/* * Copyright (c) 2018-2020, Andreas Kling * Copyright (c) 2022, the SerenityOS developers. * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #define TTYDEFCHARS #include #undef TTYDEFCHARS namespace Kernel { TTY::TTY(MajorNumber major, MinorNumber minor) : CharacterDevice(major, minor) { set_default_termios(); } TTY::~TTY() = default; void TTY::set_default_termios() { memset(&m_termios, 0, sizeof(m_termios)); m_termios.c_iflag = TTYDEF_IFLAG; m_termios.c_oflag = TTYDEF_OFLAG; m_termios.c_cflag = TTYDEF_CFLAG; m_termios.c_lflag = TTYDEF_LFLAG; m_termios.c_ispeed = TTYDEF_SPEED; m_termios.c_ospeed = TTYDEF_SPEED; memcpy(m_termios.c_cc, ttydefchars, sizeof(ttydefchars)); } ErrorOr TTY::read(OpenFileDescription&, u64, UserOrKernelBuffer& buffer, size_t size) { if (Process::current().pgid() != pgid()) { // FIXME: Should we propagate this error path somehow? [[maybe_unused]] auto rc = Process::current().send_signal(SIGTTIN, nullptr); return EINTR; } if (m_input_buffer.size() < static_cast(size)) size = m_input_buffer.size(); bool need_evaluate_block_conditions = false; auto result = buffer.write_buffered<512>(size, [&](Bytes data) { size_t bytes_written = 0; for (; bytes_written < data.size(); ++bytes_written) { auto bit_index = m_input_buffer.head_index(); bool is_special_character = m_special_character_bitmask[bit_index / 8] & (1 << (bit_index % 8)); if (in_canonical_mode() && is_special_character) { u8 ch = m_input_buffer.dequeue(); if (ch == '\0') { // EOF m_available_lines--; need_evaluate_block_conditions = true; break; } else { // '\n' or EOL data[bytes_written++] = ch; m_available_lines--; break; } } data[bytes_written] = m_input_buffer.dequeue(); } return bytes_written; }); if ((!result.is_error() && result.value() > 0) || need_evaluate_block_conditions) evaluate_block_conditions(); return result; } ErrorOr TTY::write(OpenFileDescription&, u64, UserOrKernelBuffer const& buffer, size_t size) { if (m_termios.c_lflag & TOSTOP && Process::current().pgid() != pgid()) { [[maybe_unused]] auto rc = Process::current().send_signal(SIGTTOU, nullptr); return EINTR; } constexpr size_t num_chars = 256; return buffer.read_buffered(size, [&](ReadonlyBytes bytes) -> ErrorOr { u8 modified_data[num_chars * 2]; size_t modified_data_size = 0; for (const auto& byte : bytes) { process_output(byte, [&modified_data, &modified_data_size](u8 out_ch) { modified_data[modified_data_size++] = out_ch; }); } auto bytes_written_or_error = on_tty_write(UserOrKernelBuffer::for_kernel_buffer(modified_data), modified_data_size); if (bytes_written_or_error.is_error() || !(m_termios.c_oflag & OPOST) || !(m_termios.c_oflag & ONLCR)) return bytes_written_or_error; auto bytes_written = bytes_written_or_error.value(); if (bytes_written == modified_data_size) return bytes.size(); // Degenerate case where we converted some newlines and encountered a partial write // Calculate where in the input buffer the last character would have been size_t pos_data = 0; for (size_t pos_modified_data = 0; pos_modified_data < bytes_written; ++pos_data) { if (bytes[pos_data] == '\n') pos_modified_data += 2; else pos_modified_data += 1; // Handle case where the '\r' got written but not the '\n' // FIXME: Our strategy is to retry writing both. We should really be queuing a write for the corresponding '\n' if (pos_modified_data > bytes_written) --pos_data; } return pos_data; }); } void TTY::echo_with_processing(u8 ch) { process_output(ch, [this](u8 out_ch) { echo(out_ch); }); } template void TTY::process_output(u8 ch, Functor put_char) { if (m_termios.c_oflag & OPOST) { if (ch == '\n' && (m_termios.c_oflag & ONLCR)) put_char('\r'); put_char(ch); } else { put_char(ch); } } bool TTY::can_read(OpenFileDescription const&, u64) const { if (in_canonical_mode()) { return m_available_lines > 0; } return !m_input_buffer.is_empty(); } bool TTY::can_write(OpenFileDescription const&, u64) const { return true; } bool TTY::is_eol(u8 ch) const { return ch == m_termios.c_cc[VEOL]; } bool TTY::is_eof(u8 ch) const { return ch == m_termios.c_cc[VEOF]; } bool TTY::is_kill(u8 ch) const { return ch == m_termios.c_cc[VKILL]; } bool TTY::is_erase(u8 ch) const { return ch == m_termios.c_cc[VERASE]; } bool TTY::is_werase(u8 ch) const { return ch == m_termios.c_cc[VWERASE]; } void TTY::emit(u8 ch, bool do_evaluate_block_conditions) { if (m_termios.c_iflag & ISTRIP) ch &= 0x7F; if (should_generate_signals()) { if (ch == m_termios.c_cc[VINFO]) { generate_signal(SIGINFO); return; } if (ch == m_termios.c_cc[VINTR]) { generate_signal(SIGINT); return; } if (ch == m_termios.c_cc[VQUIT]) { generate_signal(SIGQUIT); return; } if (ch == m_termios.c_cc[VSUSP]) { generate_signal(SIGTSTP); if (auto original_process_parent = m_original_process_parent.strong_ref()) { [[maybe_unused]] auto rc = original_process_parent->send_signal(SIGCHLD, nullptr); } // TODO: Else send it to the session leader maybe? return; } } ScopeGuard guard([&]() { if (do_evaluate_block_conditions) evaluate_block_conditions(); }); if (ch == '\r' && (m_termios.c_iflag & ICRNL)) ch = '\n'; else if (ch == '\n' && (m_termios.c_iflag & INLCR)) ch = '\r'; auto current_char_head_index = (m_input_buffer.head_index() + m_input_buffer.size()) % TTY_BUFFER_SIZE; m_special_character_bitmask[current_char_head_index / 8] &= ~(1u << (current_char_head_index % 8)); auto set_special_bit = [&] { m_special_character_bitmask[current_char_head_index / 8] |= (1u << (current_char_head_index % 8)); }; if (in_canonical_mode()) { if (is_eof(ch)) { // Since EOF might change between when the data came in and when it is read, // we use '\0' along with the bitmask to signal EOF. Any non-zero byte with // the special bit set signals an end-of-line. set_special_bit(); m_available_lines++; m_input_buffer.enqueue('\0'); return; } if (is_kill(ch) && m_termios.c_lflag & ECHOK) { kill_line(); return; } if (is_erase(ch) && m_termios.c_lflag & ECHOE) { do_backspace(); return; } if (is_werase(ch)) { erase_word(); return; } if (ch == '\n') { if (m_termios.c_lflag & ECHO || m_termios.c_lflag & ECHONL) echo_with_processing('\n'); set_special_bit(); m_input_buffer.enqueue('\n'); m_available_lines++; return; } if (is_eol(ch)) { set_special_bit(); m_available_lines++; } } m_input_buffer.enqueue(ch); if (m_termios.c_lflag & ECHO) echo_with_processing(ch); } bool TTY::can_do_backspace() const { // can't do back space if we're empty. Plus, we don't want to // remove any lines "committed" by newlines or ^D. if (!m_input_buffer.is_empty() && !is_eol(m_input_buffer.last()) && m_input_buffer.last() != '\0') { return true; } return false; } static size_t length_with_tabs(CircularDeque const& line) { size_t length = 0; for (auto& ch : line) { length += (ch == '\t') ? 8 - (length % 8) : 1; } return length; } void TTY::do_backspace() { if (can_do_backspace()) { auto ch = m_input_buffer.dequeue_end(); size_t to_delete = 1; if (ch == '\t') { auto length = length_with_tabs(m_input_buffer); to_delete = 8 - (length % 8); } for (size_t i = 0; i < to_delete; ++i) { // We deliberately don't process the output here. echo('\b'); echo(' '); echo('\b'); } evaluate_block_conditions(); } } // TODO: Currently, both erase_word() and kill_line work by sending // a lot of VERASE characters; this is done because Terminal.cpp // doesn't currently support VWERASE and VKILL. When these are // implemented we could just send a VKILL or VWERASE. void TTY::erase_word() { // Note: if we have leading whitespace before the word // we want to delete we have to also delete that. bool first_char = false; bool did_dequeue = false; while (can_do_backspace()) { u8 ch = m_input_buffer.last(); if (ch == ' ' && first_char) break; if (ch != ' ') first_char = true; m_input_buffer.dequeue_end(); did_dequeue = true; erase_character(); } if (did_dequeue) evaluate_block_conditions(); } void TTY::kill_line() { bool did_dequeue = false; while (can_do_backspace()) { m_input_buffer.dequeue_end(); did_dequeue = true; erase_character(); } if (did_dequeue) evaluate_block_conditions(); } void TTY::erase_character() { // We deliberately don't process the output here. echo(m_termios.c_cc[VERASE]); echo(' '); echo(m_termios.c_cc[VERASE]); } void TTY::generate_signal(int signal) { if (!pgid()) return; if (should_flush_on_signal()) flush_input(); dbgln_if(TTY_DEBUG, "Send signal {} to everyone in pgrp {}", signal, pgid().value()); InterruptDisabler disabler; // FIXME: Iterate over a set of process handles instead? Process::for_each_in_pgrp(pgid(), [&](auto& process) { dbgln_if(TTY_DEBUG, "Send signal {} to {}", signal, process); // FIXME: Should this error be propagated somehow? [[maybe_unused]] auto rc = process.send_signal(signal, nullptr); }); } void TTY::flush_input() { m_available_lines = 0; m_input_buffer.clear(); evaluate_block_conditions(); } ErrorOr TTY::set_termios(termios const& t) { ErrorOr rc; m_termios = t; dbgln_if(TTY_DEBUG, "set_termios: ECHO={}, ISIG={}, ICANON={}, ECHOE={}, ECHOK={}, ECHONL={}, ISTRIP={}, ICRNL={}, INLCR={}, IGNCR={}, OPOST={}, ONLCR={}", should_echo_input(), should_generate_signals(), in_canonical_mode(), ((m_termios.c_lflag & ECHOE) != 0), ((m_termios.c_lflag & ECHOK) != 0), ((m_termios.c_lflag & ECHONL) != 0), ((m_termios.c_iflag & ISTRIP) != 0), ((m_termios.c_iflag & ICRNL) != 0), ((m_termios.c_iflag & INLCR) != 0), ((m_termios.c_iflag & IGNCR) != 0), ((m_termios.c_oflag & OPOST) != 0), ((m_termios.c_oflag & ONLCR) != 0)); struct FlagDescription { tcflag_t value; StringView name; }; constexpr FlagDescription unimplemented_iflags[] = { { IGNBRK, "IGNBRK"sv }, { BRKINT, "BRKINT"sv }, { IGNPAR, "IGNPAR"sv }, { PARMRK, "PARMRK"sv }, { INPCK, "INPCK"sv }, { IGNCR, "IGNCR"sv }, { IUCLC, "IUCLC"sv }, { IXON, "IXON"sv }, { IXANY, "IXANY"sv }, { IXOFF, "IXOFF"sv }, { IMAXBEL, "IMAXBEL"sv }, { IUTF8, "IUTF8"sv } }; for (auto flag : unimplemented_iflags) { if (m_termios.c_iflag & flag.value) { dbgln("FIXME: iflag {} unimplemented", flag.name); rc = ENOTIMPL; } } constexpr FlagDescription unimplemented_oflags[] = { { OLCUC, "OLCUC"sv }, { ONOCR, "ONOCR"sv }, { ONLRET, "ONLRET"sv }, { OFILL, "OFILL"sv }, { OFDEL, "OFDEL"sv } }; for (auto flag : unimplemented_oflags) { if (m_termios.c_oflag & flag.value) { dbgln("FIXME: oflag {} unimplemented", flag.name); rc = ENOTIMPL; } } if ((m_termios.c_cflag & CSIZE) != CS8) { dbgln("FIXME: Character sizes other than 8 bits are not supported"); rc = ENOTIMPL; } constexpr FlagDescription unimplemented_cflags[] = { { CSTOPB, "CSTOPB"sv }, { CREAD, "CREAD"sv }, { PARENB, "PARENB"sv }, { PARODD, "PARODD"sv }, { HUPCL, "HUPCL"sv }, { CLOCAL, "CLOCAL"sv } }; for (auto flag : unimplemented_cflags) { if (m_termios.c_cflag & flag.value) { dbgln("FIXME: cflag {} unimplemented", flag.name); rc = ENOTIMPL; } } constexpr FlagDescription unimplemented_lflags[] = { { TOSTOP, "TOSTOP"sv }, { IEXTEN, "IEXTEN"sv } }; for (auto flag : unimplemented_lflags) { if (m_termios.c_lflag & flag.value) { dbgln("FIXME: lflag {} unimplemented", flag.name); rc = ENOTIMPL; } } return rc; } ErrorOr TTY::ioctl(OpenFileDescription&, unsigned request, Userspace arg) { auto& current_process = Process::current(); TRY(current_process.require_promise(Pledge::tty)); #if 0 // FIXME: When should we block things? // How do we make this work together with MasterPTY forwarding to us? if (current_process.tty() && current_process.tty() != this) { return ENOTTY; } #endif switch (request) { case TIOCGPGRP: { auto user_pgid = static_ptr_cast(arg); auto pgid = this->pgid().value(); return copy_to_user(user_pgid, &pgid); } case TIOCSPGRP: { ProcessGroupID pgid = static_cast(arg.ptr()); if (pgid <= 0) return EINVAL; InterruptDisabler disabler; auto process_group = ProcessGroup::from_pgid(pgid); // Disallow setting a nonexistent PGID. if (!process_group) return EINVAL; auto process = Process::from_pid(ProcessID(pgid.value())); SessionID new_sid = process ? process->sid() : Process::get_sid_from_pgid(pgid); if (!new_sid || new_sid != current_process.sid()) return EPERM; if (process && pgid != process->pgid()) return EPERM; m_pg = process_group; if (process) { if (auto parent = Process::from_pid(process->ppid())) { m_original_process_parent = *parent; return {}; } } m_original_process_parent = nullptr; return {}; } case TCGETS: { auto user_termios = static_ptr_cast(arg); return copy_to_user(user_termios, &m_termios); } case TCSETS: case TCSETSF: case TCSETSW: { auto user_termios = static_ptr_cast(arg); auto termios = TRY(copy_typed_from_user(user_termios)); auto rc = set_termios(termios); if (request == TCSETSF) flush_input(); return rc; } case TCFLSH: { // Serenity's TTY implementation does not use an output buffer, so ignore TCOFLUSH. auto operation = static_cast(arg.ptr()); if (operation == TCIFLUSH || operation == TCIOFLUSH) { flush_input(); } else if (operation != TCOFLUSH) { return EINVAL; } return {}; } case TIOCGWINSZ: { auto user_winsize = static_ptr_cast(arg); winsize ws {}; ws.ws_row = m_rows; ws.ws_col = m_columns; ws.ws_xpixel = 0; ws.ws_ypixel = 0; return copy_to_user(user_winsize, &ws); } case TIOCSWINSZ: { auto user_winsize = static_ptr_cast(arg); auto ws = TRY(copy_typed_from_user(user_winsize)); if (ws.ws_col == m_columns && ws.ws_row == m_rows) return {}; m_rows = ws.ws_row; m_columns = ws.ws_col; generate_signal(SIGWINCH); return {}; } case TIOCSCTTY: current_process.set_tty(this); return {}; case TIOCSTI: return EIO; case TIOCNOTTY: current_process.set_tty(nullptr); return {}; case KDSETMODE: { auto mode = static_cast(arg.ptr()); if (mode != KD_TEXT && mode != KD_GRAPHICS) return EINVAL; set_graphical(mode == KD_GRAPHICS); return {}; } case KDGETMODE: { auto mode_ptr = static_ptr_cast(arg); int mode = (is_graphical()) ? KD_GRAPHICS : KD_TEXT; return copy_to_user(mode_ptr, &mode); } } return EINVAL; } void TTY::set_size(unsigned short columns, unsigned short rows) { m_rows = rows; m_columns = columns; } void TTY::hang_up() { generate_signal(SIGHUP); } }