/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include namespace Kernel { static AK::Singleton s_the; static SpinLock g_timerqueue_lock; TimerQueue& TimerQueue::the() { return *s_the; } TimerQueue::TimerQueue() { m_ticks_per_second = TimeManagement::the().ticks_per_second(); } RefPtr TimerQueue::add_timer_without_id(const timespec& deadline, Function&& callback) { if (deadline <= TimeManagement::the().monotonic_time()) return {}; // Because timer handlers can execute on any processor and there is // a race between executing a timer handler and cancel_timer() this // *must* be a RefPtr. Otherwise calling cancel_timer() could // inadvertently cancel another timer that has been created between // returning from the timer handler and a call to cancel_timer(). auto timer = adopt(*new Timer(time_to_ticks(deadline), move(callback))); ScopedSpinLock lock(g_timerqueue_lock); timer->id = 0; // Don't generate a timer id add_timer_locked(timer); return timer; } TimerId TimerQueue::add_timer(NonnullRefPtr&& timer) { ScopedSpinLock lock(g_timerqueue_lock); timer->id = ++m_timer_id_count; ASSERT(timer->id != 0); // wrapped add_timer_locked(move(timer)); return m_timer_id_count; } void TimerQueue::add_timer_locked(NonnullRefPtr timer) { u64 timer_expiration = timer->expires; ASSERT(timer_expiration >= time_to_ticks(TimeManagement::the().monotonic_time())); if (m_timer_queue.is_empty()) { m_timer_queue.append(move(timer)); m_next_timer_due = timer_expiration; } else { auto following_timer = m_timer_queue.find([&timer_expiration](auto& other) { return other->expires > timer_expiration; }); if (following_timer.is_end()) { m_timer_queue.append(move(timer)); } else { auto next_timer_needs_update = following_timer.is_begin(); m_timer_queue.insert_before(following_timer, move(timer)); if (next_timer_needs_update) m_next_timer_due = timer_expiration; } } } TimerId TimerQueue::add_timer(timeval& deadline, Function&& callback) { auto expires = TimeManagement::the().monotonic_time(); timespec_add_timeval(expires, deadline, expires); return add_timer(adopt(*new Timer(time_to_ticks(expires), move(callback)))); } timespec TimerQueue::ticks_to_time(u64 ticks) const { timespec tspec; tspec.tv_sec = ticks / m_ticks_per_second; tspec.tv_nsec = (ticks % m_ticks_per_second) * (1'000'000'000 / m_ticks_per_second); ASSERT(tspec.tv_nsec <= 1'000'000'000); return tspec; } u64 TimerQueue::time_to_ticks(const timespec& tspec) const { u64 ticks = (u64)tspec.tv_sec * m_ticks_per_second; ticks += ((u64)tspec.tv_nsec * m_ticks_per_second) / 1'000'000'000; return ticks; } bool TimerQueue::cancel_timer(TimerId id) { ScopedSpinLock lock(g_timerqueue_lock); auto it = m_timer_queue.find([id](auto& timer) { return timer->id == id; }); if (it.is_end()) return false; auto was_next_timer = it.is_begin(); m_timer_queue.remove(it); if (was_next_timer) update_next_timer_due(); return true; } bool TimerQueue::cancel_timer(const NonnullRefPtr& timer) { ScopedSpinLock lock(g_timerqueue_lock); auto it = m_timer_queue.find([timer](auto& t) { return t.ptr() == timer.ptr(); }); if (it.is_end()) return false; auto was_next_timer = it.is_begin(); m_timer_queue.remove(it); if (was_next_timer) update_next_timer_due(); return true; } void TimerQueue::fire() { ScopedSpinLock lock(g_timerqueue_lock); if (m_timer_queue.is_empty()) return; ASSERT(m_next_timer_due == m_timer_queue.first()->expires); while (!m_timer_queue.is_empty() && TimeManagement::the().monotonic_ticks() > m_timer_queue.first()->expires) { auto timer = m_timer_queue.take_first(); update_next_timer_due(); lock.unlock(); timer->callback(); lock.lock(); } } void TimerQueue::update_next_timer_due() { ASSERT(g_timerqueue_lock.is_locked()); if (m_timer_queue.is_empty()) m_next_timer_due = 0; else m_next_timer_due = m_timer_queue.first()->expires; } }