/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace ELF { class Loader; } namespace Kernel { timeval kgettimeofday(); void kgettimeofday(timeval&); extern VirtualAddress g_return_to_ring3_from_signal_trampoline; #define ENUMERATE_PLEDGE_PROMISES \ __ENUMERATE_PLEDGE_PROMISE(stdio) \ __ENUMERATE_PLEDGE_PROMISE(rpath) \ __ENUMERATE_PLEDGE_PROMISE(wpath) \ __ENUMERATE_PLEDGE_PROMISE(cpath) \ __ENUMERATE_PLEDGE_PROMISE(dpath) \ __ENUMERATE_PLEDGE_PROMISE(inet) \ __ENUMERATE_PLEDGE_PROMISE(id) \ __ENUMERATE_PLEDGE_PROMISE(proc) \ __ENUMERATE_PLEDGE_PROMISE(exec) \ __ENUMERATE_PLEDGE_PROMISE(unix) \ __ENUMERATE_PLEDGE_PROMISE(fattr) \ __ENUMERATE_PLEDGE_PROMISE(tty) \ __ENUMERATE_PLEDGE_PROMISE(chown) \ __ENUMERATE_PLEDGE_PROMISE(chroot) \ __ENUMERATE_PLEDGE_PROMISE(thread) \ __ENUMERATE_PLEDGE_PROMISE(video) \ __ENUMERATE_PLEDGE_PROMISE(accept) \ __ENUMERATE_PLEDGE_PROMISE(settime) \ __ENUMERATE_PLEDGE_PROMISE(shared_buffer) enum class Pledge : u32 { #define __ENUMERATE_PLEDGE_PROMISE(x) x, ENUMERATE_PLEDGE_PROMISES #undef __ENUMERATE_PLEDGE_PROMISE }; enum class VeilState { None, Dropped, Locked, }; struct UnveiledPath { enum Access { Read = 1, Write = 2, Execute = 4, CreateOrRemove = 8, }; String path; unsigned permissions { 0 }; }; class Process : public InlineLinkedListNode { AK_MAKE_NONCOPYABLE(Process); AK_MAKE_NONMOVABLE(Process); friend class InlineLinkedListNode; friend class Thread; public: static Process* current; static Process* create_kernel_process(Thread*& first_thread, String&& name, void (*entry)()); static Process* create_user_process(Thread*& first_thread, const String& path, uid_t, gid_t, pid_t ppid, int& error, Vector&& arguments = Vector(), Vector&& environment = Vector(), TTY* = nullptr); ~Process(); static Vector all_pids(); static Vector all_processes(); bool is_profiling() const { return m_profiling; } void set_profiling(bool profiling) { m_profiling = profiling; } enum RingLevel : u8 { Ring0 = 0, Ring3 = 3, }; KBuffer backtrace(ProcessInspectionHandle&) const; bool is_dead() const { return m_dead; } bool is_ring0() const { return m_ring == Ring0; } bool is_ring3() const { return m_ring == Ring3; } PageDirectory& page_directory() { return *m_page_directory; } const PageDirectory& page_directory() const { return *m_page_directory; } static Process* from_pid(pid_t); const String& name() const { return m_name; } pid_t pid() const { return m_pid; } pid_t sid() const { return m_sid; } pid_t pgid() const { return m_pgid; } uid_t uid() const { return m_uid; } gid_t gid() const { return m_gid; } const FixedArray& extra_gids() const { return m_extra_gids; } uid_t euid() const { return m_euid; } gid_t egid() const { return m_egid; } pid_t ppid() const { return m_ppid; } pid_t exec_tid() const { return m_exec_tid; } mode_t umask() const { return m_umask; } bool in_group(gid_t) const; RefPtr file_description(int fd) const; int fd_flags(int fd) const; template static void for_each(Callback); template static void for_each_in_pgrp(pid_t, Callback); template void for_each_child(Callback); template void for_each_thread(Callback) const; void die(); void finalize(); int sys$yield(); int sys$sync(); int sys$beep(); int sys$get_process_name(char* buffer, int buffer_size); int sys$watch_file(const char* path, size_t path_length); int sys$dbgputch(u8); int sys$dbgputstr(const u8*, int length); int sys$dump_backtrace(); int sys$gettid(); int sys$donate(int tid); int sys$ftruncate(int fd, off_t); pid_t sys$setsid(); pid_t sys$getsid(pid_t); int sys$setpgid(pid_t pid, pid_t pgid); pid_t sys$getpgrp(); pid_t sys$getpgid(pid_t); uid_t sys$getuid(); gid_t sys$getgid(); uid_t sys$geteuid(); gid_t sys$getegid(); pid_t sys$getpid(); pid_t sys$getppid(); mode_t sys$umask(mode_t); int sys$open(const Syscall::SC_open_params*); int sys$close(int fd); ssize_t sys$read(int fd, u8*, ssize_t); ssize_t sys$write(int fd, const u8*, ssize_t); ssize_t sys$writev(int fd, const struct iovec* iov, int iov_count); int sys$fstat(int fd, stat*); int sys$stat(const Syscall::SC_stat_params*); int sys$lseek(int fd, off_t, int whence); int sys$kill(pid_t pid, int sig); [[noreturn]] void sys$exit(int status); int sys$sigreturn(RegisterState& registers); pid_t sys$waitid(const Syscall::SC_waitid_params*); void* sys$mmap(const Syscall::SC_mmap_params*); int sys$munmap(void*, size_t size); int sys$set_mmap_name(const Syscall::SC_set_mmap_name_params*); int sys$mprotect(void*, size_t, int prot); int sys$madvise(void*, size_t, int advice); int sys$minherit(void*, size_t, int inherit); int sys$purge(int mode); int sys$select(const Syscall::SC_select_params*); int sys$poll(pollfd*, int nfds, int timeout); ssize_t sys$get_dir_entries(int fd, void*, ssize_t); int sys$getcwd(char*, ssize_t); int sys$chdir(const char*, size_t); int sys$fchdir(int fd); int sys$sleep(unsigned seconds); int sys$usleep(useconds_t usec); int sys$gettimeofday(timeval*); int sys$clock_gettime(clockid_t, timespec*); int sys$clock_settime(clockid_t, timespec*); int sys$clock_nanosleep(const Syscall::SC_clock_nanosleep_params*); int sys$gethostname(char*, ssize_t); int sys$sethostname(const char*, ssize_t); int sys$uname(utsname*); int sys$readlink(const Syscall::SC_readlink_params*); int sys$ttyname_r(int fd, char*, ssize_t); int sys$ptsname_r(int fd, char*, ssize_t); pid_t sys$fork(RegisterState&); int sys$execve(const Syscall::SC_execve_params*); int sys$dup(int oldfd); int sys$dup2(int oldfd, int newfd); int sys$sigaction(int signum, const sigaction* act, sigaction* old_act); int sys$sigprocmask(int how, const sigset_t* set, sigset_t* old_set); int sys$sigpending(sigset_t*); int sys$getgroups(ssize_t, gid_t*); int sys$setgroups(ssize_t, const gid_t*); int sys$pipe(int pipefd[2], int flags); int sys$killpg(int pgrp, int sig); int sys$setgid(gid_t); int sys$setuid(uid_t); unsigned sys$alarm(unsigned seconds); int sys$access(const char* pathname, size_t path_length, int mode); int sys$fcntl(int fd, int cmd, u32 extra_arg); int sys$ioctl(int fd, unsigned request, FlatPtr arg); int sys$mkdir(const char* pathname, size_t path_length, mode_t mode); clock_t sys$times(tms*); int sys$utime(const char* pathname, size_t path_length, const struct utimbuf*); int sys$link(const Syscall::SC_link_params*); int sys$unlink(const char* pathname, size_t path_length); int sys$symlink(const Syscall::SC_symlink_params*); int sys$rmdir(const char* pathname, size_t path_length); int sys$mount(const Syscall::SC_mount_params*); int sys$umount(const char* mountpoint, size_t mountpoint_length); int sys$chmod(const char* pathname, size_t path_length, mode_t); int sys$fchmod(int fd, mode_t); int sys$chown(const Syscall::SC_chown_params*); int sys$fchown(int fd, uid_t, gid_t); int sys$socket(int domain, int type, int protocol); int sys$bind(int sockfd, const sockaddr* addr, socklen_t); int sys$listen(int sockfd, int backlog); int sys$accept(int sockfd, sockaddr*, socklen_t*); int sys$connect(int sockfd, const sockaddr*, socklen_t); int sys$shutdown(int sockfd, int how); ssize_t sys$sendto(const Syscall::SC_sendto_params*); ssize_t sys$recvfrom(const Syscall::SC_recvfrom_params*); int sys$getsockopt(const Syscall::SC_getsockopt_params*); int sys$setsockopt(const Syscall::SC_setsockopt_params*); int sys$getsockname(const Syscall::SC_getsockname_params*); int sys$getpeername(const Syscall::SC_getpeername_params*); int sys$sched_setparam(pid_t pid, const struct sched_param* param); int sys$sched_getparam(pid_t pid, struct sched_param* param); int sys$create_thread(void* (*)(void*), const Syscall::SC_create_thread_params*); void sys$exit_thread(void*); int sys$join_thread(int tid, void** exit_value); int sys$detach_thread(int tid); int sys$set_thread_name(int tid, const char* buffer, size_t buffer_size); int sys$get_thread_name(int tid, char* buffer, size_t buffer_size); int sys$rename(const Syscall::SC_rename_params*); int sys$mknod(const Syscall::SC_mknod_params*); int sys$shbuf_create(int, void** buffer); int sys$shbuf_allow_pid(int, pid_t peer_pid); int sys$shbuf_allow_all(int); void* sys$shbuf_get(int shbuf_id, size_t* size); int sys$shbuf_release(int shbuf_id); int sys$shbuf_seal(int shbuf_id); int sys$shbuf_set_volatile(int shbuf_id, bool); int sys$halt(); int sys$reboot(); int sys$set_process_icon(int icon_id); int sys$realpath(const Syscall::SC_realpath_params*); ssize_t sys$getrandom(void*, size_t, unsigned int); int sys$setkeymap(const Syscall::SC_setkeymap_params*); int sys$module_load(const char* path, size_t path_length); int sys$module_unload(const char* name, size_t name_length); int sys$profiling_enable(pid_t); int sys$profiling_disable(pid_t); int sys$futex(const Syscall::SC_futex_params*); int sys$set_thread_boost(int tid, int amount); int sys$set_process_boost(pid_t, int amount); int sys$chroot(const char* path, size_t path_length, int mount_flags); int sys$pledge(const Syscall::SC_pledge_params*); int sys$unveil(const Syscall::SC_unveil_params*); int sys$perf_event(int type, FlatPtr arg1, FlatPtr arg2); int sys$get_stack_bounds(FlatPtr* stack_base, size_t* stack_size); int sys$ptrace(const Syscall::SC_ptrace_params*); template int get_sock_or_peer_name(const Params&); static void initialize(); [[noreturn]] void crash(int signal, u32 eip, bool out_of_memory = false); [[nodiscard]] static siginfo_t reap(Process&); const TTY* tty() const { return m_tty; } void set_tty(TTY*); size_t region_count() const { return m_regions.size(); } const NonnullOwnPtrVector& regions() const { return m_regions; } void dump_regions(); u32 m_ticks_in_user { 0 }; u32 m_ticks_in_kernel { 0 }; u32 m_ticks_in_user_for_dead_children { 0 }; u32 m_ticks_in_kernel_for_dead_children { 0 }; [[nodiscard]] bool validate_read_from_kernel(VirtualAddress, size_t) const; [[nodiscard]] bool validate_read(const void*, size_t) const; [[nodiscard]] bool validate_write(void*, size_t) const; template [[nodiscard]] bool validate_read_typed(T* value, size_t count = 1) { return validate_read(value, sizeof(T) * count); } template [[nodiscard]] bool validate_read_and_copy_typed(T* dest, const T* src) { bool validated = validate_read_typed(src); if (validated) { copy_from_user(dest, src); } return validated; } template [[nodiscard]] bool validate_write_typed(T* value, size_t count = 1) { return validate_write(value, sizeof(T) * count); } template [[nodiscard]] bool validate(const Syscall::MutableBufferArgument&); template [[nodiscard]] bool validate(const Syscall::ImmutableBufferArgument&); [[nodiscard]] String validate_and_copy_string_from_user(const char*, size_t) const; [[nodiscard]] String validate_and_copy_string_from_user(const Syscall::StringArgument&) const; Custody& current_directory(); Custody* executable() { return m_executable.ptr(); } int number_of_open_file_descriptors() const; int max_open_file_descriptors() const { return m_max_open_file_descriptors; } size_t amount_clean_inode() const; size_t amount_dirty_private() const; size_t amount_virtual() const; size_t amount_resident() const; size_t amount_shared() const; size_t amount_purgeable_volatile() const; size_t amount_purgeable_nonvolatile() const; int exec(String path, Vector arguments, Vector environment, int recusion_depth = 0); bool is_superuser() const { return m_euid == 0; } Region* allocate_region_with_vmobject(VirtualAddress, size_t, NonnullRefPtr, size_t offset_in_vmobject, const String& name, int prot); Region* allocate_region(VirtualAddress, size_t, const String& name, int prot = PROT_READ | PROT_WRITE, bool should_commit = true); Region* allocate_region_with_vmobject(const Range&, NonnullRefPtr, size_t offset_in_vmobject, const String& name, int prot); Region* allocate_region(const Range&, const String& name, int prot = PROT_READ | PROT_WRITE, bool should_commit = true); bool deallocate_region(Region& region); Region& allocate_split_region(const Region& source_region, const Range&, size_t offset_in_vmobject); Vector split_region_around_range(const Region& source_region, const Range&); bool is_being_inspected() const { return m_inspector_count; } void terminate_due_to_signal(u8 signal); KResult send_signal(u8 signal, Process* sender); u16 thread_count() const { return m_thread_count; } Lock& big_lock() { return m_big_lock; } struct ELFBundle { OwnPtr region; RefPtr elf_loader; }; OwnPtr elf_bundle() const; int icon_id() const { return m_icon_id; } u32 priority_boost() const { return m_priority_boost; } Custody& root_directory(); Custody& root_directory_relative_to_global_root(); void set_root_directory(const Custody&); bool has_promises() const { return m_promises; } bool has_promised(Pledge pledge) const { return m_promises & (1u << (u32)pledge); } VeilState veil_state() const { return m_veil_state; } const Vector& unveiled_paths() const { return m_unveiled_paths; } void increment_inspector_count(Badge) { ++m_inspector_count; } void decrement_inspector_count(Badge) { --m_inspector_count; } void set_wait_for_tracer_at_next_execve(bool val) { m_wait_for_tracer_at_next_execve = val; } KResultOr peek_user_data(u32* address); KResult poke_user_data(u32* address, u32 data); private: friend class MemoryManager; friend class Scheduler; friend class Region; Process(Thread*& first_thread, const String& name, uid_t, gid_t, pid_t ppid, RingLevel, RefPtr cwd = nullptr, RefPtr executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr); static pid_t allocate_pid(); Range allocate_range(VirtualAddress, size_t, size_t alignment = PAGE_SIZE); Region& add_region(NonnullOwnPtr); void kill_threads_except_self(); void kill_all_threads(); int do_exec(NonnullRefPtr main_program_description, Vector arguments, Vector environment, RefPtr interpreter_description); ssize_t do_write(FileDescription&, const u8*, int data_size); KResultOr> find_elf_interpreter_for_executable(const String& path, char (&first_page)[PAGE_SIZE], int nread, size_t file_size); int alloc_fd(int first_candidate_fd = 0); void disown_all_shared_buffers(); KResult do_kill(Process&, int signal); KResult do_killpg(pid_t pgrp, int signal); KResult do_killall(int signal); KResult do_killself(int signal); KResultOr do_waitid(idtype_t idtype, int id, int options); KResultOr get_syscall_path_argument(const char* user_path, size_t path_length) const; KResultOr get_syscall_path_argument(const Syscall::StringArgument&) const; bool has_tracee_thread(int tracer_pid) const; RefPtr m_page_directory; Process* m_prev { nullptr }; Process* m_next { nullptr }; String m_name; pid_t m_pid { 0 }; uid_t m_uid { 0 }; gid_t m_gid { 0 }; uid_t m_euid { 0 }; gid_t m_egid { 0 }; pid_t m_sid { 0 }; pid_t m_pgid { 0 }; pid_t m_exec_tid { 0 }; static const int m_max_open_file_descriptors { FD_SETSIZE }; struct FileDescriptionAndFlags { operator bool() const { return !!description; } void clear(); void set(NonnullRefPtr&& d, u32 f = 0); RefPtr description; u32 flags { 0 }; }; Vector m_fds; RingLevel m_ring { Ring0 }; u8 m_termination_status { 0 }; u8 m_termination_signal { 0 }; u16 m_thread_count { 0 }; bool m_dead { false }; bool m_profiling { false }; RefPtr m_executable; RefPtr m_cwd; RefPtr m_root_directory; RefPtr m_root_directory_relative_to_global_root; RefPtr m_tty; Region* region_from_range(const Range&); Region* region_containing(const Range&); NonnullOwnPtrVector m_regions; struct RegionLookupCache { Range range; WeakPtr region; }; RegionLookupCache m_region_lookup_cache; pid_t m_ppid { 0 }; mode_t m_umask { 022 }; FixedArray m_extra_gids; WeakPtr m_master_tls_region; size_t m_master_tls_size { 0 }; size_t m_master_tls_alignment { 0 }; Lock m_big_lock { "Process" }; u64 m_alarm_deadline { 0 }; int m_icon_id { -1 }; u32 m_priority_boost { 0 }; u32 m_promises { 0 }; u32 m_execpromises { 0 }; VeilState m_veil_state { VeilState::None }; Vector m_unveiled_paths; WaitQueue& futex_queue(i32*); HashMap> m_futex_queues; OwnPtr m_perf_event_buffer; u32 m_inspector_count { 0 }; // This member is used in the implementation of ptrace's PT_TRACEME flag. // If it is set to true, the process will stop at the next execve syscall // and wait for a tracer to attach. bool m_wait_for_tracer_at_next_execve { false }; }; class ProcessInspectionHandle { public: ProcessInspectionHandle(Process& process) : m_process(process) { if (&process != Process::current) { InterruptDisabler disabler; m_process.increment_inspector_count({}); } } ~ProcessInspectionHandle() { if (&m_process != Process::current) { InterruptDisabler disabler; m_process.decrement_inspector_count({}); } } Process& process() { return m_process; } static OwnPtr from_pid(pid_t pid) { InterruptDisabler disabler; auto* process = Process::from_pid(pid); if (process) return make(*process); return nullptr; } Process* operator->() { return &m_process; } Process& operator*() { return m_process; } private: Process& m_process; }; extern InlineLinkedList* g_processes; template inline void Process::for_each(Callback callback) { ASSERT_INTERRUPTS_DISABLED(); for (auto* process = g_processes->head(); process;) { auto* next_process = process->next(); if (callback(*process) == IterationDecision::Break) break; process = next_process; } } template inline void Process::for_each_child(Callback callback) { ASSERT_INTERRUPTS_DISABLED(); pid_t my_pid = pid(); for (auto* process = g_processes->head(); process;) { auto* next_process = process->next(); if (process->ppid() == my_pid || process->has_tracee_thread(m_pid)) { if (callback(*process) == IterationDecision::Break) break; } process = next_process; } } template inline void Process::for_each_thread(Callback callback) const { InterruptDisabler disabler; pid_t my_pid = pid(); if (my_pid == 0) { // NOTE: Special case the colonel process, since its main thread is not in the global thread table. callback(*g_colonel); return; } Thread::for_each([callback, my_pid](Thread& thread) -> IterationDecision { if (thread.pid() == my_pid) return callback(thread); return IterationDecision::Continue; }); } template inline void Process::for_each_in_pgrp(pid_t pgid, Callback callback) { ASSERT_INTERRUPTS_DISABLED(); for (auto* process = g_processes->head(); process;) { auto* next_process = process->next(); if (!process->is_dead() && process->pgid() == pgid) { if (callback(*process) == IterationDecision::Break) break; } process = next_process; } } inline bool InodeMetadata::may_read(const Process& process) const { return may_read(process.euid(), process.egid(), process.extra_gids()); } inline bool InodeMetadata::may_write(const Process& process) const { return may_write(process.euid(), process.egid(), process.extra_gids()); } inline bool InodeMetadata::may_execute(const Process& process) const { return may_execute(process.euid(), process.egid(), process.extra_gids()); } inline int Thread::pid() const { return m_process.pid(); } inline const LogStream& operator<<(const LogStream& stream, const Process& process) { return stream << process.name() << '(' << process.pid() << ')'; } inline u32 Thread::effective_priority() const { return m_priority + m_process.priority_boost() + m_priority_boost + m_extra_priority; } #define REQUIRE_NO_PROMISES \ do { \ if (Process::current->has_promises()) { \ dbg() << "Has made a promise"; \ cli(); \ Process::current->crash(SIGABRT, 0); \ ASSERT_NOT_REACHED(); \ } \ } while (0) #define REQUIRE_PROMISE(promise) \ do { \ if (Process::current->has_promises() \ && !Process::current->has_promised(Pledge::promise)) { \ dbg() << "Has not pledged " << #promise; \ cli(); \ Process::current->crash(SIGABRT, 0); \ ASSERT_NOT_REACHED(); \ } \ } while (0) }