#include "Scheduler.h" #include "Process.h" #include "RTC.h" #include "i8253.h" #include #include #include #include //#define LOG_EVERY_CONTEXT_SWITCH //#define SCHEDULER_DEBUG static dword time_slice_for(Process::Priority priority) { // One time slice unit == 1ms switch (priority) { case Process::HighPriority: return 50; case Process::NormalPriority: return 15; case Process::LowPriority: return 5; case Process::IdlePriority: return 1; } ASSERT_NOT_REACHED(); } Thread* current; Thread* g_last_fpu_thread; Thread* g_finalizer; static Process* s_colonel_process; qword g_uptime; static qword s_beep_timeout; struct TaskRedirectionData { word selector; TSS32 tss; }; static TaskRedirectionData s_redirection; static bool s_active; bool Scheduler::is_active() { return s_active; } void Scheduler::beep() { PCSpeaker::tone_on(440); s_beep_timeout = g_uptime + 100; } bool Scheduler::pick_next() { ASSERT_INTERRUPTS_DISABLED(); ASSERT(!s_active); TemporaryChange change(s_active, true); ASSERT(s_active); if (!current) { // XXX: The first ever context_switch() goes to the idle process. // This to setup a reliable place we can return to. return context_switch(s_colonel_process->main_thread()); } struct timeval now; kgettimeofday(now); auto now_sec = now.tv_sec; auto now_usec = now.tv_usec; // Check and unblock threads whose wait conditions have been met. Thread::for_each([&] (Thread& thread) { auto& process = thread.process(); if (thread.state() == Thread::BlockedSleep) { if (thread.wakeup_time() <= g_uptime) thread.unblock(); return IterationDecision::Continue; } if (thread.state() == Thread::BlockedWait) { process.for_each_child([&] (Process& child) { if (!child.is_dead()) return true; if (thread.waitee_pid() == -1 || thread.waitee_pid() == child.pid()) { thread.m_waitee_pid = child.pid(); thread.unblock(); return false; } return true; }); return IterationDecision::Continue; } if (thread.state() == Thread::BlockedRead) { ASSERT(thread.m_blocked_descriptor); // FIXME: Block until the amount of data wanted is available. if (thread.m_blocked_descriptor->can_read()) thread.unblock(); return IterationDecision::Continue; } if (thread.state() == Thread::BlockedWrite) { ASSERT(thread.m_blocked_descriptor != -1); if (thread.m_blocked_descriptor->can_write()) thread.unblock(); return IterationDecision::Continue; } if (thread.state() == Thread::BlockedConnect) { auto& descriptor = *thread.m_blocked_descriptor; auto& socket = *descriptor.socket(); if (socket.is_connected()) thread.unblock(); return IterationDecision::Continue; } if (thread.state() == Thread::BlockedReceive) { auto& descriptor = *thread.m_blocked_descriptor; auto& socket = *descriptor.socket(); // FIXME: Block until the amount of data wanted is available. bool timed_out = now_sec > socket.receive_deadline().tv_sec || (now_sec == socket.receive_deadline().tv_sec && now_usec >= socket.receive_deadline().tv_usec); if (timed_out || descriptor.can_read()) { thread.unblock(); return IterationDecision::Continue; } return IterationDecision::Continue; } if (thread.state() == Thread::BlockedSelect) { if (thread.m_select_has_timeout) { if (now_sec > thread.m_select_timeout.tv_sec || (now_sec == thread.m_select_timeout.tv_sec && now_usec >= thread.m_select_timeout.tv_usec)) { thread.unblock(); return IterationDecision::Continue; } } for (int fd : thread.m_select_read_fds) { if (process.m_fds[fd].descriptor->can_read()) { thread.unblock(); return IterationDecision::Continue; } } for (int fd : thread.m_select_write_fds) { if (process.m_fds[fd].descriptor->can_write()) { thread.unblock(); return IterationDecision::Continue; } } return IterationDecision::Continue; } if (thread.state() == Thread::BlockedSnoozing) { if (thread.m_snoozing_alarm->is_ringing()) { thread.m_snoozing_alarm = nullptr; thread.unblock(); } return IterationDecision::Continue; } if (thread.state() == Thread::Skip1SchedulerPass) { thread.set_state(Thread::Skip0SchedulerPasses); return IterationDecision::Continue; } if (thread.state() == Thread::Skip0SchedulerPasses) { thread.set_state(Thread::Runnable); return IterationDecision::Continue; } if (thread.state() == Thread::Dying) { ASSERT(g_finalizer); if (g_finalizer->state() == Thread::BlockedLurking) g_finalizer->unblock(); return IterationDecision::Continue; } return IterationDecision::Continue; }); Process::for_each([&] (Process& process) { if (process.is_dead()) { if (current != &process.main_thread() && (!process.ppid() || !Process::from_pid(process.ppid()))) { auto name = process.name(); auto pid = process.pid(); auto exit_status = Process::reap(process); dbgprintf("reaped unparented process %s(%u), exit status: %u\n", name.characters(), pid, exit_status); } } return true; }); // Dispatch any pending signals. // FIXME: Do we really need this to be a separate pass over the process list? Thread::for_each_living([] (Thread& thread) { if (!thread.has_unmasked_pending_signals()) return true; // FIXME: It would be nice if the Scheduler didn't have to worry about who is "current" // For now, avoid dispatching signals to "current" and do it in a scheduling pass // while some other process is interrupted. Otherwise a mess will be made. if (&thread == current) return true; // We know how to interrupt blocked processes, but if they are just executing // at some random point in the kernel, let them continue. They'll be in userspace // sooner or later and we can deliver the signal then. // FIXME: Maybe we could check when returning from a syscall if there's a pending // signal and dispatch it then and there? Would that be doable without the // syscall effectively being "interrupted" despite having completed? if (thread.in_kernel() && !thread.is_blocked() && !thread.is_stopped()) return true; // NOTE: dispatch_one_pending_signal() may unblock the process. bool was_blocked = thread.is_blocked(); if (thread.dispatch_one_pending_signal() == ShouldUnblockThread::No) return true; if (was_blocked) { dbgprintf("Unblock %s(%u) due to signal\n", thread.process().name().characters(), thread.pid()); thread.m_was_interrupted_while_blocked = true; thread.unblock(); } return true; }); #ifdef SCHEDULER_DEBUG dbgprintf("Scheduler choices:\n"); for (auto* thread = g_threads->head(); thread; thread = thread->next()) { //if (process->state() == Thread::BlockedWait || process->state() == Thread::BlockedSleep) // continue; auto* process = &thread->process(); dbgprintf("[K%x] % 12s %s(%u:%u) @ %w:%x\n", process, to_string(thread->state()), process->name().characters(), process->pid(), thread->tid(), thread->tss().cs, thread->tss().eip); } #endif auto* previous_head = g_threads->head(); for (;;) { // Move head to tail. g_threads->append(g_threads->remove_head()); auto* thread = g_threads->head(); if (!thread->process().is_being_inspected() && (thread->state() == Thread::Runnable || thread->state() == Thread::Running)) { #ifdef SCHEDULER_DEBUG kprintf("switch to %s(%u:%u) @ %w:%x\n", thread->process().name().characters(), thread->process().pid(), thread->tid(), thread->tss().cs, thread->tss().eip); #endif return context_switch(*thread); } if (thread == previous_head) { // Back at process_head, nothing wants to run. Send in the colonel! return context_switch(s_colonel_process->main_thread()); } } } bool Scheduler::donate_to(Thread* beneficiary, const char* reason) { InterruptDisabler disabler; if (!Thread::is_thread(beneficiary)) return false; (void)reason; unsigned ticks_left = current->ticks_left(); if (!beneficiary || beneficiary->state() != Thread::Runnable || ticks_left <= 1) return yield(); unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(beneficiary->process().priority())); #ifdef SCHEDULER_DEBUG dbgprintf("%s(%u:%u) donating %u ticks to %s(%u:%u), reason=%s\n", current->process().name().characters(), current->pid(), current->tid(), ticks_to_donate, beneficiary->process().name().characters(), beneficiary->pid(), beneficiary->tid(), reason); #endif context_switch(*beneficiary); beneficiary->set_ticks_left(ticks_to_donate); switch_now(); return false; } bool Scheduler::yield() { InterruptDisabler disabler; ASSERT(current); // dbgprintf("%s(%u:%u) yield()\n", current->process().name().characters(), current->pid(), current->tid()); if (!pick_next()) return false; // dbgprintf("yield() jumping to new process: sel=%x, %s(%u:%u)\n", current->far_ptr().selector, current->process().name().characters(), current->pid(), current->tid()); switch_now(); return true; } void Scheduler::pick_next_and_switch_now() { bool someone_wants_to_run = pick_next(); ASSERT(someone_wants_to_run); switch_now(); } void Scheduler::switch_now() { Descriptor& descriptor = get_gdt_entry(current->selector()); descriptor.type = 9; flush_gdt(); asm("sti\n" "ljmp *(%%eax)\n" ::"a"(¤t->far_ptr()) ); } bool Scheduler::context_switch(Thread& thread) { thread.set_ticks_left(time_slice_for(thread.process().priority())); thread.did_schedule(); if (current == &thread) return false; if (current) { // If the last process hasn't blocked (still marked as running), // mark it as runnable for the next round. if (current->state() == Thread::Running) current->set_state(Thread::Runnable); #ifdef LOG_EVERY_CONTEXT_SWITCH dbgprintf("Scheduler: %s(%u:%u) -> %s(%u:%u) %w:%x\n", current->process().name().characters(), current->process().pid(), current->tid(), thread.process().name().characters(), thread.process().pid(), thread.tid(), thread.tss().cs, thread.tss().eip); #endif } current = &thread; thread.set_state(Thread::Running); if (!thread.selector()) { thread.set_selector(gdt_alloc_entry()); auto& descriptor = get_gdt_entry(thread.selector()); descriptor.set_base(&thread.tss()); descriptor.set_limit(0xffff); descriptor.dpl = 0; descriptor.segment_present = 1; descriptor.granularity = 1; descriptor.zero = 0; descriptor.operation_size = 1; descriptor.descriptor_type = 0; } auto& descriptor = get_gdt_entry(thread.selector()); descriptor.type = 11; // Busy TSS flush_gdt(); return true; } static void initialize_redirection() { auto& descriptor = get_gdt_entry(s_redirection.selector); descriptor.set_base(&s_redirection.tss); descriptor.set_limit(0xffff); descriptor.dpl = 0; descriptor.segment_present = 1; descriptor.granularity = 1; descriptor.zero = 0; descriptor.operation_size = 1; descriptor.descriptor_type = 0; descriptor.type = 9; flush_gdt(); } void Scheduler::prepare_for_iret_to_new_process() { auto& descriptor = get_gdt_entry(s_redirection.selector); descriptor.type = 9; s_redirection.tss.backlink = current->selector(); load_task_register(s_redirection.selector); } void Scheduler::prepare_to_modify_tss(Thread& thread) { // This ensures that a currently running process modifying its own TSS // in order to yield() and end up somewhere else doesn't just end up // right after the yield(). if (current == &thread) load_task_register(s_redirection.selector); } Process* Scheduler::colonel() { return s_colonel_process; } void Scheduler::initialize() { s_redirection.selector = gdt_alloc_entry(); initialize_redirection(); s_colonel_process = Process::create_kernel_process("colonel", nullptr); // Make sure the colonel uses a smallish time slice. s_colonel_process->set_priority(Process::IdlePriority); load_task_register(s_redirection.selector); } void Scheduler::timer_tick(RegisterDump& regs) { if (!current) return; ++g_uptime; if (s_beep_timeout && g_uptime > s_beep_timeout) { PCSpeaker::tone_off(); s_beep_timeout = 0; } if (current->tick()) return; current->tss().gs = regs.gs; current->tss().fs = regs.fs; current->tss().es = regs.es; current->tss().ds = regs.ds; current->tss().edi = regs.edi; current->tss().esi = regs.esi; current->tss().ebp = regs.ebp; current->tss().ebx = regs.ebx; current->tss().edx = regs.edx; current->tss().ecx = regs.ecx; current->tss().eax = regs.eax; current->tss().eip = regs.eip; current->tss().cs = regs.cs; current->tss().eflags = regs.eflags; // Compute process stack pointer. // Add 12 for CS, EIP, EFLAGS (interrupt mechanic) current->tss().esp = regs.esp + 12; current->tss().ss = regs.ss; if ((current->tss().cs & 3) != 0) { current->tss().ss = regs.ss_if_crossRing; current->tss().esp = regs.esp_if_crossRing; } if (!pick_next()) return; prepare_for_iret_to_new_process(); // Set the NT (nested task) flag. asm( "pushf\n" "orl $0x00004000, (%esp)\n" "popf\n" ); }