue; } }