/* * Copyright (c) 2020, Liav A. * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include #include #include namespace Kernel { class StorageDevice : public BlockDevice { friend class StorageManagement; friend class DeviceManagement; public: // Note: this attribute describes the internal command set of a Storage device. // For example, an ordinary harddrive utilizes the ATA command set, while // an ATAPI device (e.g. Optical drive) that is connected to the ATA bus, // is actually using SCSI commands (packets) encapsulated inside an ATA command. // The IDE controller code being aware of the possibility of ATAPI devices attached // to the ATA bus, will check whether the Command set is ATA or SCSI and will act // accordingly. enum class CommandSet { PlainMemory, SCSI, ATA, NVMe, }; // Note: this attribute describes the interface type of a Storage device. // For example, an ordinary harddrive utilizes the ATA command set, while // an ATAPI device (e.g. Optical drive) that is connected to the ATA bus, // is actually using SCSI commands (packets) encapsulated inside an ATA command. // Therefore, an ATAPI device is still using the ATA interface. enum class InterfaceType { PlainMemory, SCSI, ATA, NVMe, }; // Note: The most reliable way to address this device from userspace interfaces, // such as SysFS, is to have one way to enumerate everything in the eyes of userspace. // Therefore, SCSI LUN (logical unit number) addressing seem to be the most generic way to do this. // For example, on a legacy ATA instance, one might connect an harddrive to the second IDE controller, // to the Primary channel as a slave device, which translates to LUN 1:0:1. // On NVMe, for example, connecting a second PCIe NVMe storage device as a sole NVMe namespace translates // to LUN 1:0:0. // TODO: LUNs are also useful also when specifying the boot drive on boot. Consider doing that. struct LUNAddress { u32 controller_id; u32 target_id; u32 disk_id; }; public: virtual u64 max_addressable_block() const { return m_max_addressable_block; } // ^BlockDevice virtual ErrorOr read(OpenFileDescription&, u64, UserOrKernelBuffer&, size_t) override; virtual bool can_read(OpenFileDescription const&, u64) const override; virtual ErrorOr write(OpenFileDescription&, u64, UserOrKernelBuffer const&, size_t) override; virtual bool can_write(OpenFileDescription const&, u64) const override; virtual void prepare_for_unplug() { m_partitions.clear(); } // FIXME: Remove this method after figuring out another scheme for naming. StringView early_storage_name() const; NonnullRefPtrVector const& partitions() const { return m_partitions; } void add_partition(NonnullRefPtr disk_partition) { MUST(m_partitions.try_append(disk_partition)); } LUNAddress const& logical_unit_number_address() const { return m_logical_unit_number_address; } virtual CommandSet command_set() const = 0; StringView interface_type_to_string_view() const; StringView command_set_to_string_view() const; // ^File virtual ErrorOr ioctl(OpenFileDescription&, unsigned request, Userspace arg) final; protected: StorageDevice(LUNAddress, MajorNumber, MinorNumber, size_t, u64, NonnullOwnPtr); // ^DiskDevice virtual StringView class_name() const override; private: virtual void after_inserting() override; virtual void will_be_destroyed() override; virtual InterfaceType interface_type() const = 0; mutable IntrusiveListNode> m_list_node; NonnullRefPtrVector m_partitions; // FIXME: Remove this method after figuring out another scheme for naming. NonnullOwnPtr m_early_storage_device_name; LUNAddress const m_logical_unit_number_address; u64 m_max_addressable_block { 0 }; size_t m_blocks_per_page { 0 }; }; }