/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#define DEBUG_IO //#define DEBUG_POLL_SELECT //#define MM_DEBUG //#define PROCESS_DEBUG //#define SIGNAL_DEBUG namespace Kernel { static void create_signal_trampolines(); RecursiveSpinLock g_processes_lock; static Atomic next_pid; InlineLinkedList* g_processes; String* g_hostname; Lock* g_hostname_lock; VirtualAddress g_return_to_ring3_from_signal_trampoline; HashMap>* g_modules; ProcessID Process::allocate_pid() { // Overflow is UB, and negative PIDs wreck havoc. // TODO: Handle PID overflow // For example: Use an Atomic, mask the most significant bit, // retry if PID is already taken as a PID, taken as a TID, // takes as a PGID, taken as a SID, or zero. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel); } void Process::initialize() { g_modules = new HashMap>; next_pid.store(0, AK::MemoryOrder::memory_order_release); g_processes = new InlineLinkedList; g_process_groups = new InlineLinkedList; g_hostname = new String("courage"); g_hostname_lock = new Lock; create_signal_trampolines(); } Vector Process::all_pids() { Vector pids; ScopedSpinLock lock(g_processes_lock); pids.ensure_capacity((int)g_processes->size_slow()); for (auto& process : *g_processes) pids.append(process.pid()); return pids; } NonnullRefPtrVector Process::all_processes() { NonnullRefPtrVector processes; ScopedSpinLock lock(g_processes_lock); processes.ensure_capacity((int)g_processes->size_slow()); for (auto& process : *g_processes) processes.append(NonnullRefPtr(process)); return processes; } bool Process::in_group(gid_t gid) const { return m_gid == gid || m_extra_gids.contains_slow(gid); } Range Process::allocate_range(VirtualAddress vaddr, size_t size, size_t alignment) { vaddr.mask(PAGE_MASK); size = PAGE_ROUND_UP(size); if (vaddr.is_null()) return page_directory().range_allocator().allocate_anywhere(size, alignment); return page_directory().range_allocator().allocate_specific(vaddr, size); } Region& Process::allocate_split_region(const Region& source_region, const Range& range, size_t offset_in_vmobject) { auto& region = add_region(Region::create_user_accessible(range, source_region.vmobject(), offset_in_vmobject, source_region.name(), source_region.access())); region.set_mmap(source_region.is_mmap()); region.set_stack(source_region.is_stack()); size_t page_offset_in_source_region = (offset_in_vmobject - source_region.offset_in_vmobject()) / PAGE_SIZE; for (size_t i = 0; i < region.page_count(); ++i) { if (source_region.should_cow(page_offset_in_source_region + i)) region.set_should_cow(i, true); } return region; } Region* Process::allocate_region(const Range& range, const String& name, int prot, bool should_commit) { ASSERT(range.is_valid()); auto vmobject = AnonymousVMObject::create_with_size(range.size()); auto region = Region::create_user_accessible(range, vmobject, 0, name, prot_to_region_access_flags(prot)); region->map(page_directory()); if (should_commit && !region->commit()) return nullptr; return &add_region(move(region)); } Region* Process::allocate_region(VirtualAddress vaddr, size_t size, const String& name, int prot, bool should_commit) { auto range = allocate_range(vaddr, size); if (!range.is_valid()) return nullptr; return allocate_region(range, name, prot, should_commit); } Region* Process::allocate_region_with_vmobject(const Range& range, NonnullRefPtr vmobject, size_t offset_in_vmobject, const String& name, int prot) { ASSERT(range.is_valid()); size_t end_in_vmobject = offset_in_vmobject + range.size(); if (end_in_vmobject <= offset_in_vmobject) { dbg() << "allocate_region_with_vmobject: Overflow (offset + size)"; return nullptr; } if (offset_in_vmobject >= vmobject->size()) { dbg() << "allocate_region_with_vmobject: Attempt to allocate a region with an offset past the end of its VMObject."; return nullptr; } if (end_in_vmobject > vmobject->size()) { dbg() << "allocate_region_with_vmobject: Attempt to allocate a region with an end past the end of its VMObject."; return nullptr; } offset_in_vmobject &= PAGE_MASK; auto& region = add_region(Region::create_user_accessible(range, move(vmobject), offset_in_vmobject, name, prot_to_region_access_flags(prot))); region.map(page_directory()); return ®ion; } Region* Process::allocate_region_with_vmobject(VirtualAddress vaddr, size_t size, NonnullRefPtr vmobject, size_t offset_in_vmobject, const String& name, int prot) { auto range = allocate_range(vaddr, size); if (!range.is_valid()) return nullptr; return allocate_region_with_vmobject(range, move(vmobject), offset_in_vmobject, name, prot); } bool Process::deallocate_region(Region& region) { OwnPtr region_protector; ScopedSpinLock lock(m_lock); if (m_region_lookup_cache.region.unsafe_ptr() == ®ion) m_region_lookup_cache.region = nullptr; for (size_t i = 0; i < m_regions.size(); ++i) { if (&m_regions[i] == ®ion) { region_protector = m_regions.unstable_take(i); return true; } } return false; } Region* Process::find_region_from_range(const Range& range) { ScopedSpinLock lock(m_lock); if (m_region_lookup_cache.range == range && m_region_lookup_cache.region) return m_region_lookup_cache.region.unsafe_ptr(); size_t size = PAGE_ROUND_UP(range.size()); for (auto& region : m_regions) { if (region.vaddr() == range.base() && region.size() == size) { m_region_lookup_cache.range = range; m_region_lookup_cache.region = region; return ®ion; } } return nullptr; } Region* Process::find_region_containing(const Range& range) { ScopedSpinLock lock(m_lock); for (auto& region : m_regions) { if (region.contains(range)) return ®ion; } return nullptr; } void Process::kill_threads_except_self() { InterruptDisabler disabler; if (thread_count() <= 1) return; auto current_thread = Thread::current(); for_each_thread([&](Thread& thread) { if (&thread == current_thread || thread.state() == Thread::State::Dead || thread.state() == Thread::State::Dying) return IterationDecision::Continue; // We need to detach this thread in case it hasn't been joined thread.detach(); thread.set_should_die(); return IterationDecision::Continue; }); big_lock().clear_waiters(); } void Process::kill_all_threads() { for_each_thread([&](Thread& thread) { // We need to detach this thread in case it hasn't been joined thread.detach(); thread.set_should_die(); return IterationDecision::Continue; }); } RefPtr Process::create_user_process(RefPtr& first_thread, const String& path, uid_t uid, gid_t gid, ProcessID parent_pid, int& error, Vector&& arguments, Vector&& environment, TTY* tty) { auto parts = path.split('/'); if (arguments.is_empty()) { arguments.append(parts.last()); } RefPtr cwd; RefPtr root; { ScopedSpinLock lock(g_processes_lock); if (auto parent = Process::from_pid(parent_pid)) { cwd = parent->m_cwd; root = parent->m_root_directory; } } if (!cwd) cwd = VFS::the().root_custody(); if (!root) root = VFS::the().root_custody(); auto process = adopt(*new Process(first_thread, parts.take_last(), uid, gid, parent_pid, false, move(cwd), nullptr, tty)); process->m_fds.resize(m_max_open_file_descriptors); auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the(); auto description = device_to_use_as_tty.open(O_RDWR).value(); process->m_fds[0].set(*description); process->m_fds[1].set(*description); process->m_fds[2].set(*description); error = process->exec(path, move(arguments), move(environment)); if (error != 0) { dbg() << "Failed to exec " << path << ": " << error; first_thread = nullptr; return {}; } { ScopedSpinLock lock(g_processes_lock); g_processes->prepend(process); process->ref(); } error = 0; return process; } NonnullRefPtr Process::create_kernel_process(RefPtr& first_thread, String&& name, void (*entry)(void*), void* entry_data, u32 affinity) { auto process = adopt(*new Process(first_thread, move(name), (uid_t)0, (gid_t)0, ProcessID(0), true)); first_thread->tss().eip = (FlatPtr)entry; first_thread->tss().esp = FlatPtr(entry_data); // entry function argument is expected to be in tss.esp if (process->pid() != 0) { ScopedSpinLock lock(g_processes_lock); g_processes->prepend(process); process->ref(); } ScopedSpinLock lock(g_scheduler_lock); first_thread->set_affinity(affinity); first_thread->set_state(Thread::State::Runnable); return process; } Process::Process(RefPtr& first_thread, const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr cwd, RefPtr executable, TTY* tty, Process* fork_parent) : m_name(move(name)) , m_pid(allocate_pid()) , m_euid(uid) , m_egid(gid) , m_uid(uid) , m_gid(gid) , m_suid(uid) , m_sgid(gid) , m_is_kernel_process(is_kernel_process) , m_executable(move(executable)) , m_cwd(move(cwd)) , m_tty(tty) , m_ppid(ppid) , m_wait_block_condition(*this) { #ifdef PROCESS_DEBUG dbg() << "Created new process " << m_name << "(" << m_pid.value() << ")"; #endif m_page_directory = PageDirectory::create_for_userspace(*this, fork_parent ? &fork_parent->page_directory().range_allocator() : nullptr); #ifdef MM_DEBUG dbg() << "Process " << pid().value() << " ctor: PD=" << m_page_directory.ptr() << " created"; #endif if (fork_parent) { // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process. first_thread = Thread::current()->clone(*this); } else { // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.) first_thread = adopt(*new Thread(*this)); first_thread->detach(); } } Process::~Process() { ASSERT(thread_count() == 0); // all threads should have been finalized ASSERT(!m_alarm_timer); { ScopedSpinLock processses_lock(g_processes_lock); if (prev() || next()) g_processes->remove(this); } } void Process::dump_regions() { klog() << "Process regions:"; klog() << "BEGIN END SIZE ACCESS NAME"; ScopedSpinLock lock(m_lock); Vector sorted_regions; sorted_regions.ensure_capacity(m_regions.size()); for (auto& region : m_regions) sorted_regions.append(®ion); quick_sort(sorted_regions, [](auto& a, auto& b) { return a->vaddr() < b->vaddr(); }); for (auto& sorted_region : sorted_regions) { auto& region = *sorted_region; klog() << String::format("%08x", region.vaddr().get()) << " -- " << String::format("%08x", region.vaddr().offset(region.size() - 1).get()) << " " << String::format("%08x", region.size()) << " " << (region.is_readable() ? 'R' : ' ') << (region.is_writable() ? 'W' : ' ') << (region.is_executable() ? 'X' : ' ') << (region.is_shared() ? 'S' : ' ') << (region.is_stack() ? 'T' : ' ') << (region.vmobject().is_purgeable() ? 'P' : ' ') << " " << region.name().characters(); } MM.dump_kernel_regions(); } // Make sure the compiler doesn't "optimize away" this function: extern void signal_trampoline_dummy(void); void signal_trampoline_dummy(void) { // The trampoline preserves the current eax, pushes the signal code and // then calls the signal handler. We do this because, when interrupting a // blocking syscall, that syscall may return some special error code in eax; // This error code would likely be overwritten by the signal handler, so it's // necessary to preserve it here. asm( ".intel_syntax noprefix\n" "asm_signal_trampoline:\n" "push ebp\n" "mov ebp, esp\n" "push eax\n" // we have to store eax 'cause it might be the return value from a syscall "sub esp, 4\n" // align the stack to 16 bytes "mov eax, [ebp+12]\n" // push the signal code "push eax\n" "call [ebp+8]\n" // call the signal handler "add esp, 8\n" "mov eax, %P0\n" "int 0x82\n" // sigreturn syscall "asm_signal_trampoline_end:\n" ".att_syntax" ::"i"(Syscall::SC_sigreturn)); } extern "C" void asm_signal_trampoline(void); extern "C" void asm_signal_trampoline_end(void); void create_signal_trampolines() { InterruptDisabler disabler; // NOTE: We leak this region. auto* trampoline_region = MM.allocate_user_accessible_kernel_region(PAGE_SIZE, "Signal trampolines", Region::Access::Read | Region::Access::Write | Region::Access::Execute, false).leak_ptr(); g_return_to_ring3_from_signal_trampoline = trampoline_region->vaddr(); u8* trampoline = (u8*)asm_signal_trampoline; u8* trampoline_end = (u8*)asm_signal_trampoline_end; size_t trampoline_size = trampoline_end - trampoline; { SmapDisabler disabler; u8* code_ptr = (u8*)trampoline_region->vaddr().as_ptr(); memcpy(code_ptr, trampoline, trampoline_size); } trampoline_region->set_writable(false); trampoline_region->remap(); } void Process::crash(int signal, u32 eip, bool out_of_memory) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(!is_dead()); ASSERT(Process::current() == this); if (out_of_memory) { dbg() << "\033[31;1mOut of memory\033[m, killing: " << *this; } else { if (eip >= 0xc0000000 && g_kernel_symbols_available) { auto* symbol = symbolicate_kernel_address(eip); dbg() << "\033[31;1m" << String::format("%p", eip) << " " << (symbol ? demangle(symbol->name) : "(k?)") << " +" << (symbol ? eip - symbol->address : 0) << "\033[0m\n"; } else if (auto elf_bundle = this->elf_bundle()) { dbg() << "\033[31;1m" << String::format("%p", eip) << " " << elf_bundle->elf_loader->symbolicate(eip) << "\033[0m\n"; } else { dbg() << "\033[31;1m" << String::format("%p", eip) << " (?)\033[0m\n"; } dump_backtrace(); } m_termination_signal = signal; dump_regions(); ASSERT(is_user_process()); die(); // We can not return from here, as there is nowhere // to unwind to, so die right away. Thread::current()->die_if_needed(); ASSERT_NOT_REACHED(); } RefPtr Process::from_pid(ProcessID pid) { ScopedSpinLock lock(g_processes_lock); for (auto& process : *g_processes) { process.pid(); if (process.pid() == pid) return &process; } return {}; } RefPtr Process::file_description(int fd) const { if (fd < 0) return nullptr; if (static_cast(fd) < m_fds.size()) return m_fds[fd].description(); return nullptr; } int Process::fd_flags(int fd) const { if (fd < 0) return -1; if (static_cast(fd) < m_fds.size()) return m_fds[fd].flags(); return -1; } int Process::number_of_open_file_descriptors() const { int count = 0; for (auto& description : m_fds) { if (description) ++count; } return count; } int Process::alloc_fd(int first_candidate_fd) { for (int i = first_candidate_fd; i < (int)m_max_open_file_descriptors; ++i) { if (!m_fds[i]) return i; } return -EMFILE; } timeval kgettimeofday() { return TimeManagement::now_as_timeval(); } void kgettimeofday(timeval& tv) { tv = kgettimeofday(); } siginfo_t Process::wait_info() { siginfo_t siginfo; memset(&siginfo, 0, sizeof(siginfo)); siginfo.si_signo = SIGCHLD; siginfo.si_pid = pid().value(); siginfo.si_uid = uid(); if (m_termination_signal) { siginfo.si_status = m_termination_signal; siginfo.si_code = CLD_KILLED; } else { siginfo.si_status = m_termination_status; siginfo.si_code = CLD_EXITED; } return siginfo; } Custody& Process::current_directory() { if (!m_cwd) m_cwd = VFS::the().root_custody(); return *m_cwd; } KResultOr Process::get_syscall_path_argument(const char* user_path, size_t path_length) const { if (path_length == 0) return KResult(-EINVAL); if (path_length > PATH_MAX) return KResult(-ENAMETOOLONG); auto copied_string = copy_string_from_user(user_path, path_length); if (copied_string.is_null()) return KResult(-EFAULT); return copied_string; } KResultOr Process::get_syscall_path_argument(const Syscall::StringArgument& path) const { return get_syscall_path_argument(path.characters, path.length); } void Process::finalize(Thread& last_thread) { ASSERT(Thread::current() == g_finalizer); #ifdef PROCESS_DEBUG dbg() << "Finalizing process " << *this; #endif if (m_perf_event_buffer) { auto description_or_error = VFS::the().open(String::format("perfcore.%d", m_pid), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { m_uid, m_gid }); if (!description_or_error.is_error()) { auto& description = description_or_error.value(); auto json = m_perf_event_buffer->to_json(m_pid, m_executable ? m_executable->absolute_path() : ""); auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json.data()); auto result = description->write(json_buffer, json.size()); if (result.is_error()) { dbgln("Error while writing perfcore file: {}", result.error().error()); } } } if (m_alarm_timer) TimerQueue::the().cancel_timer(m_alarm_timer.release_nonnull()); m_fds.clear(); m_tty = nullptr; m_executable = nullptr; m_cwd = nullptr; m_root_directory = nullptr; m_root_directory_relative_to_global_root = nullptr; m_dead = true; disown_all_shared_buffers(); { // FIXME: PID/TID BUG if (auto parent_thread = Thread::from_tid(m_ppid.value())) { if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT)) parent_thread->send_signal(SIGCHLD, this); } } { ScopedSpinLock processses_lock(g_processes_lock); if (!!ppid()) { if (auto parent = Process::from_pid(ppid())) { parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children; parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children; } } } unblock_waiters(last_thread, Thread::WaitBlocker::UnblockFlags::Terminated); { ScopedSpinLock lock(m_lock); m_regions.clear(); } ASSERT(ref_count() > 0); // WaitBlockCondition::finalize will be in charge of dropping the last // reference if there are still waiters around, or whenever the last // waitable states are consumed. Unless there is no parent around // anymore, in which case we'll just drop it right away. m_wait_block_condition.finalize(); } void Process::unblock_waiters(Thread& thread, Thread::WaitBlocker::UnblockFlags flags, u8 signal) { if (auto parent = Process::from_pid(ppid())) parent->m_wait_block_condition.unblock(thread, flags, signal); } void Process::die() { // Let go of the TTY, otherwise a slave PTY may keep the master PTY from // getting an EOF when the last process using the slave PTY dies. // If the master PTY owner relies on an EOF to know when to wait() on a // slave owner, we have to allow the PTY pair to be torn down. m_tty = nullptr; kill_all_threads(); } size_t Process::amount_dirty_private() const { // FIXME: This gets a bit more complicated for Regions sharing the same underlying VMObject. // The main issue I'm thinking of is when the VMObject has physical pages that none of the Regions are mapping. // That's probably a situation that needs to be looked at in general. size_t amount = 0; ScopedSpinLock lock(m_lock); for (auto& region : m_regions) { if (!region.is_shared()) amount += region.amount_dirty(); } return amount; } size_t Process::amount_clean_inode() const { HashTable vmobjects; { ScopedSpinLock lock(m_lock); for (auto& region : m_regions) { if (region.vmobject().is_inode()) vmobjects.set(&static_cast(region.vmobject())); } } size_t amount = 0; for (auto& vmobject : vmobjects) amount += vmobject->amount_clean(); return amount; } size_t Process::amount_virtual() const { size_t amount = 0; ScopedSpinLock lock(m_lock); for (auto& region : m_regions) { amount += region.size(); } return amount; } size_t Process::amount_resident() const { // FIXME: This will double count if multiple regions use the same physical page. size_t amount = 0; ScopedSpinLock lock(m_lock); for (auto& region : m_regions) { amount += region.amount_resident(); } return amount; } size_t Process::amount_shared() const { // FIXME: This will double count if multiple regions use the same physical page. // FIXME: It doesn't work at the moment, since it relies on PhysicalPage ref counts, // and each PhysicalPage is only reffed by its VMObject. This needs to be refactored // so that every Region contributes +1 ref to each of its PhysicalPages. size_t amount = 0; ScopedSpinLock lock(m_lock); for (auto& region : m_regions) { amount += region.amount_shared(); } return amount; } size_t Process::amount_purgeable_volatile() const { size_t amount = 0; ScopedSpinLock lock(m_lock); for (auto& region : m_regions) { if (region.vmobject().is_purgeable() && static_cast(region.vmobject()).is_volatile()) amount += region.amount_resident(); } return amount; } size_t Process::amount_purgeable_nonvolatile() const { size_t amount = 0; ScopedSpinLock lock(m_lock); for (auto& region : m_regions) { if (region.vmobject().is_purgeable() && !static_cast(region.vmobject()).is_volatile()) amount += region.amount_resident(); } return amount; } void Process::terminate_due_to_signal(u8 signal) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(signal < 32); dbg() << "Terminating " << *this << " due to signal " << signal; m_termination_status = 0; m_termination_signal = signal; die(); } KResult Process::send_signal(u8 signal, Process* sender) { // Try to send it to the "obvious" main thread: auto receiver_thread = Thread::from_tid(m_pid.value()); // If the main thread has died, there may still be other threads: if (!receiver_thread) { // The first one should be good enough. // Neither kill(2) nor kill(3) specify any selection precedure. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision { receiver_thread = &thread; return IterationDecision::Break; }); } if (receiver_thread) { receiver_thread->send_signal(signal, sender); return KSuccess; } return KResult(-ESRCH); } RefPtr Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, const String& name, u32 affinity, bool joinable) { ASSERT((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX)); // FIXME: Do something with guard pages? auto thread = adopt(*new Thread(*this)); thread->set_name(name); thread->set_affinity(affinity); thread->set_priority(priority); if (!joinable) thread->detach(); auto& tss = thread->tss(); tss.eip = (FlatPtr)entry; tss.esp = FlatPtr(entry_data); // entry function argument is expected to be in tss.esp ScopedSpinLock lock(g_scheduler_lock); thread->set_state(Thread::State::Runnable); return thread; } void Process::FileDescriptionAndFlags::clear() { m_description = nullptr; m_flags = 0; } void Process::FileDescriptionAndFlags::set(NonnullRefPtr&& description, u32 flags) { m_description = move(description); m_flags = flags; } KBuffer Process::backtrace() const { KBufferBuilder builder; for_each_thread([&](Thread& thread) { builder.appendf("Thread %d (%s):\n", thread.tid().value(), thread.name().characters()); builder.append(thread.backtrace()); return IterationDecision::Continue; }); return builder.build(); } Custody& Process::root_directory() { if (!m_root_directory) m_root_directory = VFS::the().root_custody(); return *m_root_directory; } Custody& Process::root_directory_relative_to_global_root() { if (!m_root_directory_relative_to_global_root) m_root_directory_relative_to_global_root = root_directory(); return *m_root_directory_relative_to_global_root; } void Process::set_root_directory(const Custody& root) { m_root_directory = root; } Region& Process::add_region(NonnullOwnPtr region) { auto* ptr = region.ptr(); ScopedSpinLock lock(m_lock); m_regions.append(move(region)); return *ptr; } void Process::set_tty(TTY* tty) { m_tty = tty; } OwnPtr Process::elf_bundle() const { if (!m_executable) return nullptr; auto bundle = make(); if (!m_executable->inode().shared_vmobject()) { return nullptr; } ASSERT(m_executable->inode().shared_vmobject()); auto& vmobject = *m_executable->inode().shared_vmobject(); bundle->region = MM.allocate_kernel_region_with_vmobject(const_cast(vmobject), vmobject.size(), "ELF bundle", Region::Access::Read); if (!bundle->region) return nullptr; bundle->elf_loader = ELF::Loader::create(bundle->region->vaddr().as_ptr(), bundle->region->size()); return bundle; } }