#include "types.h" #include "Process.h" #include "kmalloc.h" #include "VGA.h" #include "StdLib.h" #include "i386.h" #include "system.h" #include #include #include #include "MemoryManager.h" #include "errno.h" #include "i8253.h" #include "RTC.h" #include "ProcFileSystem.h" #include //#define DEBUG_IO //#define TASK_DEBUG //#define SCHEDULER_DEBUG // FIXME: Only do a single validation for accesses that don't span multiple pages. // FIXME: Some places pass strlen(arg1) as arg2. This doesn't seem entirely perfect.. #define VALIDATE_USER_READ(b, s) \ do { \ LinearAddress laddr((dword)(b)); \ if (!validate_user_read(laddr) || !validate_user_read(laddr.offset((s) - 1))) \ return -EFAULT; \ } while(0) #define VALIDATE_USER_WRITE(b, s) \ do { \ LinearAddress laddr((dword)(b)); \ if (!validate_user_write(laddr) || !validate_user_write(laddr.offset((s) - 1))) \ return -EFAULT; \ } while(0) static const DWORD defaultStackSize = 16384; Process* current; Process* s_kernelProcess; static pid_t next_pid; static InlineLinkedList* s_processes; static InlineLinkedList* s_deadProcesses; static String* s_hostname; static String& hostnameStorage(InterruptDisabler&) { ASSERT(s_hostname); return *s_hostname; } static String getHostname() { InterruptDisabler disabler; return hostnameStorage(disabler).isolatedCopy(); } static bool contextSwitch(Process*); static void redoKernelProcessTSS() { if (!s_kernelProcess->selector()) s_kernelProcess->setSelector(gdt_alloc_entry()); auto& tssDescriptor = getGDTEntry(s_kernelProcess->selector()); tssDescriptor.setBase(&s_kernelProcess->tss()); tssDescriptor.setLimit(0xffff); tssDescriptor.dpl = 0; tssDescriptor.segment_present = 1; tssDescriptor.granularity = 1; tssDescriptor.zero = 0; tssDescriptor.operation_size = 1; tssDescriptor.descriptor_type = 0; tssDescriptor.type = 9; flushGDT(); } void Process::prepForIRETToNewProcess() { redoKernelProcessTSS(); s_kernelProcess->tss().backlink = current->selector(); loadTaskRegister(s_kernelProcess->selector()); } static void hlt_loop() { for (;;) { asm volatile("hlt"); } } void Process::initialize() { current = nullptr; next_pid = 0; s_processes = new InlineLinkedList; s_deadProcesses = new InlineLinkedList; s_kernelProcess = Process::createKernelProcess(hlt_loop, "colonel"); s_hostname = new String("birx"); redoKernelProcessTSS(); loadTaskRegister(s_kernelProcess->selector()); } void Process::allocateLDT() { ASSERT(!m_tss.ldt); static const WORD numLDTEntries = 4; m_ldt_selector = gdt_alloc_entry(); m_ldtEntries = new Descriptor[numLDTEntries]; #if 0 kprintf("new ldt selector = %x\n", m_ldt_selector); kprintf("new ldt table at = %p\n", m_ldtEntries); kprintf("new ldt table size = %u\n", (numLDTEntries * 8) - 1); #endif Descriptor& ldt = getGDTEntry(m_ldt_selector); ldt.setBase(m_ldtEntries); ldt.setLimit(numLDTEntries * 8 - 1); ldt.dpl = 0; ldt.segment_present = 1; ldt.granularity = 0; ldt.zero = 0; ldt.operation_size = 1; ldt.descriptor_type = 0; ldt.type = Descriptor::LDT; m_tss.ldt = m_ldt_selector; } Vector Process::allProcesses() { InterruptDisabler disabler; Vector processes; processes.ensureCapacity(s_processes->sizeSlow()); for (auto* process = s_processes->head(); process; process = process->next()) processes.append(process); return processes; } Region* Process::allocateRegion(size_t size, String&& name) { // FIXME: This needs sanity checks. What if this overlaps existing regions? auto zone = MM.createZone(size); ASSERT(zone); m_regions.append(adopt(*new Region(m_nextRegion, size, move(zone), move(name)))); m_nextRegion = m_nextRegion.offset(size).offset(16384); MM.mapRegion(*this, *m_regions.last()); return m_regions.last().ptr(); } bool Process::deallocateRegion(Region& region) { InterruptDisabler disabler; for (size_t i = 0; i < m_regions.size(); ++i) { if (m_regions[i].ptr() == ®ion) { MM.unmapRegion(*this, region); m_regions.remove(i); return true; } } return false; } Region* Process::regionFromRange(LinearAddress laddr, size_t size) { for (auto& region : m_regions) { if (region->linearAddress == laddr && region->size == size) return region.ptr(); } return nullptr; } int Process::sys$set_mmap_name(void* addr, size_t size, const char* name) { VALIDATE_USER_READ(name, strlen(name)); auto* region = regionFromRange(LinearAddress((dword)addr), size); if (!region) return -EINVAL; region->name = name; return 0; } void* Process::sys$mmap(void* addr, size_t size) { InterruptDisabler disabler; // FIXME: Implement mapping at a client-preferred address. ASSERT(addr == nullptr); auto* region = allocateRegion(size, "mmap"); if (!region) return (void*)-1; MM.mapRegion(*this, *region); return (void*)region->linearAddress.get(); } int Process::sys$munmap(void* addr, size_t size) { InterruptDisabler disabler; auto* region = regionFromRange(LinearAddress((dword)addr), size); if (!region) return -1; if (!deallocateRegion(*region)) return -1; return 0; } int Process::sys$gethostname(char* buffer, size_t size) { VALIDATE_USER_WRITE(buffer, size); auto hostname = getHostname(); if (size < (hostname.length() + 1)) return -ENAMETOOLONG; memcpy(buffer, hostname.characters(), size); return 0; } int Process::sys$spawn(const char* path, const char** args) { if (args) { for (size_t i = 0; args[i]; ++i) { VALIDATE_USER_READ(args[i], strlen(args[i])); } } int error = 0; auto* child = Process::createUserProcess(path, m_uid, m_gid, m_pid, error, args, m_tty); if (child) return child->pid(); return error; } Process* Process::createUserProcess(const String& path, uid_t uid, gid_t gid, pid_t parentPID, int& error, const char** args, TTY* tty) { auto parts = path.split('/'); if (parts.isEmpty()) { error = -ENOENT; return nullptr; } RetainPtr cwd; { InterruptDisabler disabler; if (auto* parentProcess = Process::fromPID(parentPID)) cwd = parentProcess->m_cwd.copyRef(); if (!cwd) cwd = VirtualFileSystem::the().root(); } auto handle = VirtualFileSystem::the().open(path, error, 0, cwd ? cwd->inode : InodeIdentifier()); if (!handle) return nullptr; if (!handle->metadata().mayExecute(uid, gid)) { error = -EACCES; return nullptr; } auto elfData = handle->readEntireFile(); if (!elfData) { error = -EIO; // FIXME: Get a more detailed error from VFS. return nullptr; } Vector processArguments; if (args) { for (size_t i = 0; args[i]; ++i) { processArguments.append(args[i]); } } else { processArguments.append(parts.last()); } Vector processEnvironment; processEnvironment.append("PATH=/bin"); processEnvironment.append("SHELL=/bin/sh"); processEnvironment.append("TERM=console"); processEnvironment.append("HOME=/"); auto* t = new Process(parts.takeLast(), uid, gid, parentPID, Ring3, move(cwd), handle->vnode(), tty); t->m_arguments = move(processArguments); t->m_initialEnvironment = move(processEnvironment); ExecSpace space; Region* region = nullptr; byte* region_alias = nullptr; KernelPagingScope pagingScope; space.hookableAlloc = [&] (const String& name, size_t size) { if (!size) return (void*)nullptr; size = ((size / 4096) + 1) * 4096; // FIXME: Use ceil_div? region = t->allocateRegion(size, String(name)); ASSERT(region); region_alias = MM.create_kernel_alias_for_region(*region); return (void*)region_alias; }; bool success = space.loadELF(move(elfData)); if (!success) { if (region) MM.remove_kernel_alias_for_region(*region, region_alias); delete t; kprintf("Failure loading ELF %s\n", path.characters()); error = -ENOEXEC; return nullptr; } space.forEachArea([&] (const String& name, dword offset, size_t size, LinearAddress laddr) { if (laddr.isNull()) return; dword roundedOffset = offset & 0xfffff000; size_t roundedSize = 4096 * ceilDiv((offset - roundedOffset) + size, 4096u); LinearAddress roundedLaddr = laddr; roundedLaddr.mask(0xfffff000); t->m_subregions.append(make(*region, roundedOffset, roundedSize, roundedLaddr, String(name))); #ifdef SUBREGION_DEBUG kprintf(" req subregion %s (offset: %u, size: %u) @ %p\n", name.characters(), offset, size, laddr.get()); kprintf("actual subregion %s (offset: %u, size: %u) @ %p\n", name.characters(), roundedOffset, roundedSize, roundedLaddr.get()); #endif MM.mapSubregion(*t, *t->m_subregions.last()); }); t->m_tss.eip = (dword)space.symbolPtr("_start"); if (!t->m_tss.eip) { // FIXME: This is ugly. If we need to do this, it should be at a different level. if (region) MM.remove_kernel_alias_for_region(*region, region_alias); delete t; error = -ENOEXEC; return nullptr; } ASSERT(region); MM.remove_kernel_alias_for_region(*region, region_alias); ProcFileSystem::the().addProcess(*t); s_processes->prepend(t); system.nprocess++; #ifdef TASK_DEBUG kprintf("Process %u (%s) spawned @ %p\n", t->pid(), t->name().characters(), t->m_tss.eip); #endif error = 0; return t; } int Process::sys$get_environment(char*** environ) { auto* region = allocateRegion(4096, "environ"); if (!region) return -ENOMEM; MM.mapRegion(*this, *region); char* envpage = (char*)region->linearAddress.get(); *environ = (char**)envpage; char* bufptr = envpage + (sizeof(char*) * (m_initialEnvironment.size() + 1)); for (size_t i = 0; i < m_initialEnvironment.size(); ++i) { (*environ)[i] = bufptr; memcpy(bufptr, m_initialEnvironment[i].characters(), m_initialEnvironment[i].length()); bufptr += m_initialEnvironment[i].length(); *(bufptr++) = '\0'; } (*environ)[m_initialEnvironment.size()] = nullptr; return 0; } int Process::sys$get_arguments(int* argc, char*** argv) { auto* region = allocateRegion(4096, "argv"); if (!region) return -ENOMEM; MM.mapRegion(*this, *region); char* argpage = (char*)region->linearAddress.get(); *argc = m_arguments.size(); *argv = (char**)argpage; char* bufptr = argpage + (sizeof(char*) * m_arguments.size()); for (size_t i = 0; i < m_arguments.size(); ++i) { (*argv)[i] = bufptr; memcpy(bufptr, m_arguments[i].characters(), m_arguments[i].length()); bufptr += m_arguments[i].length(); *(bufptr++) = '\0'; } return 0; } Process* Process::createKernelProcess(void (*e)(), String&& name) { auto* process = new Process(move(name), (uid_t)0, (gid_t)0, (pid_t)0, Ring0); process->m_tss.eip = (dword)e; if (process->pid() != 0) { InterruptDisabler disabler; s_processes->prepend(process); system.nprocess++; ProcFileSystem::the().addProcess(*process); #ifdef TASK_DEBUG kprintf("Kernel process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip); #endif } return process; } Process::Process(String&& name, uid_t uid, gid_t gid, pid_t parentPID, RingLevel ring, RetainPtr&& cwd, RetainPtr&& executable, TTY* tty) : m_name(move(name)) , m_pid(next_pid++) , m_uid(uid) , m_gid(gid) , m_state(Runnable) , m_ring(ring) , m_cwd(move(cwd)) , m_executable(move(executable)) , m_tty(tty) , m_parentPID(parentPID) { m_pageDirectory = (dword*)kmalloc_page_aligned(4096); MM.populate_page_directory(*this); m_file_descriptors.resize(m_max_open_file_descriptors); if (tty) { m_file_descriptors[0] = tty->open(O_RDONLY); m_file_descriptors[1] = tty->open(O_WRONLY); m_file_descriptors[2] = tty->open(O_WRONLY); } m_nextRegion = LinearAddress(0x10000000); memset(&m_tss, 0, sizeof(m_tss)); if (isRing3()) { memset(&m_ldtEntries, 0, sizeof(m_ldtEntries)); allocateLDT(); } // Only IF is set when a process boots. m_tss.eflags = 0x0202; word cs, ds, ss; if (isRing0()) { cs = 0x08; ds = 0x10; ss = 0x10; } else { cs = 0x1b; ds = 0x23; ss = 0x23; } m_tss.ds = ds; m_tss.es = ds; m_tss.fs = ds; m_tss.gs = ds; m_tss.ss = ss; m_tss.cs = cs; m_tss.cr3 = (dword)m_pageDirectory; if (isRing0()) { // FIXME: This memory is leaked. // But uh, there's also no kernel process termination, so I guess it's not technically leaked... dword stackBottom = (dword)kmalloc_eternal(defaultStackSize); m_stackTop0 = (stackBottom + defaultStackSize) & 0xffffff8; m_tss.esp = m_stackTop0; } else { auto* region = allocateRegion(defaultStackSize, "stack"); ASSERT(region); m_stackTop3 = region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8; m_tss.esp = m_stackTop3; } if (isRing3()) { // Ring3 processes need a separate stack for Ring0. m_kernelStack = kmalloc(defaultStackSize); m_stackTop0 = ((DWORD)m_kernelStack + defaultStackSize) & 0xffffff8; m_tss.ss0 = 0x10; m_tss.esp0 = m_stackTop0; } // HACK: Ring2 SS in the TSS is the current PID. m_tss.ss2 = m_pid; m_farPtr.offset = 0x98765432; } Process::~Process() { InterruptDisabler disabler; ProcFileSystem::the().removeProcess(*this); system.nprocess--; if (isRing3()) { delete [] m_ldtEntries; m_ldtEntries = nullptr; gdt_free_entry(m_ldt_selector); } gdt_free_entry(selector()); if (m_kernelStack) { kfree(m_kernelStack); m_kernelStack = nullptr; } } void Process::dumpRegions() { kprintf("Process %s(%u) regions:\n", name().characters(), pid()); kprintf("BEGIN END SIZE NAME\n"); for (auto& region : m_regions) { kprintf("%x -- %x %x %s\n", region->linearAddress.get(), region->linearAddress.offset(region->size - 1).get(), region->size, region->name.characters()); } kprintf("Process %s(%u) subregions:\n", name().characters(), pid()); kprintf("REGION OFFSET BEGIN END SIZE NAME\n"); for (auto& subregion : m_subregions) { kprintf("%x %x %x -- %x %x %s\n", subregion->region->linearAddress.get(), subregion->offset, subregion->linearAddress.get(), subregion->linearAddress.offset(subregion->size - 1).get(), subregion->size, subregion->name.characters()); } } void Process::notify_waiters(pid_t waitee, int exit_status, int signal) { ASSERT_INTERRUPTS_DISABLED(); for (auto* process = s_processes->head(); process; process = process->next()) { if (process->waitee() == waitee) process->m_waiteeStatus = (exit_status << 8) | (signal); } } void Process::sys$exit(int status) { cli(); #ifdef TASK_DEBUG kprintf("sys$exit: %s(%u) exit with status %d\n", name().characters(), pid(), status); #endif set_state(Exiting); s_processes->remove(this); notify_waiters(m_pid, status, 0); if (!scheduleNewProcess()) { kprintf("Process::sys$exit: Failed to schedule a new process :(\n"); HANG; } s_deadProcesses->append(this); switchNow(); } void Process::murder(int signal) { ASSERT_INTERRUPTS_DISABLED(); bool wasCurrent = current == this; set_state(Exiting); s_processes->remove(this); notify_waiters(m_pid, 0, signal); if (wasCurrent) { kprintf("Current process committing suicide!\n"); if (!scheduleNewProcess()) { kprintf("Process::murder: Failed to schedule a new process :(\n"); HANG; } } s_deadProcesses->append(this); if (wasCurrent) switchNow(); } void Process::processDidCrash(Process* crashedProcess) { ASSERT_INTERRUPTS_DISABLED(); if (crashedProcess->state() == Crashing) { kprintf("Double crash :(\n"); HANG; } crashedProcess->set_state(Crashing); crashedProcess->dumpRegions(); s_processes->remove(crashedProcess); notify_waiters(crashedProcess->m_pid, 0, SIGSEGV); if (!scheduleNewProcess()) { kprintf("Process::processDidCrash: Failed to schedule a new process :(\n"); HANG; } s_deadProcesses->append(crashedProcess); switchNow(); } void Process::doHouseKeeping() { InterruptDisabler disabler; if (s_deadProcesses->isEmpty()) return; Process* next = nullptr; for (auto* deadProcess = s_deadProcesses->head(); deadProcess; deadProcess = next) { next = deadProcess->next(); delete deadProcess; } s_deadProcesses->clear(); } void yield() { if (!current) { kprintf( "PANIC: yield() with !current" ); HANG; } //kprintf("%s<%u> yield()\n", current->name().characters(), current->pid()); InterruptDisabler disabler; if (!scheduleNewProcess()) return; //kprintf("yield() jumping to new process: %x (%s)\n", current->farPtr().selector, current->name().characters()); switchNow(); } void switchNow() { Descriptor& descriptor = getGDTEntry(current->selector()); descriptor.type = 9; flushGDT(); asm("sti\n" "ljmp *(%%eax)\n" ::"a"(¤t->farPtr()) ); } bool scheduleNewProcess() { ASSERT_INTERRUPTS_DISABLED(); if (!current) { // XXX: The first ever context_switch() goes to the idle process. // This to setup a reliable place we can return to. return contextSwitch(Process::kernelProcess()); } // Check and unblock processes whose wait conditions have been met. for (auto* process = s_processes->head(); process; process = process->next()) { if (process->state() == Process::BlockedSleep) { if (process->wakeupTime() <= system.uptime) { process->unblock(); continue; } } if (process->state() == Process::BlockedWait) { if (!Process::fromPID(process->waitee())) { process->unblock(); continue; } } if (process->state() == Process::BlockedRead) { ASSERT(process->m_fdBlockedOnRead != -1); if (process->m_file_descriptors[process->m_fdBlockedOnRead]->hasDataAvailableForRead()) { process->unblock(); continue; } } } #ifdef SCHEDULER_DEBUG dbgprintf("Scheduler choices:\n"); for (auto* process = s_processes->head(); process; process = process->next()) { //if (process->state() == Process::BlockedWait || process->state() == Process::BlockedSleep) // continue; dbgprintf("%w %s(%u)\n", process->state(), process->name().characters(), process->pid()); } #endif auto* prevHead = s_processes->head(); for (;;) { // Move head to tail. s_processes->append(s_processes->removeHead()); auto* process = s_processes->head(); if (process->state() == Process::Runnable || process->state() == Process::Running) { #ifdef SCHEDULER_DEBUG dbgprintf("switch to %s(%u) (%p vs %p)\n", process->name().characters(), process->pid(), process, current); #endif return contextSwitch(process); } if (process == prevHead) { // Back at process_head, nothing wants to run. kprintf("Nothing wants to run!\n"); kprintf("PID OWNER STATE NSCHED NAME\n"); for (auto* process = s_processes->head(); process; process = process->next()) { kprintf("%w %w:%w %b %w %s\n", process->pid(), process->uid(), process->gid(), process->state(), process->timesScheduled(), process->name().characters()); } kprintf("Switch to kernel process @ %w:%x\n", s_kernelProcess->tss().cs, s_kernelProcess->tss().eip); return contextSwitch(Process::kernelProcess()); } } } static bool contextSwitch(Process* t) { t->setTicksLeft(5); t->didSchedule(); if (current == t) return false; #ifdef SCHEDULER_DEBUG // Some sanity checking to force a crash earlier. auto csRPL = t->tss().cs & 3; auto ssRPL = t->tss().ss & 3; if (csRPL != ssRPL) { kprintf("Fuckup! Switching from %s(%u) to %s(%u) has RPL mismatch\n", current->name().characters(), current->pid(), t->name().characters(), t->pid() ); kprintf("code: %w:%x\n", t->tss().cs, t->tss().eip); kprintf(" stk: %w:%x\n", t->tss().ss, t->tss().esp); ASSERT(csRPL == ssRPL); } #endif if (current) { // If the last process hasn't blocked (still marked as running), // mark it as runnable for the next round. if (current->state() == Process::Running) current->set_state(Process::Runnable); } current = t; t->set_state(Process::Running); if (!t->selector()) { t->setSelector(gdt_alloc_entry()); auto& descriptor = getGDTEntry(t->selector()); descriptor.setBase(&t->tss()); descriptor.setLimit(0xffff); descriptor.dpl = 0; descriptor.segment_present = 1; descriptor.granularity = 1; descriptor.zero = 0; descriptor.operation_size = 1; descriptor.descriptor_type = 0; } auto& descriptor = getGDTEntry(t->selector()); descriptor.type = 11; // Busy TSS flushGDT(); return true; } Process* Process::fromPID(pid_t pid) { ASSERT_INTERRUPTS_DISABLED(); for (auto* process = s_processes->head(); process; process = process->next()) { if (process->pid() == pid) return process; } return nullptr; } FileHandle* Process::fileHandleIfExists(int fd) { if (fd < 0) return nullptr; if ((unsigned)fd < m_file_descriptors.size()) return m_file_descriptors[fd].ptr(); return nullptr; } ssize_t Process::sys$get_dir_entries(int fd, void* buffer, size_t size) { VALIDATE_USER_WRITE(buffer, size); auto* handle = fileHandleIfExists(fd); if (!handle) return -EBADF; return handle->get_dir_entries((byte*)buffer, size); } int Process::sys$lseek(int fd, off_t offset, int whence) { auto* handle = fileHandleIfExists(fd); if (!handle) return -EBADF; return handle->seek(offset, whence); } int Process::sys$ttyname_r(int fd, char* buffer, size_t size) { VALIDATE_USER_WRITE(buffer, size); auto* handle = fileHandleIfExists(fd); if (!handle) return -EBADF; if (!handle->isTTY()) return -ENOTTY; auto ttyName = handle->tty()->ttyName(); if (size < ttyName.length() + 1) return -ERANGE; strcpy(buffer, ttyName.characters()); return 0; } ssize_t Process::sys$write(int fd, const void* data, size_t size) { VALIDATE_USER_READ(data, size); #ifdef DEBUG_IO kprintf("Process::sys$write: called(%d, %p, %u)\n", fd, data, size); #endif auto* handle = fileHandleIfExists(fd); #ifdef DEBUG_IO kprintf("Process::sys$write: handle=%p\n", handle); #endif if (!handle) return -EBADF; auto nwritten = handle->write((const byte*)data, size); #ifdef DEBUG_IO kprintf("Process::sys$write: nwritten=%u\n", nwritten); #endif return nwritten; } ssize_t Process::sys$read(int fd, void* outbuf, size_t nread) { VALIDATE_USER_WRITE(outbuf, nread); #ifdef DEBUG_IO kprintf("Process::sys$read: called(%d, %p, %u)\n", fd, outbuf, nread); #endif auto* handle = fileHandleIfExists(fd); #ifdef DEBUG_IO kprintf("Process::sys$read: handle=%p\n", handle); #endif if (!handle) return -EBADF; if (handle->isBlocking()) { if (!handle->hasDataAvailableForRead()) { m_fdBlockedOnRead = fd; block(BlockedRead); yield(); } } nread = handle->read((byte*)outbuf, nread); #ifdef DEBUG_IO kprintf("Process::sys$read: nread=%u\n", nread); #endif return nread; } int Process::sys$close(int fd) { auto* handle = fileHandleIfExists(fd); if (!handle) return -EBADF; int rc = handle->close(); m_file_descriptors[fd] = nullptr; return rc; } int Process::sys$lstat(const char* path, Unix::stat* statbuf) { VALIDATE_USER_WRITE(statbuf, sizeof(Unix::stat)); int error; auto handle = VirtualFileSystem::the().open(move(path), error, O_NOFOLLOW_NOERROR, cwdInode()); if (!handle) return error; handle->stat(statbuf); return 0; } int Process::sys$stat(const char* path, Unix::stat* statbuf) { VALIDATE_USER_WRITE(statbuf, sizeof(Unix::stat)); int error; auto handle = VirtualFileSystem::the().open(move(path), error, 0, cwdInode()); if (!handle) return error; handle->stat(statbuf); return 0; } int Process::sys$readlink(const char* path, char* buffer, size_t size) { VALIDATE_USER_READ(path, strlen(path)); VALIDATE_USER_WRITE(buffer, size); int error; auto handle = VirtualFileSystem::the().open(path, error, O_RDONLY | O_NOFOLLOW_NOERROR, cwdInode()); if (!handle) return error; if (!handle->metadata().isSymbolicLink()) return -EINVAL; auto contents = handle->readEntireFile(); if (!contents) return -EIO; // FIXME: Get a more detailed error from VFS. memcpy(buffer, contents.pointer(), min(size, contents.size())); if (contents.size() + 1 < size) buffer[contents.size()] = '\0'; return 0; } int Process::sys$chdir(const char* path) { VALIDATE_USER_READ(path, strlen(path)); int error; auto handle = VirtualFileSystem::the().open(path, error, 0, cwdInode()); if (!handle) return error; if (!handle->isDirectory()) return -ENOTDIR; m_cwd = handle->vnode(); return 0; } int Process::sys$getcwd(char* buffer, size_t size) { VALIDATE_USER_WRITE(buffer, size); auto path = VirtualFileSystem::the().absolutePath(cwdInode()); if (path.isNull()) return -EINVAL; if (size < path.length() + 1) return -ERANGE; strcpy(buffer, path.characters()); return -ENOTIMPL; } size_t Process::number_of_open_file_descriptors() const { size_t count = 0; for (auto& handle : m_file_descriptors) { if (handle) ++count; } return count; } int Process::sys$open(const char* path, int options) { #ifdef DEBUG_IO kprintf("Process::sys$open(): PID=%u, path=%s {%u}\n", m_pid, path, pathLength); #endif VALIDATE_USER_READ(path, strlen(path)); if (number_of_open_file_descriptors() >= m_max_open_file_descriptors) return -EMFILE; int error; auto handle = VirtualFileSystem::the().open(path, error, options, cwdInode()); if (!handle) return error; if (options & O_DIRECTORY && !handle->isDirectory()) return -ENOTDIR; // FIXME: This should be handled by VFS::open. int fd = 0; for (; fd < m_max_open_file_descriptors; ++fd) { if (!m_file_descriptors[fd]) break; } handle->setFD(fd); m_file_descriptors[fd] = move(handle); return fd; } int Process::sys$uname(utsname* buf) { VALIDATE_USER_WRITE(buf, sizeof(utsname)); strcpy(buf->sysname, "Serenity"); strcpy(buf->release, "1.0-dev"); strcpy(buf->version, "FIXME"); strcpy(buf->machine, "i386"); strcpy(buf->nodename, getHostname().characters()); return 0; } int Process::sys$kill(pid_t pid, int sig) { (void) sig; if (pid == 0) { // FIXME: Send to same-group processes. ASSERT(pid != 0); } if (pid == -1) { // FIXME: Send to all processes. ASSERT(pid != -1); } ASSERT(pid != current->pid()); // FIXME: Support this scenario. InterruptDisabler disabler; auto* peer = Process::fromPID(pid); if (!peer) return -ESRCH; if (sig == SIGKILL) { peer->murder(SIGKILL); return 0; } else { ASSERT_NOT_REACHED(); } return -1; } int Process::sys$sleep(unsigned seconds) { if (!seconds) return 0; sleep(seconds * TICKS_PER_SECOND); return 0; } int Process::sys$gettimeofday(timeval* tv) { VALIDATE_USER_WRITE(tv, sizeof(tv)); InterruptDisabler disabler; auto now = RTC::now(); tv->tv_sec = now; tv->tv_usec = 0; return 0; } uid_t Process::sys$getuid() { return m_uid; } gid_t Process::sys$getgid() { return m_gid; } pid_t Process::sys$getpid() { return m_pid; } pid_t Process::sys$waitpid(pid_t waitee, int* wstatus, int options) { if (wstatus) VALIDATE_USER_WRITE(wstatus, sizeof(int)); InterruptDisabler disabler; if (!Process::fromPID(waitee)) return -1; m_waitee = waitee; m_waiteeStatus = 0; block(BlockedWait); yield(); if (wstatus) *wstatus = m_waiteeStatus; return m_waitee; } void Process::unblock() { ASSERT(m_state != Process::Runnable && m_state != Process::Running); system.nblocked--; m_state = Process::Runnable; } void Process::block(Process::State state) { ASSERT(current->state() == Process::Running); system.nblocked++; current->set_state(state); } void block(Process::State state) { current->block(state); yield(); } void sleep(DWORD ticks) { ASSERT(current->state() == Process::Running); current->setWakeupTime(system.uptime + ticks); current->block(Process::BlockedSleep); yield(); } Process* Process::kernelProcess() { ASSERT(s_kernelProcess); return s_kernelProcess; } Region::Region(LinearAddress a, size_t s, RetainPtr&& z, String&& n) : linearAddress(a) , size(s) , zone(move(z)) , name(move(n)) { } Region::~Region() { } Subregion::Subregion(Region& r, dword o, size_t s, LinearAddress l, String&& n)\ : region(r) , offset(o) , size(s) , linearAddress(l) , name(move(n)) { } Subregion::~Subregion() { } bool Process::isValidAddressForKernel(LinearAddress laddr) const { // We check extra carefully here since the first 4MB of the address space is identity-mapped. // This code allows access outside of the known used address ranges to get caught. InterruptDisabler disabler; if (laddr.get() >= ksyms().first().address && laddr.get() <= ksyms().last().address) return true; if (is_kmalloc_address((void*)laddr.get())) return true; return validate_user_read(laddr); } bool Process::validate_user_read(LinearAddress laddr) const { InterruptDisabler disabler; return MM.validate_user_read(*this, laddr); } bool Process::validate_user_write(LinearAddress laddr) const { InterruptDisabler disabler; return MM.validate_user_write(*this, laddr); }