/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#define PROCESS_DEBUG //#define DEBUG_POLL_SELECT //#define DEBUG_IO //#define TASK_DEBUG //#define FORK_DEBUG //#define EXEC_DEBUG //#define SIGNAL_DEBUG //#define SHARED_BUFFER_DEBUG namespace Kernel { static void create_signal_trampolines(); static void create_kernel_info_page(); Process* Process::current; static pid_t next_pid; InlineLinkedList* g_processes; static String* s_hostname; static Lock* s_hostname_lock; static VirtualAddress s_info_page_address_for_userspace; static VirtualAddress s_info_page_address_for_kernel; VirtualAddress g_return_to_ring3_from_signal_trampoline; HashMap>* g_modules; pid_t Process::allocate_pid() { InterruptDisabler disabler; return next_pid++; } void Process::initialize() { g_modules = new HashMap>; next_pid = 0; g_processes = new InlineLinkedList; s_hostname = new String("courage"); s_hostname_lock = new Lock; create_signal_trampolines(); create_kernel_info_page(); } void Process::update_info_page_timestamp(const timeval& tv) { auto* info_page = (KernelInfoPage*)s_info_page_address_for_kernel.as_ptr(); info_page->serial++; const_cast(info_page->now) = tv; } Vector Process::all_pids() { Vector pids; InterruptDisabler disabler; pids.ensure_capacity((int)g_processes->size_slow()); for (auto& process : *g_processes) pids.append(process.pid()); return pids; } Vector Process::all_processes() { Vector processes; InterruptDisabler disabler; processes.ensure_capacity((int)g_processes->size_slow()); for (auto& process : *g_processes) processes.append(&process); return processes; } bool Process::in_group(gid_t gid) const { return m_gid == gid || m_extra_gids.contains(gid); } Range Process::allocate_range(VirtualAddress vaddr, size_t size, size_t alignment) { vaddr.mask(PAGE_MASK); size = PAGE_ROUND_UP(size); if (vaddr.is_null()) return page_directory().range_allocator().allocate_anywhere(size, alignment); return page_directory().range_allocator().allocate_specific(vaddr, size); } static unsigned prot_to_region_access_flags(int prot) { unsigned access = 0; if (prot & PROT_READ) access |= Region::Access::Read; if (prot & PROT_WRITE) access |= Region::Access::Write; if (prot & PROT_EXEC) access |= Region::Access::Execute; return access; } Region& Process::allocate_split_region(const Region& source_region, const Range& range, size_t offset_in_vmobject) { auto& region = add_region(Region::create_user_accessible(range, source_region.vmobject(), offset_in_vmobject, source_region.name(), source_region.access())); region.set_mmap(source_region.is_mmap()); region.set_stack(source_region.is_stack()); size_t page_offset_in_source_region = (offset_in_vmobject - source_region.offset_in_vmobject()) / PAGE_SIZE; for (size_t i = 0; i < region.page_count(); ++i) { if (source_region.should_cow(page_offset_in_source_region + i)) region.set_should_cow(i, true); } return region; } Region* Process::allocate_region(const Range& range, const String& name, int prot, bool commit) { ASSERT(range.is_valid()); auto vmobject = AnonymousVMObject::create_with_size(range.size()); auto& region = add_region(Region::create_user_accessible(range, vmobject, 0, name, prot_to_region_access_flags(prot))); region.map(page_directory()); if (commit) region.commit(); return ®ion; } Region* Process::allocate_region(VirtualAddress vaddr, size_t size, const String& name, int prot, bool commit) { auto range = allocate_range(vaddr, size); if (!range.is_valid()) return nullptr; return allocate_region(range, name, prot, commit); } Region* Process::allocate_region_with_vmobject(const Range& range, NonnullRefPtr vmobject, size_t offset_in_vmobject, const String& name, int prot) { ASSERT(range.is_valid()); size_t end_in_vmobject = offset_in_vmobject + range.size(); if (end_in_vmobject <= offset_in_vmobject) { dbg() << "allocate_region_with_vmobject: Overflow (offset + size)"; return nullptr; } if (offset_in_vmobject >= vmobject->size()) { dbg() << "allocate_region_with_vmobject: Attempt to allocate a region with an offset past the end of its VMObject."; return nullptr; } if (end_in_vmobject > vmobject->size()) { dbg() << "allocate_region_with_vmobject: Attempt to allocate a region with an end past the end of its VMObject."; return nullptr; } offset_in_vmobject &= PAGE_MASK; auto& region = add_region(Region::create_user_accessible(range, move(vmobject), offset_in_vmobject, name, prot_to_region_access_flags(prot))); region.map(page_directory()); return ®ion; } Region* Process::allocate_region_with_vmobject(VirtualAddress vaddr, size_t size, NonnullRefPtr vmobject, size_t offset_in_vmobject, const String& name, int prot) { auto range = allocate_range(vaddr, size); if (!range.is_valid()) return nullptr; return allocate_region_with_vmobject(range, move(vmobject), offset_in_vmobject, name, prot); } bool Process::deallocate_region(Region& region) { InterruptDisabler disabler; if (m_region_lookup_cache.region == ®ion) m_region_lookup_cache.region = nullptr; for (size_t i = 0; i < m_regions.size(); ++i) { if (&m_regions[i] == ®ion) { m_regions.unstable_remove(i); return true; } } return false; } Region* Process::region_from_range(const Range& range) { if (m_region_lookup_cache.range == range && m_region_lookup_cache.region) return m_region_lookup_cache.region; size_t size = PAGE_ROUND_UP(range.size()); for (auto& region : m_regions) { if (region.vaddr() == range.base() && region.size() == size) { m_region_lookup_cache.range = range; m_region_lookup_cache.region = region.make_weak_ptr(); return ®ion; } } return nullptr; } Region* Process::region_containing(const Range& range) { for (auto& region : m_regions) { if (region.contains(range)) return ®ion; } return nullptr; } int Process::sys$set_mmap_name(const Syscall::SC_set_mmap_name_params* user_params) { REQUIRE_PROMISE(stdio); Syscall::SC_set_mmap_name_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; if (params.name.length > PATH_MAX) return -ENAMETOOLONG; auto name = validate_and_copy_string_from_user(params.name); if (name.is_null()) return -EFAULT; auto* region = region_from_range({ VirtualAddress(params.addr), params.size }); if (!region) return -EINVAL; if (!region->is_mmap()) return -EPERM; region->set_name(name); return 0; } static bool validate_mmap_prot(int prot, bool map_stack) { bool readable = prot & PROT_READ; bool writable = prot & PROT_WRITE; bool executable = prot & PROT_EXEC; if (writable && executable) return false; if (map_stack) { if (executable) return false; if (!readable || !writable) return false; } return true; } static bool validate_inode_mmap_prot(const Process& process, int prot, const Inode& inode, bool map_shared) { auto metadata = inode.metadata(); if ((prot & PROT_READ) && !metadata.may_read(process)) return false; if (map_shared) { if ((prot & PROT_WRITE) && !metadata.may_write(process)) return false; InterruptDisabler disabler; if (inode.shared_vmobject()) { if ((prot & PROT_EXEC) && inode.shared_vmobject()->writable_mappings()) return false; if ((prot & PROT_WRITE) && inode.shared_vmobject()->executable_mappings()) return false; } } return true; } // Carve out a virtual address range from a region and return the two regions on either side Vector Process::split_region_around_range(const Region& source_region, const Range& desired_range) { Range old_region_range = source_region.range(); auto remaining_ranges_after_unmap = old_region_range.carve(desired_range); ASSERT(!remaining_ranges_after_unmap.is_empty()); auto make_replacement_region = [&](const Range& new_range) -> Region& { ASSERT(new_range.base() >= old_region_range.base()); ASSERT(new_range.end() <= old_region_range.end()); size_t new_range_offset_in_vmobject = source_region.offset_in_vmobject() + (new_range.base().get() - old_region_range.base().get()); return allocate_split_region(source_region, new_range, new_range_offset_in_vmobject); }; Vector new_regions; for (auto& new_range : remaining_ranges_after_unmap) { new_regions.unchecked_append(&make_replacement_region(new_range)); } return new_regions; } void* Process::sys$mmap(const Syscall::SC_mmap_params* user_params) { REQUIRE_PROMISE(stdio); Syscall::SC_mmap_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return (void*)-EFAULT; void* addr = (void*)params.addr; size_t size = params.size; size_t alignment = params.alignment; int prot = params.prot; int flags = params.flags; int fd = params.fd; int offset = params.offset; if (alignment & ~PAGE_MASK) return (void*)-EINVAL; if (!is_user_range(VirtualAddress(addr), size)) return (void*)-EFAULT; String name; if (params.name.characters) { if (params.name.length > PATH_MAX) return (void*)-ENAMETOOLONG; name = validate_and_copy_string_from_user(params.name); if (name.is_null()) return (void*)-EFAULT; } if (size == 0) return (void*)-EINVAL; if ((uintptr_t)addr & ~PAGE_MASK) return (void*)-EINVAL; bool map_shared = flags & MAP_SHARED; bool map_anonymous = flags & MAP_ANONYMOUS; bool map_purgeable = flags & MAP_PURGEABLE; bool map_private = flags & MAP_PRIVATE; bool map_stack = flags & MAP_STACK; bool map_fixed = flags & MAP_FIXED; if (map_shared && map_private) return (void*)-EINVAL; if (!map_shared && !map_private) return (void*)-EINVAL; if (!validate_mmap_prot(prot, map_stack)) return (void*)-EINVAL; if (map_stack && (!map_private || !map_anonymous)) return (void*)-EINVAL; Region* region = nullptr; auto range = allocate_range(VirtualAddress(addr), size, alignment); if (!range.is_valid()) return (void*)-ENOMEM; if (map_purgeable) { auto vmobject = PurgeableVMObject::create_with_size(size); region = allocate_region_with_vmobject(range, vmobject, 0, !name.is_null() ? name : "mmap (purgeable)", prot); if (!region && (!map_fixed && addr != 0)) region = allocate_region_with_vmobject({}, size, vmobject, 0, !name.is_null() ? name : "mmap (purgeable)", prot); } else if (map_anonymous) { region = allocate_region(range, !name.is_null() ? name : "mmap", prot, false); if (!region && (!map_fixed && addr != 0)) region = allocate_region(allocate_range({}, size), !name.is_null() ? name : "mmap", prot, false); } else { if (offset < 0) return (void*)-EINVAL; if (static_cast(offset) & ~PAGE_MASK) return (void*)-EINVAL; auto description = file_description(fd); if (!description) return (void*)-EBADF; if (description->is_directory()) return (void*)-ENODEV; if ((prot & PROT_READ) && !description->is_readable()) return (void*)-EACCES; if (map_shared) { if ((prot & PROT_WRITE) && !description->is_writable()) return (void*)-EACCES; } if (description->inode()) { if (!validate_inode_mmap_prot(*this, prot, *description->inode(), map_shared)) return (void*)-EACCES; } auto region_or_error = description->mmap(*this, VirtualAddress(addr), static_cast(offset), size, prot, map_shared); if (region_or_error.is_error()) { // Fail if MAP_FIXED or address is 0, retry otherwise if (map_fixed || addr == 0) return (void*)(int)region_or_error.error(); region_or_error = description->mmap(*this, {}, static_cast(offset), size, prot, map_shared); } if (region_or_error.is_error()) return (void*)(int)region_or_error.error(); region = region_or_error.value(); } if (!region) return (void*)-ENOMEM; region->set_mmap(true); if (map_shared) region->set_shared(true); if (map_stack) region->set_stack(true); if (!name.is_null()) region->set_name(name); return region->vaddr().as_ptr(); } int Process::sys$munmap(void* addr, size_t size) { REQUIRE_PROMISE(stdio); if (!size) return -EINVAL; if (!is_user_range(VirtualAddress(addr), size)) return -EFAULT; Range range_to_unmap { VirtualAddress(addr), size }; if (auto* whole_region = region_from_range(range_to_unmap)) { if (!whole_region->is_mmap()) return -EPERM; bool success = deallocate_region(*whole_region); ASSERT(success); return 0; } if (auto* old_region = region_containing(range_to_unmap)) { if (!old_region->is_mmap()) return -EPERM; auto new_regions = split_region_around_range(*old_region, range_to_unmap); // We manually unmap the old region here, specifying that we *don't* want the VM deallocated. old_region->unmap(Region::ShouldDeallocateVirtualMemoryRange::No); deallocate_region(*old_region); // Instead we give back the unwanted VM manually. page_directory().range_allocator().deallocate(range_to_unmap); // And finally we map the new region(s) using our page directory (they were just allocated and don't have one). for (auto* new_region : new_regions) { new_region->map(page_directory()); } return 0; } // FIXME: We should also support munmap() across multiple regions. (#175) return -EINVAL; } int Process::sys$mprotect(void* addr, size_t size, int prot) { REQUIRE_PROMISE(stdio); if (!size) return -EINVAL; if (!is_user_range(VirtualAddress(addr), size)) return -EFAULT; Range range_to_mprotect = { VirtualAddress(addr), size }; if (auto* whole_region = region_from_range(range_to_mprotect)) { if (!whole_region->is_mmap()) return -EPERM; if (!validate_mmap_prot(prot, whole_region->is_stack())) return -EINVAL; if (whole_region->access() == prot_to_region_access_flags(prot)) return 0; if (whole_region->vmobject().is_inode() && !validate_inode_mmap_prot(*this, prot, static_cast(whole_region->vmobject()).inode(), whole_region->is_shared())) { return -EACCES; } whole_region->set_readable(prot & PROT_READ); whole_region->set_writable(prot & PROT_WRITE); whole_region->set_executable(prot & PROT_EXEC); whole_region->remap(); return 0; } // Check if we can carve out the desired range from an existing region if (auto* old_region = region_containing(range_to_mprotect)) { if (!old_region->is_mmap()) return -EPERM; if (!validate_mmap_prot(prot, old_region->is_stack())) return -EINVAL; if (old_region->access() == prot_to_region_access_flags(prot)) return 0; if (old_region->vmobject().is_inode() && !validate_inode_mmap_prot(*this, prot, static_cast(old_region->vmobject()).inode(), old_region->is_shared())) { return -EACCES; } // This vector is the region(s) adjacent to our range. // We need to allocate a new region for the range we wanted to change permission bits on. auto adjacent_regions = split_region_around_range(*old_region, range_to_mprotect); size_t new_range_offset_in_vmobject = old_region->offset_in_vmobject() + (range_to_mprotect.base().get() - old_region->range().base().get()); auto& new_region = allocate_split_region(*old_region, range_to_mprotect, new_range_offset_in_vmobject); new_region.set_readable(prot & PROT_READ); new_region.set_writable(prot & PROT_WRITE); new_region.set_executable(prot & PROT_EXEC); // Unmap the old region here, specifying that we *don't* want the VM deallocated. old_region->unmap(Region::ShouldDeallocateVirtualMemoryRange::No); deallocate_region(*old_region); // Map the new regions using our page directory (they were just allocated and don't have one). for (auto* adjacent_region : adjacent_regions) { adjacent_region->map(page_directory()); } new_region.map(page_directory()); return 0; } // FIXME: We should also support mprotect() across multiple regions. (#175) (#964) return -EINVAL; } int Process::sys$madvise(void* address, size_t size, int advice) { REQUIRE_PROMISE(stdio); if (!size) return -EINVAL; if (!is_user_range(VirtualAddress(address), size)) return -EFAULT; auto* region = region_from_range({ VirtualAddress(address), size }); if (!region) return -EINVAL; if (!region->is_mmap()) return -EPERM; if ((advice & MADV_SET_VOLATILE) && (advice & MADV_SET_NONVOLATILE)) return -EINVAL; if (advice & MADV_SET_VOLATILE) { if (!region->vmobject().is_purgeable()) return -EPERM; auto& vmobject = static_cast(region->vmobject()); vmobject.set_volatile(true); return 0; } if (advice & MADV_SET_NONVOLATILE) { if (!region->vmobject().is_purgeable()) return -EPERM; auto& vmobject = static_cast(region->vmobject()); if (!vmobject.is_volatile()) return 0; vmobject.set_volatile(false); bool was_purged = vmobject.was_purged(); vmobject.set_was_purged(false); return was_purged ? 1 : 0; } if (advice & MADV_GET_VOLATILE) { if (!region->vmobject().is_purgeable()) return -EPERM; auto& vmobject = static_cast(region->vmobject()); return vmobject.is_volatile() ? 0 : 1; } return -EINVAL; } int Process::sys$purge(int mode) { REQUIRE_NO_PROMISES; if (!is_superuser()) return -EPERM; int purged_page_count = 0; if (mode & PURGE_ALL_VOLATILE) { NonnullRefPtrVector vmobjects; { InterruptDisabler disabler; MM.for_each_vmobject([&](auto& vmobject) { if (vmobject.is_purgeable()) vmobjects.append(static_cast(vmobject)); return IterationDecision::Continue; }); } for (auto& vmobject : vmobjects) { purged_page_count += vmobject.purge(); } } if (mode & PURGE_ALL_CLEAN_INODE) { NonnullRefPtrVector vmobjects; { InterruptDisabler disabler; MM.for_each_vmobject([&](auto& vmobject) { if (vmobject.is_inode()) vmobjects.append(static_cast(vmobject)); return IterationDecision::Continue; }); } for (auto& vmobject : vmobjects) { purged_page_count += vmobject.release_all_clean_pages(); } } return purged_page_count; } int Process::sys$gethostname(char* buffer, ssize_t size) { REQUIRE_PROMISE(stdio); if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; LOCKER(*s_hostname_lock); if ((size_t)size < (s_hostname->length() + 1)) return -ENAMETOOLONG; copy_to_user(buffer, s_hostname->characters(), s_hostname->length() + 1); return 0; } pid_t Process::sys$fork(RegisterState& regs) { REQUIRE_PROMISE(proc); Thread* child_first_thread = nullptr; auto* child = new Process(child_first_thread, m_name, m_uid, m_gid, m_pid, m_ring, m_cwd, m_executable, m_tty, this); child->m_root_directory = m_root_directory; child->m_root_directory_relative_to_global_root = m_root_directory_relative_to_global_root; child->m_promises = m_promises; child->m_execpromises = m_execpromises; child->m_veil_state = m_veil_state; child->m_unveiled_paths = m_unveiled_paths; child->m_fds = m_fds; child->m_sid = m_sid; child->m_pgid = m_pgid; child->m_umask = m_umask; #ifdef FORK_DEBUG dbg() << "fork: child=" << child; #endif for (auto& region : m_regions) { #ifdef FORK_DEBUG dbg() << "fork: cloning Region{" << ®ion << "} '" << region.name() << "' @ " << region.vaddr(); #endif auto& child_region = child->add_region(region.clone()); child_region.map(child->page_directory()); if (®ion == m_master_tls_region) child->m_master_tls_region = child_region.make_weak_ptr(); } child->m_extra_gids = m_extra_gids; auto& child_tss = child_first_thread->m_tss; child_tss.eax = 0; // fork() returns 0 in the child :^) child_tss.ebx = regs.ebx; child_tss.ecx = regs.ecx; child_tss.edx = regs.edx; child_tss.ebp = regs.ebp; child_tss.esp = regs.userspace_esp; child_tss.esi = regs.esi; child_tss.edi = regs.edi; child_tss.eflags = regs.eflags; child_tss.eip = regs.eip; child_tss.cs = regs.cs; child_tss.ds = regs.ds; child_tss.es = regs.es; child_tss.fs = regs.fs; child_tss.gs = regs.gs; child_tss.ss = regs.userspace_ss; #ifdef FORK_DEBUG dbg() << "fork: child will begin executing at " << String::format("%w", child_tss.cs) << ":" << String::format("%x", child_tss.eip) << " with stack " << String::format("%w", child_tss.ss) << ":" << String::format("%x", child_tss.esp) << ", kstack " << String::format("%w", child_tss.ss0) << ":" << String::format("%x", child_tss.esp0); #endif { InterruptDisabler disabler; g_processes->prepend(child); } #ifdef TASK_DEBUG klog() << "Process " << child->pid() << " (" << child->name().characters() << ") forked from " << m_pid << " @ " << String::format("%p", child_tss.eip); #endif child_first_thread->set_state(Thread::State::Skip1SchedulerPass); return child->pid(); } void Process::kill_threads_except_self() { InterruptDisabler disabler; if (m_thread_count <= 1) return; for_each_thread([&](Thread& thread) { if (&thread == Thread::current || thread.state() == Thread::State::Dead || thread.state() == Thread::State::Dying) return IterationDecision::Continue; // At this point, we have no joiner anymore thread.m_joiner = nullptr; thread.set_should_die(); if (thread.state() != Thread::State::Dead) thread.set_state(Thread::State::Dying); return IterationDecision::Continue; }); big_lock().clear_waiters(); } void Process::kill_all_threads() { for_each_thread([&](Thread& thread) { thread.set_should_die(); return IterationDecision::Continue; }); } int Process::do_exec(NonnullRefPtr main_program_description, Vector arguments, Vector environment, RefPtr interpreter_description) { ASSERT(is_ring3()); auto path = main_program_description->absolute_path(); dbg() << "do_exec(" << path << ")"; size_t total_blob_size = 0; for (auto& a : arguments) total_blob_size += a.length() + 1; for (auto& e : environment) total_blob_size += e.length() + 1; size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1); // FIXME: How much stack space does process startup need? if ((total_blob_size + total_meta_size) >= Thread::default_userspace_stack_size) return -E2BIG; auto parts = path.split('/'); if (parts.is_empty()) return -ENOENT; auto& inode = interpreter_description ? *interpreter_description->inode() : *main_program_description->inode(); auto vmobject = SharedInodeVMObject::create_with_inode(inode); if (static_cast(*vmobject).writable_mappings()) { dbg() << "Refusing to execute a write-mapped program"; return -ETXTBSY; } // Disable profiling temporarily in case it's running on this process. bool was_profiling = is_profiling(); TemporaryChange profiling_disabler(m_profiling, false); // Mark this thread as the current thread that does exec // No other thread from this process will be scheduled to run m_exec_tid = Thread::current->tid(); auto old_page_directory = move(m_page_directory); auto old_regions = move(m_regions); m_page_directory = PageDirectory::create_for_userspace(*this); #ifdef MM_DEBUG dbg() << "Process " << pid() << " exec: PD=" << m_page_directory.ptr() << " created"; #endif InodeMetadata loader_metadata; // FIXME: Hoooo boy this is a hack if I ever saw one. // This is the 'random' offset we're giving to our ET_DYN exectuables to start as. // It also happens to be the static Virtual Addresss offset every static exectuable gets :) // Without this, some assumptions by the ELF loading hooks below are severely broken. // 0x08000000 is a verified random number chosen by random dice roll https://xkcd.com/221/ u32 totally_random_offset = interpreter_description ? 0x08000000 : 0; // FIXME: We should be able to load both the PT_INTERP interpreter and the main program... once the RTLD is smart enough if (interpreter_description) { loader_metadata = interpreter_description->metadata(); // we don't need the interpreter file desciption after we've loaded (or not) it into memory interpreter_description = nullptr; } else { loader_metadata = main_program_description->metadata(); } auto region = MM.allocate_kernel_region_with_vmobject(*vmobject, PAGE_ROUND_UP(loader_metadata.size), "ELF loading", Region::Access::Read); if (!region) return -ENOMEM; Region* master_tls_region { nullptr }; size_t master_tls_size = 0; size_t master_tls_alignment = 0; u32 entry_eip = 0; MM.enter_process_paging_scope(*this); OwnPtr loader; { ArmedScopeGuard rollback_regions_guard([&]() { ASSERT(Process::current == this); m_page_directory = move(old_page_directory); m_regions = move(old_regions); MM.enter_process_paging_scope(*this); }); loader = make(region->vaddr().as_ptr(), loader_metadata.size); // Load the correct executable -- either interp or main program. // FIXME: Once we actually load both interp and main, we'll need to be more clever about this. // In that case, both will be ET_DYN objects, so they'll both be completely relocatable. // That means, we can put them literally anywhere in User VM space (ASLR anyone?). // ALSO FIXME: Reminder to really really fix that 'totally random offset' business. loader->map_section_hook = [&](VirtualAddress vaddr, size_t size, size_t alignment, size_t offset_in_image, bool is_readable, bool is_writable, bool is_executable, const String& name) -> u8* { ASSERT(size); ASSERT(alignment == PAGE_SIZE); int prot = 0; if (is_readable) prot |= PROT_READ; if (is_writable) prot |= PROT_WRITE; if (is_executable) prot |= PROT_EXEC; if (auto* region = allocate_region_with_vmobject(vaddr.offset(totally_random_offset), size, *vmobject, offset_in_image, String(name), prot)) { region->set_shared(true); return region->vaddr().as_ptr(); } return nullptr; }; loader->alloc_section_hook = [&](VirtualAddress vaddr, size_t size, size_t alignment, bool is_readable, bool is_writable, const String& name) -> u8* { ASSERT(size); ASSERT(alignment == PAGE_SIZE); int prot = 0; if (is_readable) prot |= PROT_READ; if (is_writable) prot |= PROT_WRITE; if (auto* region = allocate_region(vaddr.offset(totally_random_offset), size, String(name), prot)) return region->vaddr().as_ptr(); return nullptr; }; // FIXME: Move TLS region allocation to userspace: LibC and the dynamic loader. // LibC if we end up with a statically linked executable, and the // dynamic loader so that it can create new TLS blocks for each shared libarary // that gets loaded as part of DT_NEEDED processing, and via dlopen() // If that doesn't happen quickly, at least pass the location of the TLS region // some ELF Auxilliary Vector so the loader can use it/create new ones as necessary. loader->tls_section_hook = [&](size_t size, size_t alignment) { ASSERT(size); master_tls_region = allocate_region({}, size, String(), PROT_READ | PROT_WRITE); master_tls_size = size; master_tls_alignment = alignment; return master_tls_region->vaddr().as_ptr(); }; bool success = loader->load(); if (!success) { klog() << "do_exec: Failure loading " << path.characters(); return -ENOEXEC; } // FIXME: Validate that this virtual address is within executable region, // instead of just non-null. You could totally have a DSO with entry point of // the beginning of the text segement. if (!loader->entry().offset(totally_random_offset).get()) { klog() << "do_exec: Failure loading " << path.characters() << ", entry pointer is invalid! (" << loader->entry().offset(totally_random_offset) << ")"; return -ENOEXEC; } rollback_regions_guard.disarm(); // NOTE: At this point, we've committed to the new executable. entry_eip = loader->entry().offset(totally_random_offset).get(); kill_threads_except_self(); #ifdef EXEC_DEBUG klog() << "Memory layout after ELF load:"; dump_regions(); #endif } m_executable = main_program_description->custody(); m_promises = m_execpromises; m_veil_state = VeilState::None; m_unveiled_paths.clear(); // Copy of the master TLS region that we will clone for new threads m_master_tls_region = master_tls_region->make_weak_ptr(); auto main_program_metadata = main_program_description->metadata(); if (!(main_program_description->custody()->mount_flags() & MS_NOSUID)) { if (main_program_metadata.is_setuid()) m_euid = main_program_metadata.uid; if (main_program_metadata.is_setgid()) m_egid = main_program_metadata.gid; } Thread::current->set_default_signal_dispositions(); Thread::current->m_signal_mask = 0; Thread::current->m_pending_signals = 0; m_futex_queues.clear(); m_region_lookup_cache = {}; disown_all_shared_buffers(); for (size_t i = 0; i < m_fds.size(); ++i) { auto& daf = m_fds[i]; if (daf.description && daf.flags & FD_CLOEXEC) { daf.description->close(); daf = {}; } } Thread* new_main_thread = nullptr; if (Process::current == this) { new_main_thread = Thread::current; } else { for_each_thread([&](auto& thread) { new_main_thread = &thread; return IterationDecision::Break; }); } ASSERT(new_main_thread); // NOTE: We create the new stack before disabling interrupts since it will zero-fault // and we don't want to deal with faults after this point. u32 new_userspace_esp = new_main_thread->make_userspace_stack_for_main_thread(move(arguments), move(environment)); // We cli() manually here because we don't want to get interrupted between do_exec() and Schedule::yield(). // The reason is that the task redirection we've set up above will be clobbered by the timer IRQ. // If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec(). if (Process::current == this) cli(); // NOTE: Be careful to not trigger any page faults below! Scheduler::prepare_to_modify_tss(*new_main_thread); m_name = parts.take_last(); new_main_thread->set_name(m_name); auto& tss = new_main_thread->m_tss; u32 old_esp0 = tss.esp0; m_master_tls_size = master_tls_size; m_master_tls_alignment = master_tls_alignment; m_pid = new_main_thread->tid(); new_main_thread->make_thread_specific_region({}); new_main_thread->reset_fpu_state(); memset(&tss, 0, sizeof(TSS32)); tss.iomapbase = sizeof(TSS32); tss.eflags = 0x0202; tss.eip = entry_eip; tss.cs = 0x1b; tss.ds = 0x23; tss.es = 0x23; tss.fs = 0x23; tss.gs = thread_specific_selector() | 3; tss.ss = 0x23; tss.cr3 = page_directory().cr3(); tss.esp = new_userspace_esp; tss.ss0 = 0x10; tss.esp0 = old_esp0; tss.ss2 = m_pid; #ifdef TASK_DEBUG klog() << "Process exec'd " << path.characters() << " @ " << String::format("%p", tss.eip); #endif if (was_profiling) Profiling::did_exec(path); new_main_thread->set_state(Thread::State::Skip1SchedulerPass); big_lock().force_unlock_if_locked(); return 0; } static KResultOr> find_shebang_interpreter_for_executable(const char first_page[], int nread) { int word_start = 2; int word_length = 0; if (nread > 2 && first_page[0] == '#' && first_page[1] == '!') { Vector interpreter_words; for (int i = 2; i < nread; ++i) { if (first_page[i] == '\n') { break; } if (first_page[i] != ' ') { ++word_length; } if (first_page[i] == ' ') { if (word_length > 0) { interpreter_words.append(String(&first_page[word_start], word_length)); } word_length = 0; word_start = i + 1; } } if (word_length > 0) interpreter_words.append(String(&first_page[word_start], word_length)); if (!interpreter_words.is_empty()) return interpreter_words; } return KResult(-ENOEXEC); } KResultOr> Process::find_elf_interpreter_for_executable(const String& path, char (&first_page)[PAGE_SIZE], int nread, size_t file_size) { if (nread < (int)sizeof(Elf32_Ehdr)) return KResult(-ENOEXEC); auto elf_header = (Elf32_Ehdr*)first_page; if (!ELFImage::validate_elf_header(*elf_header, file_size)) { dbg() << "exec(" << path << "): File has invalid ELF header"; return KResult(-ENOEXEC); } // Not using KResultOr here because we'll want to do the same thing in userspace in the RTLD String interpreter_path; if (!ELFImage::validate_program_headers(*elf_header, file_size, (u8*)first_page, nread, interpreter_path)) { dbg() << "exec(" << path << "): File has invalid ELF Program headers"; return KResult(-ENOEXEC); } if (!interpreter_path.is_empty()) { // Programs with an interpreter better be relocatable executables or we don't know what to do... if (elf_header->e_type != ET_DYN) return KResult(-ENOEXEC); dbg() << "exec(" << path << "): Using program interpreter " << interpreter_path; auto interp_result = VFS::the().open(interpreter_path, O_EXEC, 0, current_directory()); if (interp_result.is_error()) { dbg() << "exec(" << path << "): Unable to open program interpreter " << interpreter_path; return interp_result.error(); } auto interpreter_description = interp_result.value(); auto interp_metadata = interpreter_description->metadata(); ASSERT(interpreter_description->inode()); // Validate the program interpreter as a valid elf binary. // If your program interpreter is a #! file or something, it's time to stop playing games :) if (interp_metadata.size < (int)sizeof(Elf32_Ehdr)) return KResult(-ENOEXEC); memset(first_page, 0, sizeof(first_page)); nread = interpreter_description->read((u8*)&first_page, sizeof(first_page)); if (nread < (int)sizeof(Elf32_Ehdr)) return KResult(-ENOEXEC); elf_header = (Elf32_Ehdr*)first_page; if (!ELFImage::validate_elf_header(*elf_header, interp_metadata.size)) { dbg() << "exec(" << path << "): Interpreter (" << interpreter_description->absolute_path() << ") has invalid ELF header"; return KResult(-ENOEXEC); } // Not using KResultOr here because we'll want to do the same thing in userspace in the RTLD String interpreter_interpreter_path; if (!ELFImage::validate_program_headers(*elf_header, interp_metadata.size, (u8*)first_page, nread, interpreter_interpreter_path)) { dbg() << "exec(" << path << "): Interpreter (" << interpreter_description->absolute_path() << ") has invalid ELF Program headers"; return KResult(-ENOEXEC); } if (!interpreter_interpreter_path.is_empty()) { dbg() << "exec(" << path << "): Interpreter (" << interpreter_description->absolute_path() << ") has its own interpreter (" << interpreter_interpreter_path << ")! No thank you!"; return KResult(-ELOOP); } return interpreter_description; } if (elf_header->e_type != ET_EXEC) { // We can't exec an ET_REL, that's just an object file from the compiler // If it's ET_DYN with no PT_INTERP, then we can't load it properly either return KResult(-ENOEXEC); } // No interpreter, but, path refers to a valid elf image return KResult(KSuccess); } int Process::exec(String path, Vector arguments, Vector environment, int recursion_depth) { if (recursion_depth > 2) { dbg() << "exec(" << path << "): SHENANIGANS! recursed too far trying to find #! interpreter"; return -ELOOP; } // Open the file to check what kind of binary format it is // Currently supported formats: // - #! interpreted file // - ELF32 // * ET_EXEC binary that just gets loaded // * ET_DYN binary that requires a program interpreter // auto result = VFS::the().open(path, O_EXEC, 0, current_directory()); if (result.is_error()) return result.error(); auto description = result.value(); auto metadata = description->metadata(); // Always gonna need at least 3 bytes. these are for #!X if (metadata.size < 3) return -ENOEXEC; ASSERT(description->inode()); // Read the first page of the program into memory so we can validate the binfmt of it char first_page[PAGE_SIZE]; int nread = description->read((u8*)&first_page, sizeof(first_page)); // 1) #! interpreted file auto shebang_result = find_shebang_interpreter_for_executable(first_page, nread); if (!shebang_result.is_error()) { Vector new_arguments(shebang_result.value()); new_arguments.append(path); arguments.remove(0); new_arguments.append(move(arguments)); return exec(shebang_result.value().first(), move(new_arguments), move(environment), ++recursion_depth); } // #2) ELF32 for i386 auto elf_result = find_elf_interpreter_for_executable(path, first_page, nread, metadata.size); RefPtr interpreter_description; // We're getting either an interpreter, an error, or KSuccess (i.e. no interpreter but file checks out) if (!elf_result.is_error()) interpreter_description = elf_result.value(); else if (elf_result.error().is_error()) return elf_result.error(); // The bulk of exec() is done by do_exec(), which ensures that all locals // are cleaned up by the time we yield-teleport below. int rc = do_exec(move(description), move(arguments), move(environment), move(interpreter_description)); m_exec_tid = 0; if (rc < 0) return rc; if (Process::current == this) { Scheduler::yield(); ASSERT_NOT_REACHED(); } return 0; } int Process::sys$execve(const Syscall::SC_execve_params* user_params) { REQUIRE_PROMISE(exec); // NOTE: Be extremely careful with allocating any kernel memory in exec(). // On success, the kernel stack will be lost. Syscall::SC_execve_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; if (params.arguments.length > ARG_MAX || params.environment.length > ARG_MAX) return -E2BIG; String path; { auto path_arg = get_syscall_path_argument(params.path); if (path_arg.is_error()) return path_arg.error(); path = path_arg.value(); } auto copy_user_strings = [&](const auto& list, auto& output) { if (!list.length) return true; if (!validate_read_typed(list.strings, list.length)) return false; Vector strings; strings.resize(list.length); copy_from_user(strings.data(), list.strings, list.length * sizeof(Syscall::StringArgument)); for (size_t i = 0; i < list.length; ++i) { auto string = validate_and_copy_string_from_user(strings[i]); if (string.is_null()) return false; output.append(move(string)); } return true; }; Vector arguments; if (!copy_user_strings(params.arguments, arguments)) return -EFAULT; Vector environment; if (!copy_user_strings(params.environment, environment)) return -EFAULT; int rc = exec(move(path), move(arguments), move(environment)); ASSERT(rc < 0); // We should never continue after a successful exec! return rc; } Process* Process::create_user_process(Thread*& first_thread, const String& path, uid_t uid, gid_t gid, pid_t parent_pid, int& error, Vector&& arguments, Vector&& environment, TTY* tty) { auto parts = path.split('/'); if (arguments.is_empty()) { arguments.append(parts.last()); } RefPtr cwd; RefPtr root; { InterruptDisabler disabler; if (auto* parent = Process::from_pid(parent_pid)) { cwd = parent->m_cwd; root = parent->m_root_directory; } } if (!cwd) cwd = VFS::the().root_custody(); if (!root) root = VFS::the().root_custody(); auto* process = new Process(first_thread, parts.take_last(), uid, gid, parent_pid, Ring3, move(cwd), nullptr, tty); process->m_fds.resize(m_max_open_file_descriptors); auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the(); auto description = device_to_use_as_tty.open(O_RDWR).value(); process->m_fds[0].set(*description); process->m_fds[1].set(*description); process->m_fds[2].set(*description); error = process->exec(path, move(arguments), move(environment)); if (error != 0) { delete process; return nullptr; } { InterruptDisabler disabler; g_processes->prepend(process); } #ifdef TASK_DEBUG klog() << "Process " << process->pid() << " (" << process->name().characters() << ") spawned @ " << String::format("%p", first_thread->tss().eip); #endif error = 0; return process; } Process* Process::create_kernel_process(Thread*& first_thread, String&& name, void (*e)()) { auto* process = new Process(first_thread, move(name), (uid_t)0, (gid_t)0, (pid_t)0, Ring0); first_thread->tss().eip = (uintptr_t)e; if (process->pid() != 0) { InterruptDisabler disabler; g_processes->prepend(process); #ifdef TASK_DEBUG klog() << "Kernel process " << process->pid() << " (" << process->name().characters() << ") spawned @ " << String::format("%p", first_thread->tss().eip); #endif } first_thread->set_state(Thread::State::Runnable); return process; } Process::Process(Thread*& first_thread, const String& name, uid_t uid, gid_t gid, pid_t ppid, RingLevel ring, RefPtr cwd, RefPtr executable, TTY* tty, Process* fork_parent) : m_name(move(name)) , m_pid(allocate_pid()) , m_uid(uid) , m_gid(gid) , m_euid(uid) , m_egid(gid) , m_ring(ring) , m_executable(move(executable)) , m_cwd(move(cwd)) , m_tty(tty) , m_ppid(ppid) { #ifdef PROCESS_DEBUG dbg() << "Created new process " << m_name << "(" << m_pid << ")"; #endif m_page_directory = PageDirectory::create_for_userspace(*this, fork_parent ? &fork_parent->page_directory().range_allocator() : nullptr); #ifdef MM_DEBUG dbg() << "Process " << pid() << " ctor: PD=" << m_page_directory.ptr() << " created"; #endif if (fork_parent) { // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process. first_thread = Thread::current->clone(*this); } else { // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.) first_thread = new Thread(*this); } } Process::~Process() { ASSERT(thread_count() == 0); } void Process::dump_regions() { klog() << "Process regions:"; klog() << "BEGIN END SIZE ACCESS NAME"; for (auto& region : m_regions) { klog() << String::format("%08x", region.vaddr().get()) << " -- " << String::format("%08x", region.vaddr().offset(region.size() - 1).get()) << " " << String::format("%08x", region.size()) << " " << (region.is_readable() ? 'R' : ' ') << (region.is_writable() ? 'W' : ' ') << (region.is_executable() ? 'X' : ' ') << (region.is_shared() ? 'S' : ' ') << (region.is_stack() ? 'T' : ' ') << (region.vmobject().is_purgeable() ? 'P' : ' ') << " " << region.name().characters(); } MM.dump_kernel_regions(); } void Process::sys$exit(int status) { cli(); #ifdef TASK_DEBUG klog() << "sys$exit: exit with status " << status; #endif if (status != 0) dump_backtrace(); m_termination_status = status; m_termination_signal = 0; die(); Thread::current->die_if_needed(); ASSERT_NOT_REACHED(); } void signal_trampoline_dummy(void) { // The trampoline preserves the current eax, pushes the signal code and // then calls the signal handler. We do this because, when interrupting a // blocking syscall, that syscall may return some special error code in eax; // This error code would likely be overwritten by the signal handler, so it's // neccessary to preserve it here. asm( ".intel_syntax noprefix\n" "asm_signal_trampoline:\n" "push ebp\n" "mov ebp, esp\n" "push eax\n" // we have to store eax 'cause it might be the return value from a syscall "sub esp, 4\n" // align the stack to 16 bytes "mov eax, [ebp+12]\n" // push the signal code "push eax\n" "call [ebp+8]\n" // call the signal handler "add esp, 8\n" "mov eax, %P0\n" "int 0x82\n" // sigreturn syscall "asm_signal_trampoline_end:\n" ".att_syntax" ::"i"(Syscall::SC_sigreturn)); } extern "C" void asm_signal_trampoline(void); extern "C" void asm_signal_trampoline_end(void); void create_signal_trampolines() { InterruptDisabler disabler; // NOTE: We leak this region. auto* trampoline_region = MM.allocate_user_accessible_kernel_region(PAGE_SIZE, "Signal trampolines", Region::Access::Read | Region::Access::Write | Region::Access::Execute, false).leak_ptr(); g_return_to_ring3_from_signal_trampoline = trampoline_region->vaddr(); u8* trampoline = (u8*)asm_signal_trampoline; u8* trampoline_end = (u8*)asm_signal_trampoline_end; size_t trampoline_size = trampoline_end - trampoline; { SmapDisabler disabler; u8* code_ptr = (u8*)trampoline_region->vaddr().as_ptr(); memcpy(code_ptr, trampoline, trampoline_size); } trampoline_region->set_writable(false); trampoline_region->remap(); } void create_kernel_info_page() { auto* info_page_region_for_userspace = MM.allocate_user_accessible_kernel_region(PAGE_SIZE, "Kernel info page", Region::Access::Read).leak_ptr(); auto* info_page_region_for_kernel = MM.allocate_kernel_region_with_vmobject(info_page_region_for_userspace->vmobject(), PAGE_SIZE, "Kernel info page", Region::Access::Read | Region::Access::Write).leak_ptr(); s_info_page_address_for_userspace = info_page_region_for_userspace->vaddr(); s_info_page_address_for_kernel = info_page_region_for_kernel->vaddr(); memset(s_info_page_address_for_kernel.as_ptr(), 0, PAGE_SIZE); } int Process::sys$sigreturn(RegisterState& registers) { REQUIRE_PROMISE(stdio); SmapDisabler disabler; //Here, we restore the state pushed by dispatch signal and asm_signal_trampoline. u32* stack_ptr = (u32*)registers.userspace_esp; u32 smuggled_eax = *stack_ptr; //pop the stored eax, ebp, return address, handler and signal code stack_ptr += 5; Thread::current->m_signal_mask = *stack_ptr; stack_ptr++; //pop edi, esi, ebp, esp, ebx, edx, ecx and eax memcpy(®isters.edi, stack_ptr, 8 * sizeof(uintptr_t)); stack_ptr += 8; registers.eip = *stack_ptr; stack_ptr++; registers.eflags = *stack_ptr; stack_ptr++; registers.userspace_esp = registers.esp; return smuggled_eax; } void Process::crash(int signal, u32 eip) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(!is_dead()); ASSERT(Process::current == this); if (eip >= 0xc0000000 && ksyms_ready) { auto* ksym = ksymbolicate(eip); dbg() << "\033[31;1m" << String::format("%p", eip) << " " << (ksym ? demangle(ksym->name) : "(k?)") << " +" << (ksym ? eip - ksym->address : 0) << "\033[0m\n"; } else if (auto elf_bundle = this->elf_bundle()) { dbg() << "\033[31;1m" << String::format("%p", eip) << " " << elf_bundle->elf_loader->symbolicate(eip) << "\033[0m\n"; } else { dbg() << "\033[31;1m" << String::format("%p", eip) << " (?)\033[0m\n"; } dump_backtrace(); m_termination_signal = signal; dump_regions(); ASSERT(is_ring3()); die(); // We can not return from here, as there is nowhere // to unwind to, so die right away. Thread::current->die_if_needed(); ASSERT_NOT_REACHED(); } Process* Process::from_pid(pid_t pid) { ASSERT_INTERRUPTS_DISABLED(); for (auto& process : *g_processes) { if (process.pid() == pid) return &process; } return nullptr; } RefPtr Process::file_description(int fd) const { if (fd < 0) return nullptr; if (static_cast(fd) < m_fds.size()) return m_fds[fd].description.ptr(); return nullptr; } int Process::fd_flags(int fd) const { if (fd < 0) return -1; if (static_cast(fd) < m_fds.size()) return m_fds[fd].flags; return -1; } ssize_t Process::sys$get_dir_entries(int fd, void* buffer, ssize_t size) { REQUIRE_PROMISE(stdio); if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; auto description = file_description(fd); if (!description) return -EBADF; return description->get_dir_entries((u8*)buffer, size); } int Process::sys$lseek(int fd, off_t offset, int whence) { REQUIRE_PROMISE(stdio); auto description = file_description(fd); if (!description) return -EBADF; return description->seek(offset, whence); } int Process::sys$ttyname_r(int fd, char* buffer, ssize_t size) { REQUIRE_PROMISE(tty); if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; auto description = file_description(fd); if (!description) return -EBADF; if (!description->is_tty()) return -ENOTTY; String tty_name = description->tty()->tty_name(); if ((size_t)size < tty_name.length() + 1) return -ERANGE; copy_to_user(buffer, tty_name.characters(), tty_name.length() + 1); return 0; } int Process::sys$ptsname_r(int fd, char* buffer, ssize_t size) { REQUIRE_PROMISE(tty); if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; auto description = file_description(fd); if (!description) return -EBADF; auto* master_pty = description->master_pty(); if (!master_pty) return -ENOTTY; auto pts_name = master_pty->pts_name(); if ((size_t)size < pts_name.length() + 1) return -ERANGE; copy_to_user(buffer, pts_name.characters(), pts_name.length() + 1); return 0; } ssize_t Process::sys$writev(int fd, const struct iovec* iov, int iov_count) { REQUIRE_PROMISE(stdio); if (iov_count < 0) return -EINVAL; if (!validate_read_typed(iov, iov_count)) return -EFAULT; u64 total_length = 0; Vector vecs; vecs.resize(iov_count); copy_from_user(vecs.data(), iov, iov_count * sizeof(iovec)); for (auto& vec : vecs) { if (!validate_read(vec.iov_base, vec.iov_len)) return -EFAULT; total_length += vec.iov_len; if (total_length > INT32_MAX) return -EINVAL; } auto description = file_description(fd); if (!description) return -EBADF; if (!description->is_writable()) return -EBADF; int nwritten = 0; for (auto& vec : vecs) { int rc = do_write(*description, (const u8*)vec.iov_base, vec.iov_len); if (rc < 0) { if (nwritten == 0) return rc; return nwritten; } nwritten += rc; } return nwritten; } ssize_t Process::do_write(FileDescription& description, const u8* data, int data_size) { ssize_t nwritten = 0; if (!description.is_blocking()) { if (!description.can_write()) return -EAGAIN; } if (description.should_append()) { #ifdef IO_DEBUG dbg() << "seeking to end (O_APPEND)"; #endif description.seek(0, SEEK_END); } while (nwritten < data_size) { #ifdef IO_DEBUG dbg() << "while " << nwritten << " < " << size; #endif if (!description.can_write()) { #ifdef IO_DEBUG dbg() << "block write on " << description.absolute_path(); #endif if (Thread::current->block(description) != Thread::BlockResult::WokeNormally) { if (nwritten == 0) return -EINTR; } } ssize_t rc = description.write(data + nwritten, data_size - nwritten); #ifdef IO_DEBUG dbg() << " -> write returned " << rc; #endif if (rc < 0) { if (nwritten) return nwritten; return rc; } if (rc == 0) break; nwritten += rc; } return nwritten; } ssize_t Process::sys$write(int fd, const u8* data, ssize_t size) { REQUIRE_PROMISE(stdio); if (size < 0) return -EINVAL; if (size == 0) return 0; if (!validate_read(data, size)) return -EFAULT; #ifdef DEBUG_IO dbg() << "sys$write(" << fd << ", " << (const void*)(data) << ", " << size << ")"; #endif auto description = file_description(fd); if (!description) return -EBADF; if (!description->is_writable()) return -EBADF; return do_write(*description, data, size); } ssize_t Process::sys$read(int fd, u8* buffer, ssize_t size) { REQUIRE_PROMISE(stdio); if (size < 0) return -EINVAL; if (size == 0) return 0; if (!validate_write(buffer, size)) return -EFAULT; #ifdef DEBUG_IO dbg() << "sys$read(" << fd << ", " << (const void*)buffer << ", " << size << ")"; #endif auto description = file_description(fd); if (!description) return -EBADF; if (!description->is_readable()) return -EBADF; if (description->is_directory()) return -EISDIR; if (description->is_blocking()) { if (!description->can_read()) { if (Thread::current->block(*description) != Thread::BlockResult::WokeNormally) return -EINTR; if (!description->can_read()) return -EAGAIN; } } return description->read(buffer, size); } int Process::sys$close(int fd) { REQUIRE_PROMISE(stdio); auto description = file_description(fd); #ifdef DEBUG_IO dbg() << "sys$close(" << fd << ") " << description.ptr(); #endif if (!description) return -EBADF; int rc = description->close(); m_fds[fd] = {}; return rc; } int Process::sys$utime(const char* user_path, size_t path_length, const utimbuf* user_buf) { REQUIRE_PROMISE(fattr); if (user_buf && !validate_read_typed(user_buf)) return -EFAULT; auto path = get_syscall_path_argument(user_path, path_length); if (path.is_error()) return path.error(); utimbuf buf; if (user_buf) { copy_from_user(&buf, user_buf); } else { auto now = kgettimeofday(); buf = { now.tv_sec, now.tv_sec }; } return VFS::the().utime(path.value(), current_directory(), buf.actime, buf.modtime); } int Process::sys$access(const char* user_path, size_t path_length, int mode) { REQUIRE_PROMISE(rpath); auto path = get_syscall_path_argument(user_path, path_length); if (path.is_error()) return path.error(); return VFS::the().access(path.value(), mode, current_directory()); } int Process::sys$fcntl(int fd, int cmd, u32 arg) { REQUIRE_PROMISE(stdio); #ifdef DEBUG_IO dbg() << "sys$fcntl: fd=" << fd << ", cmd=" << cmd << ", arg=" << arg; #endif auto description = file_description(fd); if (!description) return -EBADF; // NOTE: The FD flags are not shared between FileDescription objects. // This means that dup() doesn't copy the FD_CLOEXEC flag! switch (cmd) { case F_DUPFD: { int arg_fd = (int)arg; if (arg_fd < 0) return -EINVAL; int new_fd = alloc_fd(arg_fd); if (new_fd < 0) return new_fd; m_fds[new_fd].set(*description); return new_fd; } case F_GETFD: return m_fds[fd].flags; case F_SETFD: m_fds[fd].flags = arg; break; case F_GETFL: return description->file_flags(); case F_SETFL: description->set_file_flags(arg); break; default: ASSERT_NOT_REACHED(); } return 0; } int Process::sys$fstat(int fd, stat* statbuf) { REQUIRE_PROMISE(stdio); if (!validate_write_typed(statbuf)) return -EFAULT; auto description = file_description(fd); if (!description) return -EBADF; return description->fstat(*statbuf); } int Process::sys$stat(const Syscall::SC_stat_params* user_params) { REQUIRE_PROMISE(rpath); Syscall::SC_stat_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; if (!validate_write_typed(params.statbuf)) return -EFAULT; auto path = get_syscall_path_argument(params.path); if (path.is_error()) return path.error(); auto metadata_or_error = VFS::the().lookup_metadata(path.value(), current_directory(), params.follow_symlinks ? 0 : O_NOFOLLOW_NOERROR); if (metadata_or_error.is_error()) return metadata_or_error.error(); stat statbuf; auto result = metadata_or_error.value().stat(statbuf); if (result.is_error()) return result; copy_to_user(params.statbuf, &statbuf); return 0; } template bool Process::validate(const Syscall::MutableBufferArgument& buffer) { return validate_write(buffer.data, buffer.size); } template bool Process::validate(const Syscall::ImmutableBufferArgument& buffer) { return validate_read(buffer.data, buffer.size); } String Process::validate_and_copy_string_from_user(const char* user_characters, size_t user_length) const { if (user_length == 0) return String::empty(); if (!user_characters) return {}; if (!validate_read(user_characters, user_length)) return {}; SmapDisabler disabler; size_t measured_length = strnlen(user_characters, user_length); return String(user_characters, measured_length); } String Process::validate_and_copy_string_from_user(const Syscall::StringArgument& string) const { return validate_and_copy_string_from_user(string.characters, string.length); } int Process::sys$readlink(const Syscall::SC_readlink_params* user_params) { REQUIRE_PROMISE(rpath); Syscall::SC_readlink_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; if (!validate(params.buffer)) return -EFAULT; auto path = get_syscall_path_argument(params.path); if (path.is_error()) return path.error(); auto result = VFS::the().open(path.value(), O_RDONLY | O_NOFOLLOW_NOERROR, 0, current_directory()); if (result.is_error()) return result.error(); auto description = result.value(); if (!description->metadata().is_symlink()) return -EINVAL; auto contents = description->read_entire_file(); if (!contents) return -EIO; // FIXME: Get a more detailed error from VFS. auto link_target = String::copy(contents); if (link_target.length() + 1 > params.buffer.size) return -ENAMETOOLONG; copy_to_user(params.buffer.data, link_target.characters(), link_target.length() + 1); return link_target.length() + 1; } int Process::sys$chdir(const char* user_path, size_t path_length) { REQUIRE_PROMISE(rpath); auto path = get_syscall_path_argument(user_path, path_length); if (path.is_error()) return path.error(); auto directory_or_error = VFS::the().open_directory(path.value(), current_directory()); if (directory_or_error.is_error()) return directory_or_error.error(); m_cwd = *directory_or_error.value(); return 0; } int Process::sys$fchdir(int fd) { REQUIRE_PROMISE(stdio); auto description = file_description(fd); if (!description) return -EBADF; if (!description->is_directory()) return -ENOTDIR; if (!description->metadata().may_execute(*this)) return -EACCES; m_cwd = description->custody(); return 0; } int Process::sys$getcwd(char* buffer, ssize_t size) { REQUIRE_PROMISE(rpath); if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; auto path = current_directory().absolute_path(); if ((size_t)size < path.length() + 1) return -ERANGE; copy_to_user(buffer, path.characters(), path.length() + 1); return 0; } int Process::number_of_open_file_descriptors() const { int count = 0; for (auto& description : m_fds) { if (description) ++count; } return count; } int Process::sys$open(const Syscall::SC_open_params* user_params) { Syscall::SC_open_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; int dirfd = params.dirfd; int options = params.options; u16 mode = params.mode; if (options & O_NOFOLLOW_NOERROR) return -EINVAL; if (options & O_UNLINK_INTERNAL) return -EINVAL; if (options & O_WRONLY) REQUIRE_PROMISE(wpath); else if (options & O_RDONLY) REQUIRE_PROMISE(rpath); if (options & O_CREAT) REQUIRE_PROMISE(cpath); // Ignore everything except permission bits. mode &= 04777; auto path = get_syscall_path_argument(params.path); if (path.is_error()) return path.error(); #ifdef DEBUG_IO dbg() << "sys$open(dirfd=" << dirfd << ", path=\"" << path.value() << "\", options=" << options << ", mode=" << mode << ")"; #endif int fd = alloc_fd(); if (fd < 0) return fd; RefPtr base; if (dirfd == AT_FDCWD) { base = current_directory(); } else { auto base_description = file_description(dirfd); if (!base_description) return -EBADF; if (!base_description->is_directory()) return -ENOTDIR; if (!base_description->custody()) return -EINVAL; base = base_description->custody(); } auto result = VFS::the().open(path.value(), options, mode & ~umask(), *base); if (result.is_error()) return result.error(); auto description = result.value(); u32 fd_flags = (options & O_CLOEXEC) ? FD_CLOEXEC : 0; m_fds[fd].set(move(description), fd_flags); return fd; } int Process::alloc_fd(int first_candidate_fd) { for (int i = first_candidate_fd; i < (int)m_max_open_file_descriptors; ++i) { if (!m_fds[i]) return i; } return -EMFILE; } int Process::sys$pipe(int pipefd[2], int flags) { REQUIRE_PROMISE(stdio); if (!validate_write_typed(pipefd)) return -EFAULT; if (number_of_open_file_descriptors() + 2 > max_open_file_descriptors()) return -EMFILE; // Reject flags other than O_CLOEXEC. if ((flags & O_CLOEXEC) != flags) return -EINVAL; u32 fd_flags = (flags & O_CLOEXEC) ? FD_CLOEXEC : 0; auto fifo = FIFO::create(m_uid); int reader_fd = alloc_fd(); m_fds[reader_fd].set(fifo->open_direction(FIFO::Direction::Reader), fd_flags); m_fds[reader_fd].description->set_readable(true); copy_to_user(&pipefd[0], &reader_fd); int writer_fd = alloc_fd(); m_fds[writer_fd].set(fifo->open_direction(FIFO::Direction::Writer), fd_flags); m_fds[writer_fd].description->set_writable(true); copy_to_user(&pipefd[1], &writer_fd); return 0; } int Process::sys$killpg(int pgrp, int signum) { REQUIRE_PROMISE(proc); if (signum < 1 || signum >= 32) return -EINVAL; if (pgrp < 0) return -EINVAL; return do_killpg(pgrp, signum); } int Process::sys$setuid(uid_t uid) { REQUIRE_PROMISE(id); if (uid != m_uid && !is_superuser()) return -EPERM; m_uid = uid; m_euid = uid; return 0; } int Process::sys$setgid(gid_t gid) { REQUIRE_PROMISE(id); if (gid != m_gid && !is_superuser()) return -EPERM; m_gid = gid; m_egid = gid; return 0; } unsigned Process::sys$alarm(unsigned seconds) { REQUIRE_PROMISE(stdio); unsigned previous_alarm_remaining = 0; if (m_alarm_deadline && m_alarm_deadline > g_uptime) { previous_alarm_remaining = (m_alarm_deadline - g_uptime) / TICKS_PER_SECOND; } if (!seconds) { m_alarm_deadline = 0; return previous_alarm_remaining; } m_alarm_deadline = g_uptime + seconds * TICKS_PER_SECOND; return previous_alarm_remaining; } int Process::sys$uname(utsname* buf) { REQUIRE_PROMISE(stdio); if (!validate_write_typed(buf)) return -EFAULT; LOCKER(*s_hostname_lock); if (s_hostname->length() + 1 > sizeof(utsname::nodename)) return -ENAMETOOLONG; copy_to_user(buf->sysname, "SerenityOS", 11); copy_to_user(buf->release, "1.0-dev", 8); copy_to_user(buf->version, "FIXME", 6); copy_to_user(buf->machine, "i686", 5); copy_to_user(buf->nodename, s_hostname->characters(), s_hostname->length() + 1); return 0; } KResult Process::do_kill(Process& process, int signal) { // FIXME: Allow sending SIGCONT to everyone in the process group. // FIXME: Should setuid processes have some special treatment here? if (!is_superuser() && m_euid != process.m_uid && m_uid != process.m_uid) return KResult(-EPERM); if (process.is_ring0() && signal == SIGKILL) { klog() << "attempted to send SIGKILL to ring 0 process " << process.name().characters() << "(" << process.pid() << ")"; return KResult(-EPERM); } if (signal != 0) process.send_signal(signal, this); return KSuccess; } KResult Process::do_killpg(pid_t pgrp, int signal) { InterruptDisabler disabler; ASSERT(pgrp >= 0); // Send the signal to all processes in the given group. if (pgrp == 0) { // Send the signal to our own pgrp. pgrp = pgid(); } bool group_was_empty = true; bool any_succeeded = false; KResult error = KSuccess; Process::for_each_in_pgrp(pgrp, [&](auto& process) { group_was_empty = false; KResult res = do_kill(process, signal); if (res.is_success()) any_succeeded = true; else error = res; return IterationDecision::Continue; }); if (group_was_empty) return KResult(-ESRCH); if (any_succeeded) return KSuccess; return error; } int Process::sys$kill(pid_t pid, int signal) { if (pid == m_pid) REQUIRE_PROMISE(stdio); else REQUIRE_PROMISE(proc); if (signal < 0 || signal >= 32) return -EINVAL; if (pid <= 0) { if (pid == INT32_MIN) return -EINVAL; return do_killpg(-pid, signal); } if (pid == -1) { // FIXME: Send to all processes. return -ENOTIMPL; } if (pid == m_pid) { if (signal == 0) return 0; if (!Thread::current->should_ignore_signal(signal)) { Thread::current->send_signal(signal, this); (void)Thread::current->block(Thread::SemiPermanentBlocker::Reason::Signal); } return 0; } InterruptDisabler disabler; auto* peer = Process::from_pid(pid); if (!peer) return -ESRCH; return do_kill(*peer, signal); } int Process::sys$usleep(useconds_t usec) { REQUIRE_PROMISE(stdio); if (!usec) return 0; u64 wakeup_time = Thread::current->sleep(usec / 1000); if (wakeup_time > g_uptime) return -EINTR; return 0; } int Process::sys$sleep(unsigned seconds) { REQUIRE_PROMISE(stdio); if (!seconds) return 0; u64 wakeup_time = Thread::current->sleep(seconds * TICKS_PER_SECOND); if (wakeup_time > g_uptime) { u32 ticks_left_until_original_wakeup_time = wakeup_time - g_uptime; return ticks_left_until_original_wakeup_time / TICKS_PER_SECOND; } return 0; } timeval kgettimeofday() { return const_cast(((KernelInfoPage*)s_info_page_address_for_kernel.as_ptr())->now); } void kgettimeofday(timeval& tv) { tv = kgettimeofday(); } int Process::sys$gettimeofday(timeval* tv) { REQUIRE_PROMISE(stdio); if (!validate_write_typed(tv)) return -EFAULT; *tv = kgettimeofday(); return 0; } uid_t Process::sys$getuid() { REQUIRE_PROMISE(stdio); return m_uid; } gid_t Process::sys$getgid() { REQUIRE_PROMISE(stdio); return m_gid; } uid_t Process::sys$geteuid() { REQUIRE_PROMISE(stdio); return m_euid; } gid_t Process::sys$getegid() { REQUIRE_PROMISE(stdio); return m_egid; } pid_t Process::sys$getpid() { REQUIRE_PROMISE(stdio); return m_pid; } pid_t Process::sys$getppid() { REQUIRE_PROMISE(stdio); return m_ppid; } mode_t Process::sys$umask(mode_t mask) { REQUIRE_PROMISE(stdio); auto old_mask = m_umask; m_umask = mask & 0777; return old_mask; } siginfo_t Process::reap(Process& process) { siginfo_t siginfo; memset(&siginfo, 0, sizeof(siginfo)); siginfo.si_signo = SIGCHLD; siginfo.si_pid = process.pid(); siginfo.si_uid = process.uid(); if (process.m_termination_signal) { siginfo.si_status = process.m_termination_signal; siginfo.si_code = CLD_KILLED; } else { siginfo.si_status = process.m_termination_status; siginfo.si_code = CLD_EXITED; } { InterruptDisabler disabler; if (process.ppid()) { auto* parent = Process::from_pid(process.ppid()); if (parent) { parent->m_ticks_in_user_for_dead_children += process.m_ticks_in_user + process.m_ticks_in_user_for_dead_children; parent->m_ticks_in_kernel_for_dead_children += process.m_ticks_in_kernel + process.m_ticks_in_kernel_for_dead_children; } } #ifdef PROCESS_DEBUG dbg() << "Reaping process " << process; #endif ASSERT(process.is_dead()); g_processes->remove(&process); } delete &process; return siginfo; } KResultOr Process::do_waitid(idtype_t idtype, int id, int options) { if (idtype == P_PID) { InterruptDisabler disabler; if (idtype == P_PID && !Process::from_pid(id)) return KResult(-ECHILD); } if (options & WNOHANG) { // FIXME: Figure out what WNOHANG should do with stopped children. if (idtype == P_ALL) { InterruptDisabler disabler; siginfo_t siginfo; memset(&siginfo, 0, sizeof(siginfo)); for_each_child([&siginfo](Process& process) { if (process.is_dead()) siginfo = reap(process); return IterationDecision::Continue; }); return siginfo; } else if (idtype == P_PID) { InterruptDisabler disabler; auto* waitee_process = Process::from_pid(id); if (!waitee_process) return KResult(-ECHILD); if (waitee_process->is_dead()) return reap(*waitee_process); } else { // FIXME: Implement other PID specs. return KResult(-EINVAL); } } pid_t waitee_pid; // FIXME: WaitBlocker should support idtype/id specs directly. if (idtype == P_ALL) { waitee_pid = -1; } else if (idtype == P_PID) { waitee_pid = id; } else { // FIXME: Implement other PID specs. return KResult(-EINVAL); } if (Thread::current->block(options, waitee_pid) != Thread::BlockResult::WokeNormally) return KResult(-EINTR); InterruptDisabler disabler; // NOTE: If waitee was -1, m_waitee_pid will have been filled in by the scheduler. Process* waitee_process = Process::from_pid(waitee_pid); if (!waitee_process) return KResult(-ECHILD); ASSERT(waitee_process); if (waitee_process->is_dead()) { return reap(*waitee_process); } else { auto* waitee_thread = Thread::from_tid(waitee_pid); if (!waitee_thread) return KResult(-ECHILD); ASSERT(waitee_thread->state() == Thread::State::Stopped); siginfo_t siginfo; memset(&siginfo, 0, sizeof(siginfo)); siginfo.si_signo = SIGCHLD; siginfo.si_pid = waitee_process->pid(); siginfo.si_uid = waitee_process->uid(); siginfo.si_status = CLD_STOPPED; siginfo.si_code = waitee_thread->m_stop_signal; return siginfo; } } pid_t Process::sys$waitid(const Syscall::SC_waitid_params* user_params) { REQUIRE_PROMISE(stdio); Syscall::SC_waitid_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; if (!validate_write_typed(params.infop)) return -EFAULT; #ifdef PROCESS_DEBUG dbg() << "sys$waitid(" << params.idtype << ", " << params.id << ", " << params.infop << ", " << params.options << ")"; #endif auto siginfo_or_error = do_waitid(static_cast(params.idtype), params.id, params.options); if (siginfo_or_error.is_error()) return siginfo_or_error.error(); copy_to_user(params.infop, &siginfo_or_error.value()); return 0; } bool Process::validate_read_from_kernel(VirtualAddress vaddr, size_t size) const { if (vaddr.is_null()) return false; return MM.validate_kernel_read(*this, vaddr, size); } bool Process::validate_read(const void* address, size_t size) const { if (!size) return false; return MM.validate_user_read(*this, VirtualAddress(address), size); } bool Process::validate_write(void* address, size_t size) const { if (!size) return false; return MM.validate_user_write(*this, VirtualAddress(address), size); } pid_t Process::sys$getsid(pid_t pid) { REQUIRE_PROMISE(stdio); if (pid == 0) return m_sid; InterruptDisabler disabler; auto* process = Process::from_pid(pid); if (!process) return -ESRCH; if (m_sid != process->m_sid) return -EPERM; return process->m_sid; } pid_t Process::sys$setsid() { REQUIRE_PROMISE(proc); InterruptDisabler disabler; bool found_process_with_same_pgid_as_my_pid = false; Process::for_each_in_pgrp(pid(), [&](auto&) { found_process_with_same_pgid_as_my_pid = true; return IterationDecision::Break; }); if (found_process_with_same_pgid_as_my_pid) return -EPERM; m_sid = m_pid; m_pgid = m_pid; m_tty = nullptr; return m_sid; } pid_t Process::sys$getpgid(pid_t pid) { REQUIRE_PROMISE(stdio); if (pid == 0) return m_pgid; InterruptDisabler disabler; // FIXME: Use a ProcessHandle auto* process = Process::from_pid(pid); if (!process) return -ESRCH; return process->m_pgid; } pid_t Process::sys$getpgrp() { REQUIRE_PROMISE(stdio); return m_pgid; } static pid_t get_sid_from_pgid(pid_t pgid) { InterruptDisabler disabler; auto* group_leader = Process::from_pid(pgid); if (!group_leader) return -1; return group_leader->sid(); } int Process::sys$setpgid(pid_t specified_pid, pid_t specified_pgid) { REQUIRE_PROMISE(proc); InterruptDisabler disabler; // FIXME: Use a ProcessHandle pid_t pid = specified_pid ? specified_pid : m_pid; if (specified_pgid < 0) { // The value of the pgid argument is less than 0, or is not a value supported by the implementation. return -EINVAL; } auto* process = Process::from_pid(pid); if (!process) return -ESRCH; if (process != this && process->ppid() != m_pid) { // The value of the pid argument does not match the process ID // of the calling process or of a child process of the calling process. return -ESRCH; } if (process->pid() == process->sid()) { // The process indicated by the pid argument is a session leader. return -EPERM; } if (process->ppid() == m_pid && process->sid() != sid()) { // The value of the pid argument matches the process ID of a child // process of the calling process and the child process is not in // the same session as the calling process. return -EPERM; } pid_t new_pgid = specified_pgid ? specified_pgid : process->m_pid; pid_t current_sid = get_sid_from_pgid(process->m_pgid); pid_t new_sid = get_sid_from_pgid(new_pgid); if (current_sid != new_sid) { // Can't move a process between sessions. return -EPERM; } // FIXME: There are more EPERM conditions to check for here.. process->m_pgid = new_pgid; return 0; } int Process::sys$ioctl(int fd, unsigned request, unsigned arg) { auto description = file_description(fd); if (!description) return -EBADF; SmapDisabler disabler; return description->file().ioctl(*description, request, arg); } int Process::sys$getdtablesize() { REQUIRE_PROMISE(stdio); return m_max_open_file_descriptors; } int Process::sys$dup(int old_fd) { REQUIRE_PROMISE(stdio); auto description = file_description(old_fd); if (!description) return -EBADF; int new_fd = alloc_fd(); if (new_fd < 0) return new_fd; m_fds[new_fd].set(*description); return new_fd; } int Process::sys$dup2(int old_fd, int new_fd) { REQUIRE_PROMISE(stdio); auto description = file_description(old_fd); if (!description) return -EBADF; if (new_fd < 0 || new_fd >= m_max_open_file_descriptors) return -EINVAL; m_fds[new_fd].set(*description); return new_fd; } int Process::sys$sigprocmask(int how, const sigset_t* set, sigset_t* old_set) { REQUIRE_PROMISE(stdio); if (old_set) { if (!validate_write_typed(old_set)) return -EFAULT; copy_to_user(old_set, &Thread::current->m_signal_mask); } if (set) { if (!validate_read_typed(set)) return -EFAULT; sigset_t set_value; copy_from_user(&set_value, set); switch (how) { case SIG_BLOCK: Thread::current->m_signal_mask &= ~set_value; break; case SIG_UNBLOCK: Thread::current->m_signal_mask |= set_value; break; case SIG_SETMASK: Thread::current->m_signal_mask = set_value; break; default: return -EINVAL; } } return 0; } int Process::sys$sigpending(sigset_t* set) { REQUIRE_PROMISE(stdio); if (!validate_write_typed(set)) return -EFAULT; copy_to_user(set, &Thread::current->m_pending_signals); return 0; } int Process::sys$sigaction(int signum, const sigaction* act, sigaction* old_act) { REQUIRE_PROMISE(stdio); if (signum < 1 || signum >= 32 || signum == SIGKILL || signum == SIGSTOP) return -EINVAL; if (!validate_read_typed(act)) return -EFAULT; InterruptDisabler disabler; // FIXME: This should use a narrower lock. Maybe a way to ignore signals temporarily? auto& action = Thread::current->m_signal_action_data[signum]; if (old_act) { if (!validate_write_typed(old_act)) return -EFAULT; copy_to_user(&old_act->sa_flags, &action.flags); copy_to_user(&old_act->sa_sigaction, &action.handler_or_sigaction, sizeof(action.handler_or_sigaction)); } copy_from_user(&action.flags, &act->sa_flags); copy_from_user(&action.handler_or_sigaction, &act->sa_sigaction, sizeof(action.handler_or_sigaction)); return 0; } int Process::sys$getgroups(ssize_t count, gid_t* user_gids) { REQUIRE_PROMISE(stdio); if (count < 0) return -EINVAL; if (!count) return m_extra_gids.size(); if (count != (int)m_extra_gids.size()) return -EINVAL; if (!validate_write_typed(user_gids, m_extra_gids.size())) return -EFAULT; Vector gids; for (auto gid : m_extra_gids) gids.append(gid); copy_to_user(user_gids, gids.data(), sizeof(gid_t) * count); return 0; } int Process::sys$setgroups(ssize_t count, const gid_t* user_gids) { REQUIRE_PROMISE(id); if (count < 0) return -EINVAL; if (!is_superuser()) return -EPERM; if (count && !validate_read(user_gids, count)) return -EFAULT; Vector gids; gids.resize(count); copy_from_user(gids.data(), user_gids, sizeof(gid_t) * count); HashTable unique_extra_gids; for (auto& gid : gids) { if (gid != m_gid) unique_extra_gids.set(gid); } m_extra_gids.resize(unique_extra_gids.size()); size_t i = 0; for (auto& gid : unique_extra_gids) { if (gid == m_gid) continue; m_extra_gids[i++] = gid; } return 0; } int Process::sys$mkdir(const char* user_path, size_t path_length, mode_t mode) { REQUIRE_PROMISE(cpath); auto path = get_syscall_path_argument(user_path, path_length); if (path.is_error()) return path.error(); return VFS::the().mkdir(path.value(), mode & ~umask(), current_directory()); } int Process::sys$realpath(const Syscall::SC_realpath_params* user_params) { REQUIRE_PROMISE(rpath); Syscall::SC_realpath_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; if (!validate_write(params.buffer.data, params.buffer.size)) return -EFAULT; auto path = get_syscall_path_argument(params.path); if (path.is_error()) return path.error(); auto custody_or_error = VFS::the().resolve_path(path.value(), current_directory()); if (custody_or_error.is_error()) return custody_or_error.error(); auto& custody = custody_or_error.value(); auto absolute_path = custody->absolute_path(); if (absolute_path.length() + 1 > params.buffer.size) return -ENAMETOOLONG; copy_to_user(params.buffer.data, absolute_path.characters(), absolute_path.length() + 1); return 0; }; clock_t Process::sys$times(tms* times) { REQUIRE_PROMISE(stdio); if (!validate_write_typed(times)) return -EFAULT; copy_to_user(×->tms_utime, &m_ticks_in_user); copy_to_user(×->tms_stime, &m_ticks_in_kernel); copy_to_user(×->tms_cutime, &m_ticks_in_user_for_dead_children); copy_to_user(×->tms_cstime, &m_ticks_in_kernel_for_dead_children); return g_uptime & 0x7fffffff; } int Process::sys$select(const Syscall::SC_select_params* params) { REQUIRE_PROMISE(stdio); // FIXME: Return -EINVAL if timeout is invalid. if (!validate_read_typed(params)) return -EFAULT; SmapDisabler disabler; int nfds = params->nfds; fd_set* readfds = params->readfds; fd_set* writefds = params->writefds; fd_set* exceptfds = params->exceptfds; timeval* timeout = params->timeout; if (writefds && !validate_write_typed(writefds)) return -EFAULT; if (readfds && !validate_write_typed(readfds)) return -EFAULT; if (exceptfds && !validate_write_typed(exceptfds)) return -EFAULT; if (timeout && !validate_read_typed(timeout)) return -EFAULT; if (nfds < 0) return -EINVAL; timeval computed_timeout; bool select_has_timeout = false; if (timeout && (timeout->tv_sec || timeout->tv_usec)) { timeval_add(kgettimeofday(), *timeout, computed_timeout); select_has_timeout = true; } Thread::SelectBlocker::FDVector rfds; Thread::SelectBlocker::FDVector wfds; Thread::SelectBlocker::FDVector efds; auto transfer_fds = [&](auto* fds, auto& vector) -> int { vector.clear_with_capacity(); if (!fds) return 0; for (int fd = 0; fd < nfds; ++fd) { if (FD_ISSET(fd, fds)) { if (!file_description(fd)) { dbg() << "sys$select: Bad fd number " << fd; return -EBADF; } vector.append(fd); } } return 0; }; if (int error = transfer_fds(writefds, wfds)) return error; if (int error = transfer_fds(readfds, rfds)) return error; if (int error = transfer_fds(exceptfds, efds)) return error; #if defined(DEBUG_IO) || defined(DEBUG_POLL_SELECT) dbg() << "selecting on (read:" << rfds.size() << ", write:" << wfds.size() << "), timeout=" << timeout; #endif if (!timeout || select_has_timeout) { if (Thread::current->block(computed_timeout, select_has_timeout, rfds, wfds, efds) != Thread::BlockResult::WokeNormally) return -EINTR; } int marked_fd_count = 0; auto mark_fds = [&](auto* fds, auto& vector, auto should_mark) { if (!fds) return; FD_ZERO(fds); for (int fd : vector) { if (auto description = file_description(fd); description && should_mark(*description)) { FD_SET(fd, fds); ++marked_fd_count; } } }; mark_fds(readfds, rfds, [](auto& description) { return description.can_read(); }); mark_fds(writefds, wfds, [](auto& description) { return description.can_write(); }); // FIXME: We should also mark exceptfds as appropriate. return marked_fd_count; } int Process::sys$poll(pollfd* fds, int nfds, int timeout) { REQUIRE_PROMISE(stdio); if (!validate_read_typed(fds)) return -EFAULT; SmapDisabler disabler; Thread::SelectBlocker::FDVector rfds; Thread::SelectBlocker::FDVector wfds; for (int i = 0; i < nfds; ++i) { if (fds[i].events & POLLIN) rfds.append(fds[i].fd); if (fds[i].events & POLLOUT) wfds.append(fds[i].fd); } timeval actual_timeout; bool has_timeout = false; if (timeout >= 0) { // poll is in ms, we want s/us. struct timeval tvtimeout; tvtimeout.tv_sec = 0; while (timeout >= 1000) { tvtimeout.tv_sec += 1; timeout -= 1000; } tvtimeout.tv_usec = timeout * 1000; timeval_add(kgettimeofday(), tvtimeout, actual_timeout); has_timeout = true; } #if defined(DEBUG_IO) || defined(DEBUG_POLL_SELECT) dbg() << "polling on (read:" << rfds.size() << ", write:" << wfds.size() << "), timeout=" << timeout; #endif if (has_timeout || timeout < 0) { if (Thread::current->block(actual_timeout, has_timeout, rfds, wfds, Thread::SelectBlocker::FDVector()) != Thread::BlockResult::WokeNormally) return -EINTR; } int fds_with_revents = 0; for (int i = 0; i < nfds; ++i) { auto description = file_description(fds[i].fd); if (!description) { fds[i].revents = POLLNVAL; continue; } fds[i].revents = 0; if (fds[i].events & POLLIN && description->can_read()) fds[i].revents |= POLLIN; if (fds[i].events & POLLOUT && description->can_write()) fds[i].revents |= POLLOUT; if (fds[i].revents) ++fds_with_revents; } return fds_with_revents; } Custody& Process::current_directory() { if (!m_cwd) m_cwd = VFS::the().root_custody(); return *m_cwd; } int Process::sys$link(const Syscall::SC_link_params* user_params) { REQUIRE_PROMISE(cpath); Syscall::SC_link_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; auto old_path = validate_and_copy_string_from_user(params.old_path); auto new_path = validate_and_copy_string_from_user(params.new_path); if (old_path.is_null() || new_path.is_null()) return -EFAULT; return VFS::the().link(old_path, new_path, current_directory()); } int Process::sys$unlink(const char* user_path, size_t path_length) { REQUIRE_PROMISE(cpath); if (!validate_read(user_path, path_length)) return -EFAULT; auto path = get_syscall_path_argument(user_path, path_length); if (path.is_error()) return path.error(); return VFS::the().unlink(path.value(), current_directory()); } int Process::sys$symlink(const Syscall::SC_symlink_params* user_params) { REQUIRE_PROMISE(cpath); Syscall::SC_symlink_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; auto target = get_syscall_path_argument(params.target); if (target.is_error()) return target.error(); auto linkpath = get_syscall_path_argument(params.linkpath); if (linkpath.is_error()) return linkpath.error(); return VFS::the().symlink(target.value(), linkpath.value(), current_directory()); } KResultOr Process::get_syscall_path_argument(const char* user_path, size_t path_length) const { if (path_length == 0) return KResult(-EINVAL); if (path_length > PATH_MAX) return KResult(-ENAMETOOLONG); if (!validate_read(user_path, path_length)) return KResult(-EFAULT); return copy_string_from_user(user_path, path_length); } KResultOr Process::get_syscall_path_argument(const Syscall::StringArgument& path) const { return get_syscall_path_argument(path.characters, path.length); } int Process::sys$rmdir(const char* user_path, size_t path_length) { REQUIRE_PROMISE(cpath); auto path = get_syscall_path_argument(user_path, path_length); if (path.is_error()) return path.error(); return VFS::the().rmdir(path.value(), current_directory()); } int Process::sys$chmod(const char* user_path, size_t path_length, mode_t mode) { REQUIRE_PROMISE(fattr); auto path = get_syscall_path_argument(user_path, path_length); if (path.is_error()) return path.error(); return VFS::the().chmod(path.value(), mode, current_directory()); } int Process::sys$fchmod(int fd, mode_t mode) { REQUIRE_PROMISE(fattr); auto description = file_description(fd); if (!description) return -EBADF; return description->chmod(mode); } int Process::sys$fchown(int fd, uid_t uid, gid_t gid) { REQUIRE_PROMISE(chown); auto description = file_description(fd); if (!description) return -EBADF; return description->chown(uid, gid); } int Process::sys$chown(const Syscall::SC_chown_params* user_params) { REQUIRE_PROMISE(chown); Syscall::SC_chown_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; auto path = get_syscall_path_argument(params.path); if (path.is_error()) return path.error(); return VFS::the().chown(path.value(), params.uid, params.gid, current_directory()); } void Process::finalize() { ASSERT(Thread::current == g_finalizer); #ifdef PROCESS_DEBUG dbg() << "Finalizing process " << *this; #endif if (m_perf_event_buffer) { auto description_or_error = VFS::the().open(String::format("perfcore.%d", m_pid), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { m_uid, m_gid }); if (!description_or_error.is_error()) { auto& description = description_or_error.value(); auto json = m_perf_event_buffer->to_json(m_pid, m_executable ? m_executable->absolute_path() : ""); description->write(json.data(), json.size()); } } m_fds.clear(); m_tty = nullptr; m_executable = nullptr; m_cwd = nullptr; m_root_directory = nullptr; m_root_directory_relative_to_global_root = nullptr; disown_all_shared_buffers(); { InterruptDisabler disabler; if (auto* parent_thread = Thread::from_tid(m_ppid)) { if (parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT) { // NOTE: If the parent doesn't care about this process, let it go. m_ppid = 0; } else { parent_thread->send_signal(SIGCHLD, this); } } } m_regions.clear(); m_dead = true; } void Process::die() { // Let go of the TTY, otherwise a slave PTY may keep the master PTY from // getting an EOF when the last process using the slave PTY dies. // If the master PTY owner relies on an EOF to know when to wait() on a // slave owner, we have to allow the PTY pair to be torn down. m_tty = nullptr; if (m_tracer) m_tracer->set_dead(); kill_all_threads(); } size_t Process::amount_dirty_private() const { // FIXME: This gets a bit more complicated for Regions sharing the same underlying VMObject. // The main issue I'm thinking of is when the VMObject has physical pages that none of the Regions are mapping. // That's probably a situation that needs to be looked at in general. size_t amount = 0; for (auto& region : m_regions) { if (!region.is_shared()) amount += region.amount_dirty(); } return amount; } size_t Process::amount_clean_inode() const { HashTable vmobjects; for (auto& region : m_regions) { if (region.vmobject().is_inode()) vmobjects.set(&static_cast(region.vmobject())); } size_t amount = 0; for (auto& vmobject : vmobjects) amount += vmobject->amount_clean(); return amount; } size_t Process::amount_virtual() const { size_t amount = 0; for (auto& region : m_regions) { amount += region.size(); } return amount; } size_t Process::amount_resident() const { // FIXME: This will double count if multiple regions use the same physical page. size_t amount = 0; for (auto& region : m_regions) { amount += region.amount_resident(); } return amount; } size_t Process::amount_shared() const { // FIXME: This will double count if multiple regions use the same physical page. // FIXME: It doesn't work at the moment, since it relies on PhysicalPage ref counts, // and each PhysicalPage is only reffed by its VMObject. This needs to be refactored // so that every Region contributes +1 ref to each of its PhysicalPages. size_t amount = 0; for (auto& region : m_regions) { amount += region.amount_shared(); } return amount; } size_t Process::amount_purgeable_volatile() const { size_t amount = 0; for (auto& region : m_regions) { if (region.vmobject().is_purgeable() && static_cast(region.vmobject()).is_volatile()) amount += region.amount_resident(); } return amount; } size_t Process::amount_purgeable_nonvolatile() const { size_t amount = 0; for (auto& region : m_regions) { if (region.vmobject().is_purgeable() && !static_cast(region.vmobject()).is_volatile()) amount += region.amount_resident(); } return amount; } #define REQUIRE_PROMISE_FOR_SOCKET_DOMAIN(domain) \ do { \ if (domain == AF_INET) \ REQUIRE_PROMISE(inet); \ else if (domain == AF_LOCAL) \ REQUIRE_PROMISE(unix); \ } while (0) int Process::sys$socket(int domain, int type, int protocol) { REQUIRE_PROMISE_FOR_SOCKET_DOMAIN(domain); if ((type & SOCK_TYPE_MASK) == SOCK_RAW && !is_superuser()) return -EACCES; int fd = alloc_fd(); if (fd < 0) return fd; auto result = Socket::create(domain, type, protocol); if (result.is_error()) return result.error(); auto description = FileDescription::create(*result.value()); description->set_readable(true); description->set_writable(true); unsigned flags = 0; if (type & SOCK_CLOEXEC) flags |= FD_CLOEXEC; if (type & SOCK_NONBLOCK) description->set_blocking(false); m_fds[fd].set(move(description), flags); return fd; } int Process::sys$bind(int sockfd, const sockaddr* address, socklen_t address_length) { if (!validate_read(address, address_length)) return -EFAULT; auto description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); REQUIRE_PROMISE_FOR_SOCKET_DOMAIN(socket.domain()); return socket.bind(address, address_length); } int Process::sys$listen(int sockfd, int backlog) { if (backlog < 0) return -EINVAL; auto description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); REQUIRE_PROMISE_FOR_SOCKET_DOMAIN(socket.domain()); if (socket.is_connected()) return -EINVAL; return socket.listen(backlog); } int Process::sys$accept(int accepting_socket_fd, sockaddr* user_address, socklen_t* user_address_size) { REQUIRE_PROMISE(accept); if (!validate_write_typed(user_address_size)) return -EFAULT; socklen_t address_size = 0; copy_from_user(&address_size, user_address_size); if (!validate_write(user_address, address_size)) return -EFAULT; int accepted_socket_fd = alloc_fd(); if (accepted_socket_fd < 0) return accepted_socket_fd; auto accepting_socket_description = file_description(accepting_socket_fd); if (!accepting_socket_description) return -EBADF; if (!accepting_socket_description->is_socket()) return -ENOTSOCK; auto& socket = *accepting_socket_description->socket(); if (!socket.can_accept()) { if (accepting_socket_description->is_blocking()) { if (Thread::current->block(*accepting_socket_description) != Thread::BlockResult::WokeNormally) return -EINTR; } else { return -EAGAIN; } } auto accepted_socket = socket.accept(); ASSERT(accepted_socket); u8 address_buffer[sizeof(sockaddr_un)]; address_size = min(sizeof(sockaddr_un), static_cast(address_size)); accepted_socket->get_peer_address((sockaddr*)address_buffer, &address_size); copy_to_user(user_address, address_buffer, address_size); copy_to_user(user_address_size, &address_size); auto accepted_socket_description = FileDescription::create(*accepted_socket); accepted_socket_description->set_readable(true); accepted_socket_description->set_writable(true); // NOTE: The accepted socket inherits fd flags from the accepting socket. // I'm not sure if this matches other systems but it makes sense to me. accepted_socket_description->set_blocking(accepting_socket_description->is_blocking()); m_fds[accepted_socket_fd].set(move(accepted_socket_description), m_fds[accepting_socket_fd].flags); // NOTE: Moving this state to Completed is what causes connect() to unblock on the client side. accepted_socket->set_setup_state(Socket::SetupState::Completed); return accepted_socket_fd; } int Process::sys$connect(int sockfd, const sockaddr* user_address, socklen_t user_address_size) { if (!validate_read(user_address, user_address_size)) return -EFAULT; int fd = alloc_fd(); if (fd < 0) return fd; auto description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); REQUIRE_PROMISE_FOR_SOCKET_DOMAIN(socket.domain()); u8 address[sizeof(sockaddr_un)]; size_t address_size = min(sizeof(address), static_cast(user_address_size)); copy_from_user(address, user_address, address_size); return socket.connect(*description, (const sockaddr*)address, address_size, description->is_blocking() ? ShouldBlock::Yes : ShouldBlock::No); } int Process::sys$shutdown(int sockfd, int how) { REQUIRE_PROMISE(stdio); if (how & ~SHUT_RDWR) return -EINVAL; auto description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); REQUIRE_PROMISE_FOR_SOCKET_DOMAIN(socket.domain()); return socket.shutdown(how); } ssize_t Process::sys$sendto(const Syscall::SC_sendto_params* user_params) { REQUIRE_PROMISE(stdio); Syscall::SC_sendto_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; int flags = params.flags; const sockaddr* addr = params.addr; socklen_t addr_length = params.addr_length; if (!validate(params.data)) return -EFAULT; if (addr && !validate_read(addr, addr_length)) return -EFAULT; auto description = file_description(params.sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); if (socket.is_shut_down_for_writing()) return -EPIPE; SmapDisabler disabler; return socket.sendto(*description, params.data.data, params.data.size, flags, addr, addr_length); } ssize_t Process::sys$recvfrom(const Syscall::SC_recvfrom_params* user_params) { REQUIRE_PROMISE(stdio); Syscall::SC_recvfrom_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; int flags = params.flags; sockaddr* addr = params.addr; socklen_t* addr_length = params.addr_length; SmapDisabler disabler; if (!validate(params.buffer)) return -EFAULT; if (addr_length) { if (!validate_write_typed(addr_length)) return -EFAULT; if (!validate_write(addr, *addr_length)) return -EFAULT; } else if (addr) { return -EINVAL; } auto description = file_description(params.sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); if (socket.is_shut_down_for_reading()) return 0; bool original_blocking = description->is_blocking(); if (flags & MSG_DONTWAIT) description->set_blocking(false); auto nrecv = socket.recvfrom(*description, params.buffer.data, params.buffer.size, flags, addr, addr_length); if (flags & MSG_DONTWAIT) description->set_blocking(original_blocking); return nrecv; } template int Process::get_sock_or_peer_name(const Params& params) { socklen_t addrlen_value; if (!validate_read_and_copy_typed(&addrlen_value, params.addrlen)) return -EFAULT; if (addrlen_value <= 0) return -EINVAL; if (!validate_write(params.addr, addrlen_value)) return -EFAULT; if (!validate_write_typed(params.addrlen)) return -EFAULT; auto description = file_description(params.sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); REQUIRE_PROMISE_FOR_SOCKET_DOMAIN(socket.domain()); u8 address_buffer[sizeof(sockaddr_un)]; addrlen_value = min(sizeof(sockaddr_un), static_cast(addrlen_value)); if constexpr (sockname) socket.get_local_address((sockaddr*)address_buffer, &addrlen_value); else socket.get_peer_address((sockaddr*)address_buffer, &addrlen_value); copy_to_user(params.addr, address_buffer, addrlen_value); copy_to_user(params.addrlen, &addrlen_value); return 0; } int Process::sys$getsockname(const Syscall::SC_getsockname_params* user_params) { Syscall::SC_getsockname_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; return get_sock_or_peer_name(params); } int Process::sys$getpeername(const Syscall::SC_getpeername_params* user_params) { Syscall::SC_getpeername_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; return get_sock_or_peer_name(params); } int Process::sys$sched_setparam(int tid, const struct sched_param* param) { REQUIRE_PROMISE(proc); if (!validate_read_typed(param)) return -EFAULT; int desired_priority; copy_from_user(&desired_priority, ¶m->sched_priority); InterruptDisabler disabler; auto* peer = Thread::current; if (tid != 0) peer = Thread::from_tid(tid); if (!peer) return -ESRCH; if (!is_superuser() && m_euid != peer->process().m_uid && m_uid != peer->process().m_uid) return -EPERM; if (desired_priority < THREAD_PRIORITY_MIN || desired_priority > THREAD_PRIORITY_MAX) return -EINVAL; peer->set_priority((u32)desired_priority); return 0; } int Process::sys$sched_getparam(pid_t pid, struct sched_param* param) { REQUIRE_PROMISE(proc); if (!validate_write_typed(param)) return -EFAULT; InterruptDisabler disabler; auto* peer = Thread::current; if (pid != 0) peer = Thread::from_tid(pid); if (!peer) return -ESRCH; if (!is_superuser() && m_euid != peer->process().m_uid && m_uid != peer->process().m_uid) return -EPERM; int priority = peer->priority(); copy_to_user(¶m->sched_priority, &priority); return 0; } int Process::sys$getsockopt(const Syscall::SC_getsockopt_params* params) { if (!validate_read_typed(params)) return -EFAULT; SmapDisabler disabler; int sockfd = params->sockfd; int level = params->level; int option = params->option; void* value = params->value; socklen_t* value_size = params->value_size; if (!validate_write_typed(value_size)) return -EFAULT; if (!validate_write(value, *value_size)) return -EFAULT; auto description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); if (has_promised(Pledge::accept) && socket.is_local() && level == SOL_SOCKET && option == SO_PEERCRED) { // We make an exception for SOL_SOCKET::SO_PEERCRED on local sockets if you've pledged "accept" } else { REQUIRE_PROMISE_FOR_SOCKET_DOMAIN(socket.domain()); } return socket.getsockopt(*description, level, option, value, value_size); } int Process::sys$setsockopt(const Syscall::SC_setsockopt_params* params) { if (!validate_read_typed(params)) return -EFAULT; SmapDisabler disabler; int sockfd = params->sockfd; int level = params->level; int option = params->option; const void* value = params->value; socklen_t value_size = params->value_size; if (!validate_read(value, value_size)) return -EFAULT; auto description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); REQUIRE_PROMISE_FOR_SOCKET_DOMAIN(socket.domain()); return socket.setsockopt(level, option, value, value_size); } void Process::disown_all_shared_buffers() { LOCKER(shared_buffers().lock()); Vector buffers_to_disown; for (auto& it : shared_buffers().resource()) buffers_to_disown.append(it.value.ptr()); for (auto* shared_buffer : buffers_to_disown) shared_buffer->disown(m_pid); } int Process::sys$shbuf_create(int size, void** buffer) { REQUIRE_PROMISE(shared_buffer); if (!size || size < 0) return -EINVAL; size = PAGE_ROUND_UP(size); if (!validate_write_typed(buffer)) return -EFAULT; LOCKER(shared_buffers().lock()); static int s_next_shbuf_id; int shbuf_id = ++s_next_shbuf_id; auto shared_buffer = make(shbuf_id, size); shared_buffer->share_with(m_pid); void* address = shared_buffer->ref_for_process_and_get_address(*this); copy_to_user(buffer, &address); ASSERT((int)shared_buffer->size() >= size); #ifdef SHARED_BUFFER_DEBUG klog() << "Created shared buffer " << shbuf_id << " @ " << buffer << " (" << size << " bytes, vmobject is " << shared_buffer->size() << ")"; #endif shared_buffers().resource().set(shbuf_id, move(shared_buffer)); return shbuf_id; } int Process::sys$shbuf_allow_pid(int shbuf_id, pid_t peer_pid) { REQUIRE_PROMISE(shared_buffer); if (!peer_pid || peer_pid < 0 || peer_pid == m_pid) return -EINVAL; LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shbuf_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; { InterruptDisabler disabler; auto* peer = Process::from_pid(peer_pid); if (!peer) return -ESRCH; } shared_buffer.share_with(peer_pid); return 0; } int Process::sys$shbuf_allow_all(int shbuf_id) { REQUIRE_PROMISE(shared_buffer); LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shbuf_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; shared_buffer.share_globally(); return 0; } int Process::sys$shbuf_release(int shbuf_id) { REQUIRE_PROMISE(shared_buffer); LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shbuf_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; #ifdef SHARED_BUFFER_DEBUG klog() << "Releasing shared buffer " << shbuf_id << ", buffer count: " << shared_buffers().resource().size(); #endif shared_buffer.deref_for_process(*this); return 0; } void* Process::sys$shbuf_get(int shbuf_id, size_t* user_size) { REQUIRE_PROMISE(shared_buffer); if (user_size && !validate_write_typed(user_size)) return (void*)-EFAULT; LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shbuf_id); if (it == shared_buffers().resource().end()) return (void*)-EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return (void*)-EPERM; #ifdef SHARED_BUFFER_DEBUG klog() << "Retaining shared buffer " << shbuf_id << ", buffer count: " << shared_buffers().resource().size(); #endif if (user_size) { size_t size = shared_buffer.size(); copy_to_user(user_size, &size); } return shared_buffer.ref_for_process_and_get_address(*this); } int Process::sys$shbuf_seal(int shbuf_id) { REQUIRE_PROMISE(shared_buffer); LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shbuf_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; #ifdef SHARED_BUFFER_DEBUG klog() << "Sealing shared buffer " << shbuf_id; #endif shared_buffer.seal(); return 0; } int Process::sys$shbuf_set_volatile(int shbuf_id, bool state) { REQUIRE_PROMISE(shared_buffer); LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shbuf_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; #ifdef SHARED_BUFFER_DEBUG klog() << "Set shared buffer " << shbuf_id << " volatile: " << state; #endif if (!state) { bool was_purged = shared_buffer.vmobject().was_purged(); shared_buffer.vmobject().set_volatile(state); shared_buffer.vmobject().set_was_purged(false); return was_purged ? 1 : 0; } shared_buffer.vmobject().set_volatile(true); return 0; } void Process::terminate_due_to_signal(u8 signal) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(signal < 32); dbg() << "Terminating due to signal " << signal; m_termination_status = 0; m_termination_signal = signal; die(); } void Process::send_signal(u8 signal, Process* sender) { InterruptDisabler disabler; if (!m_thread_count) return; auto* thread = Thread::from_tid(m_pid); if (!thread) thread = &any_thread(); thread->send_signal(signal, sender); } int Process::sys$create_thread(void* (*entry)(void*), void* argument, const Syscall::SC_create_thread_params* user_params) { REQUIRE_PROMISE(thread); if (!validate_read((const void*)entry, sizeof(void*))) return -EFAULT; Syscall::SC_create_thread_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; unsigned detach_state = params.m_detach_state; int schedule_priority = params.m_schedule_priority; void* stack_location = params.m_stack_location; unsigned stack_size = params.m_stack_size; if (!validate_write(stack_location, stack_size)) return -EFAULT; u32 user_stack_address = reinterpret_cast(stack_location) + stack_size; if (!MM.validate_user_stack(*this, VirtualAddress(user_stack_address - 4))) return -EFAULT; // FIXME: return EAGAIN if Thread::all_threads().size() is greater than PTHREAD_THREADS_MAX int requested_thread_priority = schedule_priority; if (requested_thread_priority < THREAD_PRIORITY_MIN || requested_thread_priority > THREAD_PRIORITY_MAX) return -EINVAL; bool is_thread_joinable = (0 == detach_state); // FIXME: Do something with guard pages? auto* thread = new Thread(*this); // We know this thread is not the main_thread, // So give it a unique name until the user calls $set_thread_name on it // length + 4 to give space for our extra junk at the end StringBuilder builder(m_name.length() + 4); builder.append(m_name); builder.appendf("[%d]", thread->tid()); thread->set_name(builder.to_string()); thread->set_priority(requested_thread_priority); thread->set_joinable(is_thread_joinable); auto& tss = thread->tss(); tss.eip = (uintptr_t)entry; tss.eflags = 0x0202; tss.cr3 = page_directory().cr3(); tss.esp = user_stack_address; // NOTE: The stack needs to be 16-byte aligned. thread->push_value_on_stack((uintptr_t)argument); thread->push_value_on_stack(0); thread->make_thread_specific_region({}); thread->set_state(Thread::State::Runnable); return thread->tid(); } void Process::sys$exit_thread(void* exit_value) { REQUIRE_PROMISE(thread); cli(); Thread::current->m_exit_value = exit_value; Thread::current->set_should_die(); big_lock().force_unlock_if_locked(); Thread::current->die_if_needed(); ASSERT_NOT_REACHED(); } int Process::sys$detach_thread(int tid) { REQUIRE_PROMISE(thread); InterruptDisabler disabler; auto* thread = Thread::from_tid(tid); if (!thread || thread->pid() != pid()) return -ESRCH; if (!thread->is_joinable()) return -EINVAL; thread->set_joinable(false); return 0; } int Process::sys$join_thread(int tid, void** exit_value) { REQUIRE_PROMISE(thread); if (exit_value && !validate_write_typed(exit_value)) return -EFAULT; InterruptDisabler disabler; auto* thread = Thread::from_tid(tid); if (!thread || thread->pid() != pid()) return -ESRCH; if (thread == Thread::current) return -EDEADLK; if (thread->m_joinee == Thread::current) return -EDEADLK; ASSERT(thread->m_joiner != Thread::current); if (thread->m_joiner) return -EINVAL; if (!thread->is_joinable()) return -EINVAL; void* joinee_exit_value = nullptr; // NOTE: pthread_join() cannot be interrupted by signals. Only by death. for (;;) { auto result = Thread::current->block(*thread, joinee_exit_value); if (result == Thread::BlockResult::InterruptedByDeath) { // NOTE: This cleans things up so that Thread::finalize() won't // get confused about a missing joiner when finalizing the joinee. InterruptDisabler disabler_t; if (Thread::current->m_joinee) { Thread::current->m_joinee->m_joiner = nullptr; Thread::current->m_joinee = nullptr; } break; } } // NOTE: 'thread' is very possibly deleted at this point. Clear it just to be safe. thread = nullptr; if (exit_value) copy_to_user(exit_value, &joinee_exit_value); return 0; } int Process::sys$set_thread_name(int tid, const char* user_name, size_t user_name_length) { REQUIRE_PROMISE(thread); auto name = validate_and_copy_string_from_user(user_name, user_name_length); if (name.is_null()) return -EFAULT; const size_t max_thread_name_size = 64; if (name.length() > max_thread_name_size) return -EINVAL; InterruptDisabler disabler; auto* thread = Thread::from_tid(tid); if (!thread || thread->pid() != pid()) return -ESRCH; thread->set_name(name); return 0; } int Process::sys$get_thread_name(int tid, char* buffer, size_t buffer_size) { REQUIRE_PROMISE(thread); if (buffer_size == 0) return -EINVAL; if (!validate_write(buffer, buffer_size)) return -EFAULT; InterruptDisabler disabler; auto* thread = Thread::from_tid(tid); if (!thread || thread->pid() != pid()) return -ESRCH; if (thread->name().length() + 1 > (size_t)buffer_size) return -ENAMETOOLONG; copy_to_user(buffer, thread->name().characters(), thread->name().length() + 1); return 0; } int Process::sys$gettid() { REQUIRE_PROMISE(stdio); return Thread::current->tid(); } int Process::sys$donate(int tid) { REQUIRE_PROMISE(stdio); if (tid < 0) return -EINVAL; InterruptDisabler disabler; auto* thread = Thread::from_tid(tid); if (!thread || thread->pid() != pid()) return -ESRCH; Scheduler::donate_to(thread, "sys$donate"); return 0; } int Process::sys$rename(const Syscall::SC_rename_params* user_params) { REQUIRE_PROMISE(cpath); Syscall::SC_rename_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; auto old_path = get_syscall_path_argument(params.old_path); if (old_path.is_error()) return old_path.error(); auto new_path = get_syscall_path_argument(params.new_path); if (new_path.is_error()) return new_path.error(); return VFS::the().rename(old_path.value(), new_path.value(), current_directory()); } int Process::sys$ftruncate(int fd, off_t length) { REQUIRE_PROMISE(stdio); if (length < 0) return -EINVAL; auto description = file_description(fd); if (!description) return -EBADF; if (!description->is_writable()) return -EBADF; return description->truncate(static_cast(length)); } int Process::sys$watch_file(const char* user_path, size_t path_length) { REQUIRE_PROMISE(rpath); auto path = get_syscall_path_argument(user_path, path_length); if (path.is_error()) return path.error(); auto custody_or_error = VFS::the().resolve_path(path.value(), current_directory()); if (custody_or_error.is_error()) return custody_or_error.error(); auto& custody = custody_or_error.value(); auto& inode = custody->inode(); if (!inode.fs().supports_watchers()) return -ENOTSUP; int fd = alloc_fd(); if (fd < 0) return fd; m_fds[fd].set(FileDescription::create(*InodeWatcher::create(inode))); m_fds[fd].description->set_readable(true); return fd; } int Process::sys$systrace(pid_t pid) { REQUIRE_PROMISE(proc); InterruptDisabler disabler; auto* peer = Process::from_pid(pid); if (!peer) return -ESRCH; if (peer->uid() != m_euid) return -EACCES; int fd = alloc_fd(); if (fd < 0) return fd; auto description = FileDescription::create(peer->ensure_tracer()); description->set_readable(true); m_fds[fd].set(move(description), 0); return fd; } int Process::sys$halt() { if (!is_superuser()) return -EPERM; REQUIRE_NO_PROMISES; dbg() << "acquiring FS locks..."; FS::lock_all(); dbg() << "syncing mounted filesystems..."; FS::sync(); dbg() << "attempting system shutdown..."; IO::out16(0x604, 0x2000); return ESUCCESS; } int Process::sys$reboot() { if (!is_superuser()) return -EPERM; REQUIRE_NO_PROMISES; dbg() << "acquiring FS locks..."; FS::lock_all(); dbg() << "syncing mounted filesystems..."; FS::sync(); if (ACPI::Parser::the().can_reboot()) { dbg() << "attempting reboot via ACPI"; ACPI::Parser::the().try_acpi_reboot(); } dbg() << "attempting reboot via KB Controller..."; IO::out8(0x64, 0xFE); return ESUCCESS; } int Process::sys$mount(const Syscall::SC_mount_params* user_params) { if (!is_superuser()) return -EPERM; REQUIRE_NO_PROMISES; Syscall::SC_mount_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; auto source = validate_and_copy_string_from_user(params.source); auto target = validate_and_copy_string_from_user(params.target); auto fs_type = validate_and_copy_string_from_user(params.fs_type); if (source.is_null() || target.is_null() || fs_type.is_null()) return -EFAULT; dbg() << "mount " << fs_type << ": source " << source << " @ " << target; auto custody_or_error = VFS::the().resolve_path(target, current_directory()); if (custody_or_error.is_error()) return custody_or_error.error(); auto& target_custody = custody_or_error.value(); RefPtr fs; if (params.flags & MS_BIND) { // We're doing a bind mount. auto source_or_error = VFS::the().resolve_path(source, current_directory()); if (source_or_error.is_error()) return source_or_error.error(); auto& source_custody = source_or_error.value(); return VFS::the().bind_mount(source_custody, target_custody, params.flags); } if (fs_type == "ext2" || fs_type == "Ext2FS") { auto source_or_error = VFS::the().open(source, O_RDWR, 0, current_directory()); if (source_or_error.is_error()) return source_or_error.error(); auto* device = source_or_error.value()->device(); if (!device || !device->is_block_device()) { dbg() << "mount: this is not a BlockDevice"; return -ENODEV; } auto& block_device = static_cast(*device); dbg() << "mount: attempting to mount " << block_device.absolute_path() << " on " << target; fs = Ext2FS::create(block_device); } else if (fs_type == "proc" || fs_type == "ProcFS") { fs = ProcFS::create(); } else if (fs_type == "devpts" || fs_type == "DevPtsFS") { fs = DevPtsFS::create(); } else if (fs_type == "tmp" || fs_type == "TmpFS") { fs = TmpFS::create(); } else { return -ENODEV; } if (!fs->initialize()) { dbg() << "mount: failed to initialize " << fs_type << " filesystem on " << source; return -ENODEV; } auto result = VFS::the().mount(fs.release_nonnull(), target_custody, params.flags); dbg() << "mount: successfully mounted " << source << " on " << target; return result; } int Process::sys$umount(const char* user_mountpoint, size_t mountpoint_length) { if (!is_superuser()) return -EPERM; REQUIRE_NO_PROMISES; if (!validate_read(user_mountpoint, mountpoint_length)) return -EFAULT; auto mountpoint = get_syscall_path_argument(user_mountpoint, mountpoint_length); if (mountpoint.is_error()) return mountpoint.error(); auto metadata_or_error = VFS::the().lookup_metadata(mountpoint.value(), current_directory()); if (metadata_or_error.is_error()) return metadata_or_error.error(); auto guest_inode_id = metadata_or_error.value().inode; return VFS::the().unmount(guest_inode_id); } ProcessTracer& Process::ensure_tracer() { if (!m_tracer) m_tracer = ProcessTracer::create(m_pid); return *m_tracer; } void Process::FileDescriptionAndFlags::clear() { description = nullptr; flags = 0; } void Process::FileDescriptionAndFlags::set(NonnullRefPtr&& d, u32 f) { description = move(d); flags = f; } int Process::sys$mknod(const Syscall::SC_mknod_params* user_params) { REQUIRE_PROMISE(dpath); Syscall::SC_mknod_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; if (!is_superuser() && !is_regular_file(params.mode) && !is_fifo(params.mode) && !is_socket(params.mode)) return -EPERM; auto path = get_syscall_path_argument(params.path); if (path.is_error()) return path.error(); return VFS::the().mknod(path.value(), params.mode & ~umask(), params.dev, current_directory()); } int Process::sys$dump_backtrace() { dump_backtrace(); return 0; } int Process::sys$dbgputch(u8 ch) { IO::out8(0xe9, ch); return 0; } int Process::sys$dbgputstr(const u8* characters, int length) { if (!length) return 0; if (!validate_read(characters, length)) return -EFAULT; SmapDisabler disabler; for (int i = 0; i < length; ++i) IO::out8(0xe9, characters[i]); return 0; } KBuffer Process::backtrace(ProcessInspectionHandle& handle) const { KBufferBuilder builder; for_each_thread([&](Thread& thread) { builder.appendf("Thread %d (%s):\n", thread.tid(), thread.name().characters()); builder.append(thread.backtrace(handle)); return IterationDecision::Continue; }); return builder.build(); } int Process::sys$set_process_icon(int icon_id) { REQUIRE_PROMISE(shared_buffer); LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(icon_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; m_icon_id = icon_id; return 0; } int Process::sys$get_process_name(char* buffer, int buffer_size) { REQUIRE_PROMISE(stdio); if (buffer_size <= 0) return -EINVAL; if (!validate_write(buffer, buffer_size)) return -EFAULT; if (m_name.length() + 1 > (size_t)buffer_size) return -ENAMETOOLONG; copy_to_user(buffer, m_name.characters(), m_name.length() + 1); return 0; } // We don't use the flag yet, but we could use it for distinguishing // random source like Linux, unlike the OpenBSD equivalent. However, if we // do, we should be able of the caveats that Linux has dealt with. int Process::sys$getrandom(void* buffer, size_t buffer_size, unsigned int flags __attribute__((unused))) { REQUIRE_PROMISE(stdio); if (buffer_size <= 0) return -EINVAL; if (!validate_write(buffer, buffer_size)) return -EFAULT; SmapDisabler disabler; get_good_random_bytes((u8*)buffer, buffer_size); return 0; } int Process::sys$setkeymap(const Syscall::SC_setkeymap_params* user_params) { if (!is_superuser()) return -EPERM; REQUIRE_NO_PROMISES; Syscall::SC_setkeymap_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; const char* map = params.map; const char* shift_map = params.shift_map; const char* alt_map = params.alt_map; const char* altgr_map = params.altgr_map; if (!validate_read(map, 0x80)) return -EFAULT; if (!validate_read(shift_map, 0x80)) return -EFAULT; if (!validate_read(alt_map, 0x80)) return -EFAULT; if (!validate_read(altgr_map, 0x80)) return -EFAULT; SmapDisabler disabler; KeyboardDevice::the().set_maps(map, shift_map, alt_map, altgr_map); return 0; } int Process::sys$clock_gettime(clockid_t clock_id, timespec* user_ts) { REQUIRE_PROMISE(stdio); if (!validate_write_typed(user_ts)) return -EFAULT; timespec ts; memset(&ts, 0, sizeof(ts)); switch (clock_id) { case CLOCK_MONOTONIC: ts.tv_sec = g_uptime / TICKS_PER_SECOND; ts.tv_nsec = (g_uptime % TICKS_PER_SECOND) * 1000000; break; default: return -EINVAL; } copy_to_user(user_ts, &ts); return 0; } int Process::sys$clock_nanosleep(const Syscall::SC_clock_nanosleep_params* user_params) { REQUIRE_PROMISE(stdio); Syscall::SC_clock_nanosleep_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; if (params.requested_sleep && !validate_read_typed(params.requested_sleep)) return -EFAULT; timespec requested_sleep; copy_from_user(&requested_sleep, params.requested_sleep); if (params.remaining_sleep && !validate_write_typed(params.remaining_sleep)) return -EFAULT; bool is_absolute = params.flags & TIMER_ABSTIME; switch (params.clock_id) { case CLOCK_MONOTONIC: { u64 wakeup_time; if (is_absolute) { u64 time_to_wake = (requested_sleep.tv_sec * 1000 + requested_sleep.tv_nsec / 1000000); wakeup_time = Thread::current->sleep_until(time_to_wake); } else { u32 ticks_to_sleep = (requested_sleep.tv_sec * 1000 + requested_sleep.tv_nsec / 1000000); if (!ticks_to_sleep) return 0; wakeup_time = Thread::current->sleep(ticks_to_sleep); } if (wakeup_time > g_uptime) { u32 ticks_left = wakeup_time - g_uptime; if (!is_absolute && params.remaining_sleep) { if (!validate_write_typed(params.remaining_sleep)) { // This can happen because the lock is dropped while // sleeping, thus giving other threads the opportunity // to make the region unwritable. return -EFAULT; } timespec remaining_sleep; memset(&remaining_sleep, 0, sizeof(timespec)); remaining_sleep.tv_sec = ticks_left / TICKS_PER_SECOND; ticks_left -= remaining_sleep.tv_sec * TICKS_PER_SECOND; remaining_sleep.tv_nsec = ticks_left * 1000000; copy_to_user(params.remaining_sleep, &remaining_sleep); } return -EINTR; } return 0; } default: return -EINVAL; } } int Process::sys$sync() { REQUIRE_PROMISE(stdio); VFS::the().sync(); return 0; } int Process::sys$yield() { REQUIRE_PROMISE(stdio); Thread::current->yield_without_holding_big_lock(); return 0; } int Process::sys$beep() { PCSpeaker::tone_on(440); u64 wakeup_time = Thread::current->sleep(100); PCSpeaker::tone_off(); if (wakeup_time > g_uptime) return -EINTR; return 0; } int Process::sys$module_load(const char* user_path, size_t path_length) { if (!is_superuser()) return -EPERM; REQUIRE_NO_PROMISES; auto path = get_syscall_path_argument(user_path, path_length); if (path.is_error()) return path.error(); auto description_or_error = VFS::the().open(path.value(), O_RDONLY, 0, current_directory()); if (description_or_error.is_error()) return description_or_error.error(); auto& description = description_or_error.value(); auto payload = description->read_entire_file(); auto storage = KBuffer::create_with_size(payload.size()); memcpy(storage.data(), payload.data(), payload.size()); payload.clear(); auto elf_image = make(storage.data(), storage.size()); if (!elf_image->parse()) return -ENOEXEC; HashMap section_storage_by_name; auto module = make(); elf_image->for_each_section_of_type(SHT_PROGBITS, [&](const ELFImage::Section& section) { auto section_storage = KBuffer::copy(section.raw_data(), section.size(), Region::Access::Read | Region::Access::Write | Region::Access::Execute); section_storage_by_name.set(section.name(), section_storage.data()); module->sections.append(move(section_storage)); return IterationDecision::Continue; }); bool missing_symbols = false; elf_image->for_each_section_of_type(SHT_PROGBITS, [&](const ELFImage::Section& section) { auto* section_storage = section_storage_by_name.get(section.name()).value_or(nullptr); ASSERT(section_storage); section.relocations().for_each_relocation([&](const ELFImage::Relocation& relocation) { auto& patch_ptr = *reinterpret_cast(section_storage + relocation.offset()); switch (relocation.type()) { case R_386_PC32: { // PC-relative relocation dbg() << "PC-relative relocation: " << relocation.symbol().name(); u32 symbol_address = address_for_kernel_symbol(relocation.symbol().name()); if (symbol_address == 0) missing_symbols = true; dbg() << " Symbol address: " << (void*)symbol_address; ptrdiff_t relative_offset = (char*)symbol_address - ((char*)&patch_ptr + 4); patch_ptr = relative_offset; break; } case R_386_32: // Absolute relocation dbg() << "Absolute relocation: '" << relocation.symbol().name() << "' value:" << relocation.symbol().value() << ", index:" << relocation.symbol_index(); if (relocation.symbol().bind() == STB_LOCAL) { auto* section_storage_containing_symbol = section_storage_by_name.get(relocation.symbol().section().name()).value_or(nullptr); ASSERT(section_storage_containing_symbol); u32 symbol_address = (ptrdiff_t)(section_storage_containing_symbol + relocation.symbol().value()); if (symbol_address == 0) missing_symbols = true; dbg() << " Symbol address: " << (void*)symbol_address; patch_ptr += symbol_address; } else if (relocation.symbol().bind() == STB_GLOBAL) { u32 symbol_address = address_for_kernel_symbol(relocation.symbol().name()); if (symbol_address == 0) missing_symbols = true; dbg() << " Symbol address: " << (void*)symbol_address; patch_ptr += symbol_address; } else { ASSERT_NOT_REACHED(); } break; } return IterationDecision::Continue; }); return IterationDecision::Continue; }); if (missing_symbols) return -EINVAL; auto* text_base = section_storage_by_name.get(".text").value_or(nullptr); if (!text_base) { dbg() << "No .text section found in module!"; return -EINVAL; } elf_image->for_each_symbol([&](const ELFImage::Symbol& symbol) { dbg() << " - " << symbol.type() << " '" << symbol.name() << "' @ " << (void*)symbol.value() << ", size=" << symbol.size(); if (symbol.name() == "module_init") { module->module_init = (ModuleInitPtr)(text_base + symbol.value()); } else if (symbol.name() == "module_fini") { module->module_fini = (ModuleFiniPtr)(text_base + symbol.value()); } else if (symbol.name() == "module_name") { const u8* storage = section_storage_by_name.get(symbol.section().name()).value_or(nullptr); if (storage) module->name = String((const char*)(storage + symbol.value())); } return IterationDecision::Continue; }); if (!module->module_init) return -EINVAL; if (g_modules->contains(module->name)) { dbg() << "a module with the name " << module->name << " is already loaded; please unload it first"; return -EEXIST; } module->module_init(); auto name = module->name; g_modules->set(name, move(module)); return 0; } int Process::sys$module_unload(const char* user_name, size_t name_length) { if (!is_superuser()) return -EPERM; REQUIRE_NO_PROMISES; auto module_name = validate_and_copy_string_from_user(user_name, name_length); if (module_name.is_null()) return -EFAULT; auto it = g_modules->find(module_name); if (it == g_modules->end()) return -ENOENT; if (it->value->module_fini) it->value->module_fini(); g_modules->remove(it); return 0; } int Process::sys$profiling_enable(pid_t pid) { REQUIRE_NO_PROMISES; InterruptDisabler disabler; auto* process = Process::from_pid(pid); if (!process) return -ESRCH; if (process->is_dead()) return -ESRCH; if (!is_superuser() && process->uid() != m_uid) return -EPERM; Profiling::start(*process); process->set_profiling(true); return 0; } int Process::sys$profiling_disable(pid_t pid) { InterruptDisabler disabler; auto* process = Process::from_pid(pid); if (!process) return -ESRCH; if (!is_superuser() && process->uid() != m_uid) return -EPERM; process->set_profiling(false); Profiling::stop(); return 0; } void* Process::sys$get_kernel_info_page() { REQUIRE_PROMISE(stdio); return s_info_page_address_for_userspace.as_ptr(); } Thread& Process::any_thread() { Thread* found_thread = nullptr; for_each_thread([&](auto& thread) { found_thread = &thread; return IterationDecision::Break; }); ASSERT(found_thread); return *found_thread; } WaitQueue& Process::futex_queue(i32* userspace_address) { auto& queue = m_futex_queues.ensure((uintptr_t)userspace_address); if (!queue) queue = make(); return *queue; } int Process::sys$futex(const Syscall::SC_futex_params* user_params) { REQUIRE_PROMISE(thread); Syscall::SC_futex_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; i32* userspace_address = params.userspace_address; int futex_op = params.futex_op; i32 value = params.val; const timespec* user_timeout = params.timeout; if (!validate_read_typed(userspace_address)) return -EFAULT; if (user_timeout && !validate_read_typed(user_timeout)) return -EFAULT; timespec timeout { 0, 0 }; if (user_timeout) copy_from_user(&timeout, user_timeout); i32 user_value; switch (futex_op) { case FUTEX_WAIT: copy_from_user(&user_value, userspace_address); if (user_value != value) return -EAGAIN; // FIXME: This is supposed to be interruptible by a signal, but right now WaitQueue cannot be interrupted. // FIXME: Support timeout! Thread::current->wait_on(futex_queue(userspace_address)); break; case FUTEX_WAKE: if (value == 0) return 0; if (value == 1) { futex_queue(userspace_address).wake_one(); } else { // FIXME: Wake exactly (value) waiters. futex_queue(userspace_address).wake_all(); } break; } return 0; } int Process::sys$set_thread_boost(int tid, int amount) { REQUIRE_PROMISE(proc); if (amount < 0 || amount > 20) return -EINVAL; InterruptDisabler disabler; auto* thread = Thread::from_tid(tid); if (!thread) return -ESRCH; if (thread->state() == Thread::State::Dead || thread->state() == Thread::State::Dying) return -ESRCH; if (!is_superuser() && thread->process().uid() != euid()) return -EPERM; thread->set_priority_boost(amount); return 0; } int Process::sys$set_process_boost(pid_t pid, int amount) { REQUIRE_PROMISE(proc); if (amount < 0 || amount > 20) return -EINVAL; InterruptDisabler disabler; auto* process = Process::from_pid(pid); if (!process || process->is_dead()) return -ESRCH; if (!is_superuser() && process->uid() != euid()) return -EPERM; process->m_priority_boost = amount; return 0; } int Process::sys$chroot(const char* user_path, size_t path_length, int mount_flags) { if (!is_superuser()) return -EPERM; REQUIRE_PROMISE(chroot); auto path = get_syscall_path_argument(user_path, path_length); if (path.is_error()) return path.error(); auto directory_or_error = VFS::the().open_directory(path.value(), current_directory()); if (directory_or_error.is_error()) return directory_or_error.error(); auto directory = directory_or_error.value(); m_root_directory_relative_to_global_root = directory; int chroot_mount_flags = mount_flags == -1 ? directory->mount_flags() : mount_flags; set_root_directory(Custody::create(nullptr, "", directory->inode(), chroot_mount_flags)); return 0; } Custody& Process::root_directory() { if (!m_root_directory) m_root_directory = VFS::the().root_custody(); return *m_root_directory; } Custody& Process::root_directory_relative_to_global_root() { if (!m_root_directory_relative_to_global_root) m_root_directory_relative_to_global_root = root_directory(); return *m_root_directory_relative_to_global_root; } void Process::set_root_directory(const Custody& root) { m_root_directory = root; } int Process::sys$pledge(const Syscall::SC_pledge_params* user_params) { Syscall::SC_pledge_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; if (params.promises.length > 1024 || params.execpromises.length > 1024) return -E2BIG; String promises; if (params.promises.characters) { promises = validate_and_copy_string_from_user(params.promises); if (promises.is_null()) return -EFAULT; } String execpromises; if (params.execpromises.characters) { execpromises = validate_and_copy_string_from_user(params.execpromises); if (execpromises.is_null()) return -EFAULT; } auto parse_pledge = [&](auto& pledge_spec, u32& mask) { auto parts = pledge_spec.split_view(' '); for (auto& part : parts) { #define __ENUMERATE_PLEDGE_PROMISE(x) \ if (part == #x) { \ mask |= (1u << (u32)Pledge::x); \ continue; \ } ENUMERATE_PLEDGE_PROMISES #undef __ENUMERATE_PLEDGE_PROMISE if (part == "dns") { // "dns" is an alias for "unix" since DNS queries go via LookupServer mask |= (1u << (u32)Pledge::unix); continue; } return false; } return true; }; if (!promises.is_null()) { u32 new_promises = 0; if (!parse_pledge(promises, new_promises)) return -EINVAL; if (m_promises && (!new_promises || new_promises & ~m_promises)) return -EPERM; m_promises = new_promises; } if (!execpromises.is_null()) { u32 new_execpromises = 0; if (!parse_pledge(execpromises, new_execpromises)) return -EINVAL; if (m_execpromises && (!new_execpromises || new_execpromises & ~m_execpromises)) return -EPERM; m_execpromises = new_execpromises; } return 0; } Region& Process::add_region(NonnullOwnPtr region) { auto* ptr = region.ptr(); m_regions.append(move(region)); return *ptr; } int Process::sys$unveil(const Syscall::SC_unveil_params* user_params) { Syscall::SC_unveil_params params; if (!validate_read_and_copy_typed(¶ms, user_params)) return -EFAULT; if (!params.path.characters && !params.permissions.characters) { m_veil_state = VeilState::Locked; return 0; } if (m_veil_state == VeilState::Locked) return -EPERM; if (!params.path.characters || !params.permissions.characters) return -EINVAL; if (params.permissions.length > 4) return -EINVAL; auto path = get_syscall_path_argument(params.path); if (path.is_error()) return path.error(); if (path.value().is_empty() || path.value().characters()[0] != '/') return -EINVAL; auto permissions = validate_and_copy_string_from_user(params.permissions); if (permissions.is_null()) return -EFAULT; unsigned new_permissions = 0; for (size_t i = 0; i < permissions.length(); ++i) { switch (permissions[i]) { case 'r': new_permissions |= UnveiledPath::Access::Read; break; case 'w': new_permissions |= UnveiledPath::Access::Write; break; case 'x': new_permissions |= UnveiledPath::Access::Execute; break; case 'c': new_permissions |= UnveiledPath::Access::CreateOrRemove; break; default: return -EINVAL; } } for (size_t i = 0; i < m_unveiled_paths.size(); ++i) { auto& unveiled_path = m_unveiled_paths[i]; if (unveiled_path.path == path.value()) { if (new_permissions & ~unveiled_path.permissions) return -EPERM; unveiled_path.permissions = new_permissions; return 0; } } m_unveiled_paths.append({ path.value(), new_permissions }); ASSERT(m_veil_state != VeilState::Locked); m_veil_state = VeilState::Dropped; return 0; } int Process::sys$perf_event(int type, uintptr_t arg1, uintptr_t arg2) { if (!m_perf_event_buffer) m_perf_event_buffer = make(); return m_perf_event_buffer->append(type, arg1, arg2); } void Process::set_tty(TTY* tty) { m_tty = tty; } OwnPtr Process::elf_bundle() const { if (!m_executable) return nullptr; auto bundle = make(); ASSERT(m_executable->inode().shared_vmobject()); auto& vmobject = *m_executable->inode().shared_vmobject(); bundle->region = MM.allocate_kernel_region_with_vmobject(const_cast(vmobject), vmobject.size(), "ELF bundle", Region::Access::Read); if (!bundle->region) return nullptr; bundle->elf_loader = make(bundle->region->vaddr().as_ptr(), bundle->region->size()); return bundle; } }