/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include namespace Kernel { static AK::Singleton s_the; static SpinLock g_timerqueue_lock; timespec Timer::remaining() const { if (m_remaining == 0) return {}; return TimerQueue::the().ticks_to_time(m_clock_id, m_remaining); } u64 Timer::now() const { return TimerQueue::the().time_to_ticks(m_clock_id, TimeManagement::the().current_time(m_clock_id).value()); } TimerQueue& TimerQueue::the() { return *s_the; } TimerQueue::TimerQueue() { m_ticks_per_second = TimeManagement::the().ticks_per_second(); } RefPtr TimerQueue::add_timer_without_id(clockid_t clock_id, const timespec& deadline, Function&& callback) { if (deadline <= TimeManagement::the().current_time(clock_id).value()) return {}; // Because timer handlers can execute on any processor and there is // a race between executing a timer handler and cancel_timer() this // *must* be a RefPtr. Otherwise calling cancel_timer() could // inadvertently cancel another timer that has been created between // returning from the timer handler and a call to cancel_timer(). auto timer = adopt(*new Timer(clock_id, time_to_ticks(clock_id, deadline), move(callback))); ScopedSpinLock lock(g_timerqueue_lock); timer->m_id = 0; // Don't generate a timer id add_timer_locked(timer); return timer; } TimerId TimerQueue::add_timer(NonnullRefPtr&& timer) { ScopedSpinLock lock(g_timerqueue_lock); timer->m_id = ++m_timer_id_count; ASSERT(timer->m_id != 0); // wrapped add_timer_locked(move(timer)); return m_timer_id_count; } void TimerQueue::add_timer_locked(NonnullRefPtr timer) { u64 timer_expiration = timer->m_expires; ASSERT(timer_expiration >= time_to_ticks(timer->m_clock_id, TimeManagement::the().current_time(timer->m_clock_id).value())); ASSERT(!timer->is_queued()); auto& queue = queue_for_timer(*timer); if (queue.list.is_empty()) { queue.list.append(&timer.leak_ref()); queue.next_timer_due = timer_expiration; } else { Timer* following_timer = nullptr; queue.list.for_each([&](Timer& t) { if (t.m_expires > timer_expiration) { following_timer = &t; return IterationDecision::Break; } return IterationDecision::Continue; }); if (following_timer) { bool next_timer_needs_update = queue.list.head() == following_timer; queue.list.insert_before(following_timer, &timer.leak_ref()); if (next_timer_needs_update) queue.next_timer_due = timer_expiration; } else { queue.list.append(&timer.leak_ref()); } } } TimerId TimerQueue::add_timer(clockid_t clock_id, timeval& deadline, Function&& callback) { auto expires = TimeManagement::the().current_time(clock_id).value(); timespec_add_timeval(expires, deadline, expires); return add_timer(adopt(*new Timer(clock_id, time_to_ticks(clock_id, expires), move(callback)))); } timespec TimerQueue::ticks_to_time(clockid_t clock_id, u64 ticks) const { timespec tspec; switch (clock_id) { case CLOCK_MONOTONIC: tspec.tv_sec = ticks / m_ticks_per_second; tspec.tv_nsec = (ticks % m_ticks_per_second) * (1'000'000'000 / m_ticks_per_second); break; case CLOCK_REALTIME: tspec.tv_sec = ticks / 1'000'000'000; tspec.tv_nsec = ticks % 1'000'000'000; break; default: ASSERT_NOT_REACHED(); } ASSERT(tspec.tv_nsec <= 1'000'000'000); return tspec; } u64 TimerQueue::time_to_ticks(clockid_t clock_id, const timespec& tspec) const { u64 ticks; switch (clock_id) { case CLOCK_MONOTONIC: ticks = (u64)tspec.tv_sec * m_ticks_per_second; ticks += ((u64)tspec.tv_nsec * m_ticks_per_second) / 1'000'000'000; break; case CLOCK_REALTIME: ticks = (u64)tspec.tv_sec * 1'000'000'000 + tspec.tv_nsec; break; default: ASSERT_NOT_REACHED(); } return ticks; } bool TimerQueue::cancel_timer(TimerId id) { Timer* found_timer = nullptr; Queue* timer_queue = nullptr; ScopedSpinLock lock(g_timerqueue_lock); if (m_timer_queue_monotonic.list.for_each([&](Timer& timer) { if (timer.m_id == id) { found_timer = &timer; timer_queue = &m_timer_queue_monotonic; return IterationDecision::Break; } return IterationDecision::Continue; }) != IterationDecision::Break) { m_timer_queue_realtime.list.for_each([&](Timer& timer) { if (timer.m_id == id) { found_timer = &timer; timer_queue = &m_timer_queue_realtime; return IterationDecision::Break; } return IterationDecision::Continue; }); } if (!found_timer) { // The timer may be executing right now, if it is then it should // be in m_timers_executing. If it is then release the lock // briefly to allow it to finish by removing itself // NOTE: This can only happen with multiple processors! while (m_timers_executing.for_each([&](Timer& timer) { if (timer.m_id == id) return IterationDecision::Break; return IterationDecision::Continue; }) == IterationDecision::Break) { // NOTE: This isn't the most efficient way to wait, but // it should only happen when multiple processors are used. // Also, the timers should execute pretty quickly, so it // should not loop here for very long. But we can't yield. lock.unlock(); Processor::wait_check(); lock.lock(); } // We were not able to cancel the timer, but at this point // the handler should have completed if it was running! return false; } ASSERT(found_timer); ASSERT(timer_queue); remove_timer_locked(*timer_queue, *found_timer); return true; } bool TimerQueue::cancel_timer(Timer& timer) { auto& timer_queue = queue_for_timer(timer); ScopedSpinLock lock(g_timerqueue_lock); if (!timer_queue.list.contains_slow(&timer)) { // The timer may be executing right now, if it is then it should // be in m_timers_executing. If it is then release the lock // briefly to allow it to finish by removing itself // NOTE: This can only happen with multiple processors! while (m_timers_executing.contains_slow(&timer)) { // NOTE: This isn't the most efficient way to wait, but // it should only happen when multiple processors are used. // Also, the timers should execute pretty quickly, so it // should not loop here for very long. But we can't yield. lock.unlock(); Processor::wait_check(); lock.lock(); } // We were not able to cancel the timer, but at this point // the handler should have completed if it was running! return false; } ASSERT(timer.ref_count() > 1); remove_timer_locked(timer_queue, timer); return true; } void TimerQueue::remove_timer_locked(Queue& queue, Timer& timer) { bool was_next_timer = (queue.list.head() == &timer); queue.list.remove(&timer); timer.set_queued(false); auto now = timer.now(); if (timer.m_expires > now) timer.m_remaining = timer.m_expires - now; if (was_next_timer) update_next_timer_due(queue); // Whenever we remove a timer that was still queued (but hasn't been // fired) we added a reference to it. So, when removing it from the // queue we need to drop that reference. timer.unref(); } void TimerQueue::fire() { ScopedSpinLock lock(g_timerqueue_lock); auto fire_timers = [&](Queue& queue) { auto* timer = queue.list.head(); ASSERT(timer); ASSERT(queue.next_timer_due == timer->m_expires); while (timer && timer->now() > timer->m_expires) { queue.list.remove(timer); timer->set_queued(false); m_timers_executing.append(timer); update_next_timer_due(queue); lock.unlock(); // Defer executing the timer outside of the irq handler Processor::current().deferred_call_queue([this, timer]() { timer->m_callback(); ScopedSpinLock lock(g_timerqueue_lock); m_timers_executing.remove(timer); // Drop the reference we added when queueing the timer timer->unref(); }); lock.lock(); timer = queue.list.head(); } }; if (!m_timer_queue_monotonic.list.is_empty()) fire_timers(m_timer_queue_monotonic); if (!m_timer_queue_realtime.list.is_empty()) fire_timers(m_timer_queue_realtime); } void TimerQueue::update_next_timer_due(Queue& queue) { ASSERT(g_timerqueue_lock.is_locked()); if (auto* next_timer = queue.list.head()) queue.next_timer_due = next_timer->m_expires; else queue.next_timer_due = 0; } }