#include #include "Process.h" #include "kmalloc.h" #include "StdLib.h" #include "i386.h" #include #include #include #include #include #include "i8253.h" #include "RTC.h" #include #include #include #include "Syscall.h" #include "Scheduler.h" #include #include "KSyms.h" #include #include #include #include #include //#define DEBUG_IO //#define TASK_DEBUG //#define FORK_DEBUG #define SIGNAL_DEBUG //#define SHARED_BUFFER_DEBUG static pid_t next_pid; InlineLinkedList* g_processes; static String* s_hostname; static Lock* s_hostname_lock; void Process::initialize() { next_pid = 0; g_processes = new InlineLinkedList; s_hostname = new String("courage"); s_hostname_lock = new Lock; } Vector Process::all_pids() { Vector pids; InterruptDisabler disabler; pids.ensure_capacity(g_processes->size_slow()); for (auto* process = g_processes->head(); process; process = process->next()) pids.append(process->pid()); return pids; } Vector Process::all_processes() { Vector processes; InterruptDisabler disabler; processes.ensure_capacity(g_processes->size_slow()); for (auto* process = g_processes->head(); process; process = process->next()) processes.append(process); return processes; } bool Process::in_group(gid_t gid) const { return m_gids.contains(gid); } Region* Process::allocate_region(LinearAddress laddr, size_t size, String&& name, bool is_readable, bool is_writable, bool commit) { size = PAGE_ROUND_UP(size); // FIXME: This needs sanity checks. What if this overlaps existing regions? if (laddr.is_null()) { laddr = m_next_region; m_next_region = m_next_region.offset(size).offset(PAGE_SIZE); } laddr.mask(0xfffff000); m_regions.append(adopt(*new Region(laddr, size, move(name), is_readable, is_writable))); MM.map_region(*this, *m_regions.last()); if (commit) m_regions.last()->commit(); return m_regions.last().ptr(); } Region* Process::allocate_file_backed_region(LinearAddress laddr, size_t size, RetainPtr&& inode, String&& name, bool is_readable, bool is_writable) { size = PAGE_ROUND_UP(size); // FIXME: This needs sanity checks. What if this overlaps existing regions? if (laddr.is_null()) { laddr = m_next_region; m_next_region = m_next_region.offset(size).offset(PAGE_SIZE); } laddr.mask(0xfffff000); m_regions.append(adopt(*new Region(laddr, size, move(inode), move(name), is_readable, is_writable))); MM.map_region(*this, *m_regions.last()); return m_regions.last().ptr(); } Region* Process::allocate_region_with_vmo(LinearAddress laddr, size_t size, Retained&& vmo, size_t offset_in_vmo, String&& name, bool is_readable, bool is_writable) { size = PAGE_ROUND_UP(size); // FIXME: This needs sanity checks. What if this overlaps existing regions? if (laddr.is_null()) { laddr = m_next_region; m_next_region = m_next_region.offset(size).offset(PAGE_SIZE); } laddr.mask(0xfffff000); offset_in_vmo &= PAGE_MASK; size = ceil_div(size, PAGE_SIZE) * PAGE_SIZE; m_regions.append(adopt(*new Region(laddr, size, move(vmo), offset_in_vmo, move(name), is_readable, is_writable))); MM.map_region(*this, *m_regions.last()); return m_regions.last().ptr(); } bool Process::deallocate_region(Region& region) { InterruptDisabler disabler; for (int i = 0; i < m_regions.size(); ++i) { if (m_regions[i] == ®ion) { MM.unmap_region(region); m_regions.remove(i); return true; } } return false; } Region* Process::region_from_range(LinearAddress laddr, size_t size) { size = PAGE_ROUND_UP(size); for (auto& region : m_regions) { if (region->laddr() == laddr && region->size() == size) return region.ptr(); } return nullptr; } int Process::sys$set_mmap_name(void* addr, size_t size, const char* name) { if (!validate_read_str(name)) return -EFAULT; auto* region = region_from_range(LinearAddress((dword)addr), size); if (!region) return -EINVAL; region->set_name(String(name)); return 0; } void* Process::sys$mmap(const Syscall::SC_mmap_params* params) { if (!validate_read(params, sizeof(Syscall::SC_mmap_params))) return (void*)-EFAULT; void* addr = (void*)params->addr; size_t size = params->size; int prot = params->prot; int flags = params->flags; int fd = params->fd; off_t offset = params->offset; if (size == 0) return (void*)-EINVAL; if ((dword)addr & ~PAGE_MASK) return (void*)-EINVAL; if (flags & MAP_ANONYMOUS) { auto* region = allocate_region(LinearAddress((dword)addr), size, "mmap", prot & PROT_READ, prot & PROT_WRITE, false); if (!region) return (void*)-ENOMEM; if (flags & MAP_SHARED) region->set_shared(true); return region->laddr().as_ptr(); } if (offset & ~PAGE_MASK) return (void*)-EINVAL; auto* descriptor = file_descriptor(fd); if (!descriptor) return (void*)-EBADF; if (!descriptor->supports_mmap()) return (void*)-ENODEV; auto* region = descriptor->mmap(*this, LinearAddress((dword)addr), offset, size, prot); if (!region) return (void*)-ENOMEM; if (flags & MAP_SHARED) region->set_shared(true); return region->laddr().as_ptr(); } int Process::sys$munmap(void* addr, size_t size) { auto* region = region_from_range(LinearAddress((dword)addr), size); if (!region) return -EINVAL; if (!deallocate_region(*region)) return -EINVAL; return 0; } int Process::sys$gethostname(char* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; LOCKER(*s_hostname_lock); if (size < (s_hostname->length() + 1)) return -ENAMETOOLONG; strcpy(buffer, s_hostname->characters()); return 0; } Process* Process::fork(RegisterDump& regs) { auto* child = new Process(String(m_name), m_uid, m_gid, m_pid, m_ring, m_cwd.copy_ref(), m_executable.copy_ref(), m_tty, this); if (!child) return nullptr; #ifdef FORK_DEBUG dbgprintf("fork: child=%p\n", child); #endif for (auto& region : m_regions) { #ifdef FORK_DEBUG dbgprintf("fork: cloning Region{%p} \"%s\" L%x\n", region.ptr(), region->name().characters(), region->laddr().get()); #endif auto cloned_region = region->clone(); child->m_regions.append(move(cloned_region)); MM.map_region(*child, *child->m_regions.last()); } for (auto gid : m_gids) child->m_gids.set(gid); auto& child_tss = child->main_thread().m_tss; child_tss.eax = 0; // fork() returns 0 in the child :^) child_tss.ebx = regs.ebx; child_tss.ecx = regs.ecx; child_tss.edx = regs.edx; child_tss.ebp = regs.ebp; child_tss.esp = regs.esp_if_crossRing; child_tss.esi = regs.esi; child_tss.edi = regs.edi; child_tss.eflags = regs.eflags; child_tss.eip = regs.eip; child_tss.cs = regs.cs; child_tss.ds = regs.ds; child_tss.es = regs.es; child_tss.fs = regs.fs; child_tss.gs = regs.gs; child_tss.ss = regs.ss_if_crossRing; #ifdef FORK_DEBUG dbgprintf("fork: child will begin executing at %w:%x with stack %w:%x, kstack %w:%x\n", child_tss.cs, child_tss.eip, child_tss.ss, child_tss.esp, child_tss.ss0, child_tss.esp0); #endif { InterruptDisabler disabler; g_processes->prepend(child); } #ifdef TASK_DEBUG kprintf("Process %u (%s) forked from %u @ %p\n", child->pid(), child->name().characters(), m_pid, child_tss.eip); #endif child->main_thread().set_state(Thread::State::Skip1SchedulerPass); return child; } pid_t Process::sys$fork(RegisterDump& regs) { auto* child = fork(regs); ASSERT(child); return child->pid(); } int Process::do_exec(String path, Vector arguments, Vector environment) { ASSERT(is_ring3()); dbgprintf("%s(%d) do_exec: thread_count() = %d\n", m_name.characters(), m_pid, thread_count()); // FIXME(Thread): Kill any threads the moment we commit to the exec(). ASSERT(thread_count() == 1); auto parts = path.split('/'); if (parts.is_empty()) return -ENOENT; auto result = VFS::the().open(path.view(), 0, 0, cwd_inode()); if (result.is_error()) return result.error(); auto descriptor = result.value(); if (!descriptor->metadata().may_execute(m_euid, m_gids)) return -EACCES; if (!descriptor->metadata().size) { return -ENOTIMPL; } dword entry_eip = 0; // FIXME: Is there a race here? auto old_page_directory = move(m_page_directory); m_page_directory = PageDirectory::create(); #ifdef MM_DEBUG dbgprintf("Process %u exec: PD=%x created\n", pid(), m_page_directory.ptr()); #endif ProcessPagingScope paging_scope(*this); auto vmo = VMObject::create_file_backed(descriptor->inode()); #if 0 // FIXME: I would like to do this, but it would instantiate all the damn inodes. vmo->set_name(descriptor->absolute_path()); #else vmo->set_name("ELF image"); #endif RetainPtr region = allocate_region_with_vmo(LinearAddress(), descriptor->metadata().size, vmo.copy_ref(), 0, "executable", true, false); if (this != ¤t->process()) { // FIXME: Don't force-load the entire executable at once, let the on-demand pager take care of it. bool success = region->page_in(); ASSERT(success); } { // Okay, here comes the sleight of hand, pay close attention.. auto old_regions = move(m_regions); m_regions.append(*region); ELFLoader loader(region->laddr().as_ptr()); loader.map_section_hook = [&] (LinearAddress laddr, size_t size, size_t alignment, size_t offset_in_image, bool is_readable, bool is_writable, const String& name) { ASSERT(size); ASSERT(alignment == PAGE_SIZE); size = ceil_div(size, PAGE_SIZE) * PAGE_SIZE; (void) allocate_region_with_vmo(laddr, size, vmo.copy_ref(), offset_in_image, String(name), is_readable, is_writable); return laddr.as_ptr(); }; loader.alloc_section_hook = [&] (LinearAddress laddr, size_t size, size_t alignment, bool is_readable, bool is_writable, const String& name) { ASSERT(size); ASSERT(alignment == PAGE_SIZE); size += laddr.get() & 0xfff; laddr.mask(0xffff000); size = ceil_div(size, PAGE_SIZE) * PAGE_SIZE; (void) allocate_region(laddr, size, String(name), is_readable, is_writable); return laddr.as_ptr(); }; bool success = loader.load(); if (!success || !loader.entry().get()) { m_page_directory = move(old_page_directory); // FIXME: RAII this somehow instead. ASSERT(¤t->process() == this); MM.enter_process_paging_scope(*this); m_regions = move(old_regions); kprintf("do_exec: Failure loading %s\n", path.characters()); return -ENOEXEC; } entry_eip = loader.entry().get(); } kfree(current->m_kernel_stack_for_signal_handler); current->m_kernel_stack_for_signal_handler = nullptr; current->m_signal_stack_user_region = nullptr; current->set_default_signal_dispositions(); current->m_signal_mask = 0; current->m_pending_signals = 0; for (int i = 0; i < m_fds.size(); ++i) { auto& daf = m_fds[i]; if (daf.descriptor && daf.flags & FD_CLOEXEC) { daf.descriptor->close(); daf = { }; } } // We cli() manually here because we don't want to get interrupted between do_exec() and Schedule::yield(). // The reason is that the task redirection we've set up above will be clobbered by the timer IRQ. // If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec(). if (¤t->process() == this) cli(); Scheduler::prepare_to_modify_tss(main_thread()); m_name = parts.take_last(); // ss0 sp!!!!!!!!! dword old_esp0 = main_thread().m_tss.esp0; memset(&main_thread().m_tss, 0, sizeof(main_thread().m_tss)); main_thread().m_tss.eflags = 0x0202; main_thread().m_tss.eip = entry_eip; main_thread().m_tss.cs = 0x1b; main_thread().m_tss.ds = 0x23; main_thread().m_tss.es = 0x23; main_thread().m_tss.fs = 0x23; main_thread().m_tss.gs = 0x23; main_thread().m_tss.ss = 0x23; main_thread().m_tss.cr3 = page_directory().cr3(); main_thread().make_userspace_stack_for_main_thread(move(arguments), move(environment)); main_thread().m_tss.ss0 = 0x10; main_thread().m_tss.esp0 = old_esp0; main_thread().m_tss.ss2 = m_pid; m_executable = descriptor->inode(); if (descriptor->metadata().is_setuid()) m_euid = descriptor->metadata().uid; if (descriptor->metadata().is_setgid()) m_egid = descriptor->metadata().gid; #ifdef TASK_DEBUG kprintf("Process %u (%s) exec'd %s @ %p\n", pid(), name().characters(), path.characters(), main_thread().tss().eip); #endif main_thread().set_state(Thread::State::Skip1SchedulerPass); return 0; } int Process::exec(String path, Vector arguments, Vector environment) { // The bulk of exec() is done by do_exec(), which ensures that all locals // are cleaned up by the time we yield-teleport below. int rc = do_exec(move(path), move(arguments), move(environment)); if (rc < 0) return rc; if (¤t->process() == this) { Scheduler::yield(); ASSERT_NOT_REACHED(); } return 0; } int Process::sys$execve(const char* filename, const char** argv, const char** envp) { // NOTE: Be extremely careful with allocating any kernel memory in exec(). // On success, the kernel stack will be lost. if (!validate_read_str(filename)) return -EFAULT; if (argv) { if (!validate_read_typed(argv)) return -EFAULT; for (size_t i = 0; argv[i]; ++i) { if (!validate_read_str(argv[i])) return -EFAULT; } } if (envp) { if (!validate_read_typed(envp)) return -EFAULT; for (size_t i = 0; envp[i]; ++i) { if (!validate_read_str(envp[i])) return -EFAULT; } } String path(filename); Vector arguments; Vector environment; { auto parts = path.split('/'); if (argv) { for (size_t i = 0; argv[i]; ++i) { arguments.append(argv[i]); } } else { arguments.append(parts.last()); } if (envp) { for (size_t i = 0; envp[i]; ++i) environment.append(envp[i]); } } int rc = exec(move(path), move(arguments), move(environment)); ASSERT(rc < 0); // We should never continue after a successful exec! return rc; } Process* Process::create_user_process(const String& path, uid_t uid, gid_t gid, pid_t parent_pid, int& error, Vector&& arguments, Vector&& environment, TTY* tty) { // FIXME: Don't split() the path twice (sys$spawn also does it...) auto parts = path.split('/'); if (arguments.is_empty()) { arguments.append(parts.last()); } RetainPtr cwd; { InterruptDisabler disabler; if (auto* parent = Process::from_pid(parent_pid)) cwd = parent->m_cwd.copy_ref(); } if (!cwd) cwd = VFS::the().root_inode(); auto* process = new Process(parts.take_last(), uid, gid, parent_pid, Ring3, move(cwd), nullptr, tty); error = process->exec(path, move(arguments), move(environment)); if (error != 0) { delete process; return nullptr; } { InterruptDisabler disabler; g_processes->prepend(process); } #ifdef TASK_DEBUG kprintf("Process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->main_thread().tss().eip); #endif error = 0; return process; } Process* Process::create_kernel_process(String&& name, void (*e)()) { auto* process = new Process(move(name), (uid_t)0, (gid_t)0, (pid_t)0, Ring0); process->main_thread().tss().eip = (dword)e; if (process->pid() != 0) { InterruptDisabler disabler; g_processes->prepend(process); #ifdef TASK_DEBUG kprintf("Kernel process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->main_thread().tss().eip); #endif } process->main_thread().set_state(Thread::State::Runnable); return process; } Process::Process(String&& name, uid_t uid, gid_t gid, pid_t ppid, RingLevel ring, RetainPtr&& cwd, RetainPtr&& executable, TTY* tty, Process* fork_parent) : m_name(move(name)) , m_pid(next_pid++) // FIXME: RACE: This variable looks racy! , m_uid(uid) , m_gid(gid) , m_euid(uid) , m_egid(gid) , m_ring(ring) , m_cwd(move(cwd)) , m_executable(move(executable)) , m_tty(tty) , m_ppid(ppid) , m_big_lock("Big Process Lock") { dbgprintf("Process: New process PID=%u with name=%s\n", m_pid, m_name.characters()); m_page_directory = PageDirectory::create(); #ifdef MM_DEBUG dbgprintf("Process %u ctor: PD=%x created\n", pid(), m_page_directory.ptr()); #endif // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the main thread in the new process. if (fork_parent) m_main_thread = current->clone(*this); else m_main_thread = new Thread(*this); m_gids.set(m_gid); if (fork_parent) { m_sid = fork_parent->m_sid; m_pgid = fork_parent->m_pgid; } else { // FIXME: Use a ProcessHandle? Presumably we're executing *IN* the parent right now though.. InterruptDisabler disabler; if (auto* parent = Process::from_pid(m_ppid)) { m_sid = parent->m_sid; m_pgid = parent->m_pgid; } } if (fork_parent) { m_fds.resize(fork_parent->m_fds.size()); for (int i = 0; i < fork_parent->m_fds.size(); ++i) { if (!fork_parent->m_fds[i].descriptor) continue; #ifdef FORK_DEBUG dbgprintf("fork: cloning fd %u... (%p) istty? %u\n", i, fork_parent->m_fds[i].descriptor.ptr(), fork_parent->m_fds[i].descriptor->is_tty()); #endif m_fds[i].descriptor = fork_parent->m_fds[i].descriptor->clone(); m_fds[i].flags = fork_parent->m_fds[i].flags; } } else { m_fds.resize(m_max_open_file_descriptors); auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the(); m_fds[0].set(*device_to_use_as_tty.open(O_RDONLY).value()); m_fds[1].set(*device_to_use_as_tty.open(O_WRONLY).value()); m_fds[2].set(*device_to_use_as_tty.open(O_WRONLY).value()); } if (fork_parent) m_next_region = fork_parent->m_next_region; else m_next_region = LinearAddress(0x10000000); if (fork_parent) { m_sid = fork_parent->m_sid; m_pgid = fork_parent->m_pgid; m_umask = fork_parent->m_umask; } } Process::~Process() { dbgprintf("~Process{%p} name=%s pid=%d, m_fds=%d\n", this, m_name.characters(), pid(), m_fds.size()); delete m_main_thread; m_main_thread = nullptr; } void Process::dump_regions() { kprintf("Process %s(%u) regions:\n", name().characters(), pid()); kprintf("BEGIN END SIZE NAME\n"); for (auto& region : m_regions) { kprintf("%x -- %x %x %s\n", region->laddr().get(), region->laddr().offset(region->size() - 1).get(), region->size(), region->name().characters()); } } void Process::sys$exit(int status) { cli(); #ifdef TASK_DEBUG kprintf("sys$exit: %s(%u) exit with status %d\n", name().characters(), pid(), status); #endif m_termination_status = status; m_termination_signal = 0; die(); ASSERT_NOT_REACHED(); } void Process::create_signal_trampolines_if_needed() { if (!m_return_to_ring3_from_signal_trampoline.is_null()) return; // FIXME: This should be a global trampoline shared by all processes, not one created per process! // FIXME: Remap as read-only after setup. auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "Signal trampolines", true, true); m_return_to_ring3_from_signal_trampoline = region->laddr(); byte* code_ptr = m_return_to_ring3_from_signal_trampoline.as_ptr(); *code_ptr++ = 0x58; // pop eax (Argument to signal handler (ignored here)) *code_ptr++ = 0x5a; // pop edx (Original signal mask to restore) *code_ptr++ = 0xb8; // mov eax, *(dword*)code_ptr = Syscall::SC_restore_signal_mask; code_ptr += sizeof(dword); *code_ptr++ = 0xcd; // int 0x82 *code_ptr++ = 0x82; *code_ptr++ = 0x83; // add esp, (stack alignment padding) *code_ptr++ = 0xc4; *code_ptr++ = sizeof(dword) * 3; *code_ptr++ = 0x61; // popa *code_ptr++ = 0x9d; // popf *code_ptr++ = 0xc3; // ret *code_ptr++ = 0x0f; // ud2 *code_ptr++ = 0x0b; m_return_to_ring0_from_signal_trampoline = LinearAddress((dword)code_ptr); *code_ptr++ = 0x58; // pop eax (Argument to signal handler (ignored here)) *code_ptr++ = 0x5a; // pop edx (Original signal mask to restore) *code_ptr++ = 0xb8; // mov eax, *(dword*)code_ptr = Syscall::SC_restore_signal_mask; code_ptr += sizeof(dword); *code_ptr++ = 0xcd; // int 0x82 // NOTE: Stack alignment padding doesn't matter when returning to ring0. // Nothing matters really, as we're returning by replacing the entire TSS. *code_ptr++ = 0x82; *code_ptr++ = 0xb8; // mov eax, *(dword*)code_ptr = Syscall::SC_sigreturn; code_ptr += sizeof(dword); *code_ptr++ = 0xcd; // int 0x82 *code_ptr++ = 0x82; *code_ptr++ = 0x0f; // ud2 *code_ptr++ = 0x0b; } int Process::sys$restore_signal_mask(dword mask) { current->m_signal_mask = mask; return 0; } void Process::sys$sigreturn() { InterruptDisabler disabler; Scheduler::prepare_to_modify_tss(*current); current->m_tss = *current->m_tss_to_resume_kernel; current->m_tss_to_resume_kernel.clear(); #ifdef SIGNAL_DEBUG kprintf("sys$sigreturn in %s(%u)\n", name().characters(), pid()); auto& tss = current->tss(); kprintf(" -> resuming execution at %w:%x stack %w:%x flags %x cr3 %x\n", tss.cs, tss.eip, tss.ss, tss.esp, tss.eflags, tss.cr3); #endif current->set_state(Thread::State::Skip1SchedulerPass); Scheduler::yield(); kprintf("sys$sigreturn failed in %s(%u)\n", name().characters(), pid()); ASSERT_NOT_REACHED(); } void Process::crash() { ASSERT_INTERRUPTS_DISABLED(); ASSERT(!is_dead()); m_termination_signal = SIGSEGV; dump_regions(); ASSERT(is_ring3()); die(); ASSERT_NOT_REACHED(); } Process* Process::from_pid(pid_t pid) { ASSERT_INTERRUPTS_DISABLED(); for (auto* process = g_processes->head(); process; process = process->next()) { if (process->pid() == pid) return process; } return nullptr; } FileDescriptor* Process::file_descriptor(int fd) { if (fd < 0) return nullptr; if (fd < m_fds.size()) return m_fds[fd].descriptor.ptr(); return nullptr; } const FileDescriptor* Process::file_descriptor(int fd) const { if (fd < 0) return nullptr; if (fd < m_fds.size()) return m_fds[fd].descriptor.ptr(); return nullptr; } ssize_t Process::sys$get_dir_entries(int fd, void* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; return descriptor->get_dir_entries((byte*)buffer, size); } int Process::sys$lseek(int fd, off_t offset, int whence) { auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; return descriptor->seek(offset, whence); } int Process::sys$ttyname_r(int fd, char* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; if (!descriptor->is_tty()) return -ENOTTY; auto tty_name = descriptor->tty()->tty_name(); if (size < tty_name.length() + 1) return -ERANGE; strcpy(buffer, tty_name.characters()); return 0; } int Process::sys$ptsname_r(int fd, char* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; auto* master_pty = descriptor->master_pty(); if (!master_pty) return -ENOTTY; auto pts_name = master_pty->pts_name(); if (size < pts_name.length() + 1) return -ERANGE; strcpy(buffer, pts_name.characters()); return 0; } ssize_t Process::sys$write(int fd, const byte* data, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_read(data, size)) return -EFAULT; #ifdef DEBUG_IO dbgprintf("%s(%u): sys$write(%d, %p, %u)\n", name().characters(), pid(), fd, data, size); #endif auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; ssize_t nwritten = 0; if (descriptor->is_blocking()) { while (nwritten < (ssize_t)size) { #ifdef IO_DEBUG dbgprintf("while %u < %u\n", nwritten, size); #endif if (!descriptor->can_write(*this)) { #ifdef IO_DEBUG dbgprintf("block write on %d\n", fd); #endif current->m_blocked_fd = fd; current->block(Thread::State::BlockedWrite); } ssize_t rc = descriptor->write(*this, (const byte*)data + nwritten, size - nwritten); #ifdef IO_DEBUG dbgprintf(" -> write returned %d\n", rc); #endif if (rc < 0) { // FIXME: Support returning partial nwritten with errno. ASSERT(nwritten == 0); return rc; } if (rc == 0) break; if (current->has_unmasked_pending_signals()) { current->block(Thread::State::BlockedSignal); if (nwritten == 0) return -EINTR; } nwritten += rc; } } else { nwritten = descriptor->write(*this, (const byte*)data, size); } if (current->has_unmasked_pending_signals()) { current->block(Thread::State::BlockedSignal); if (nwritten == 0) return -EINTR; } return nwritten; } ssize_t Process::sys$read(int fd, byte* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; #ifdef DEBUG_IO dbgprintf("%s(%u) sys$read(%d, %p, %u)\n", name().characters(), pid(), fd, buffer, size); #endif auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; if (descriptor->is_blocking()) { if (!descriptor->can_read(*this)) { current->m_blocked_fd = fd; current->block(Thread::State::BlockedRead); if (current->m_was_interrupted_while_blocked) return -EINTR; } } return descriptor->read(*this, buffer, size); } int Process::sys$close(int fd) { auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; int rc = descriptor->close(); m_fds[fd] = { }; return rc; } int Process::sys$utime(const char* pathname, const utimbuf* buf) { if (!validate_read_str(pathname)) return -EFAULT; if (buf && !validate_read_typed(buf)) return -EFAULT; time_t atime; time_t mtime; if (buf) { atime = buf->actime; mtime = buf->modtime; } else { struct timeval now; kgettimeofday(now); mtime = now.tv_sec; atime = now.tv_sec; } return VFS::the().utime(StringView(pathname), cwd_inode(), atime, mtime); } int Process::sys$access(const char* pathname, int mode) { if (!validate_read_str(pathname)) return -EFAULT; return VFS::the().access(StringView(pathname), mode, cwd_inode()); } int Process::sys$fcntl(int fd, int cmd, dword arg) { (void) cmd; (void) arg; dbgprintf("sys$fcntl: fd=%d, cmd=%d, arg=%u\n", fd, cmd, arg); auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; // NOTE: The FD flags are not shared between FileDescriptor objects. // This means that dup() doesn't copy the FD_CLOEXEC flag! switch (cmd) { case F_DUPFD: { int arg_fd = (int)arg; if (arg_fd < 0) return -EINVAL; int new_fd = alloc_fd(arg_fd); if (new_fd < 0) return new_fd; m_fds[new_fd].set(*descriptor); break; } case F_GETFD: return m_fds[fd].flags; case F_SETFD: m_fds[fd].flags = arg; break; case F_GETFL: return descriptor->file_flags(); case F_SETFL: // FIXME: Support changing O_NONBLOCK descriptor->set_file_flags(arg); break; default: ASSERT_NOT_REACHED(); } return 0; } int Process::sys$fstat(int fd, stat* statbuf) { if (!validate_write_typed(statbuf)) return -EFAULT; auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; return descriptor->fstat(*statbuf); } int Process::sys$lstat(const char* path, stat* statbuf) { if (!validate_write_typed(statbuf)) return -EFAULT; return VFS::the().stat(StringView(path), O_NOFOLLOW_NOERROR, cwd_inode(), *statbuf); } int Process::sys$stat(const char* path, stat* statbuf) { if (!validate_write_typed(statbuf)) return -EFAULT; return VFS::the().stat(StringView(path), O_NOFOLLOW_NOERROR, cwd_inode(), *statbuf); } int Process::sys$readlink(const char* path, char* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_read_str(path)) return -EFAULT; if (!validate_write(buffer, size)) return -EFAULT; auto result = VFS::the().open(path, O_RDONLY | O_NOFOLLOW_NOERROR, 0, cwd_inode()); if (result.is_error()) return result.error(); auto descriptor = result.value(); if (!descriptor->metadata().is_symlink()) return -EINVAL; auto contents = descriptor->read_entire_file(*this); if (!contents) return -EIO; // FIXME: Get a more detailed error from VFS. memcpy(buffer, contents.pointer(), min(size, (ssize_t)contents.size())); if (contents.size() + 1 < size) buffer[contents.size()] = '\0'; return 0; } int Process::sys$chdir(const char* path) { if (!validate_read_str(path)) return -EFAULT; auto directory_or_error = VFS::the().open_directory(StringView(path), cwd_inode()); if (directory_or_error.is_error()) return directory_or_error.error(); m_cwd = *directory_or_error.value(); return 0; } int Process::sys$getcwd(char* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; auto path_or_error = VFS::the().absolute_path(cwd_inode()); if (path_or_error.is_error()) return path_or_error.error(); auto path = path_or_error.value(); if (size < path.length() + 1) return -ERANGE; strcpy(buffer, path.characters()); return 0; } int Process::number_of_open_file_descriptors() const { int count = 0; for (auto& descriptor : m_fds) { if (descriptor) ++count; } return count; } int Process::sys$open(const char* path, int options, mode_t mode) { #ifdef DEBUG_IO dbgprintf("%s(%u) sys$open(\"%s\")\n", name().characters(), pid(), path); #endif if (!validate_read_str(path)) return -EFAULT; int fd = alloc_fd(); if (fd < 0) return fd; auto result = VFS::the().open(path, options, mode & ~umask(), cwd_inode()); if (result.is_error()) return result.error(); auto descriptor = result.value(); if (options & O_DIRECTORY && !descriptor->is_directory()) return -ENOTDIR; // FIXME: This should be handled by VFS::open. if (options & O_NONBLOCK) descriptor->set_blocking(false); dword flags = (options & O_CLOEXEC) ? FD_CLOEXEC : 0; m_fds[fd].set(move(descriptor), flags); return fd; } int Process::alloc_fd(int first_candidate_fd) { int fd = -EMFILE; for (int i = first_candidate_fd; i < (int)m_max_open_file_descriptors; ++i) { if (!m_fds[i]) { fd = i; break; } } return fd; } int Process::sys$pipe(int pipefd[2]) { if (!validate_write_typed(pipefd)) return -EFAULT; if (number_of_open_file_descriptors() + 2 > max_open_file_descriptors()) return -EMFILE; auto fifo = FIFO::create(); int reader_fd = alloc_fd(); m_fds[reader_fd].set(FileDescriptor::create_pipe_reader(*fifo)); pipefd[0] = reader_fd; int writer_fd = alloc_fd(); m_fds[writer_fd].set(FileDescriptor::create_pipe_writer(*fifo)); pipefd[1] = writer_fd; return 0; } int Process::sys$killpg(int pgrp, int signum) { if (signum < 1 || signum >= 32) return -EINVAL; (void) pgrp; ASSERT_NOT_REACHED(); } int Process::sys$setuid(uid_t uid) { if (uid != m_uid && !is_superuser()) return -EPERM; m_uid = uid; m_euid = uid; return 0; } int Process::sys$setgid(gid_t gid) { if (gid != m_gid && !is_superuser()) return -EPERM; m_gid = gid; m_egid = gid; return 0; } unsigned Process::sys$alarm(unsigned seconds) { (void) seconds; ASSERT_NOT_REACHED(); } int Process::sys$uname(utsname* buf) { if (!validate_write_typed(buf)) return -EFAULT; strcpy(buf->sysname, "Serenity"); strcpy(buf->release, "1.0-dev"); strcpy(buf->version, "FIXME"); strcpy(buf->machine, "i386"); LOCKER(*s_hostname_lock); strncpy(buf->nodename, s_hostname->characters(), sizeof(utsname::nodename)); return 0; } int Process::sys$isatty(int fd) { auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; if (!descriptor->is_tty()) return -ENOTTY; return 1; } int Process::sys$kill(pid_t pid, int signal) { if (signal < 0 || signal >= 32) return -EINVAL; if (pid == 0) { // FIXME: Send to same-group processes. ASSERT(pid != 0); } if (pid == -1) { // FIXME: Send to all processes. ASSERT(pid != -1); } if (pid == m_pid) { current->send_signal(signal, this); Scheduler::yield(); return 0; } InterruptDisabler disabler; auto* peer = Process::from_pid(pid); if (!peer) return -ESRCH; // FIXME: Allow sending SIGCONT to everyone in the process group. // FIXME: Should setuid processes have some special treatment here? if (!is_superuser() && m_euid != peer->m_uid && m_uid != peer->m_uid) return -EPERM; if (peer->is_ring0() && signal == SIGKILL) { kprintf("%s(%u) attempted to send SIGKILL to ring 0 process %s(%u)\n", name().characters(), m_pid, peer->name().characters(), peer->pid()); return -EPERM; } peer->send_signal(signal, this); return 0; } int Process::sys$usleep(useconds_t usec) { if (!usec) return 0; current->sleep(usec / 1000); if (current->m_wakeup_time > g_uptime) { ASSERT(current->m_was_interrupted_while_blocked); dword ticks_left_until_original_wakeup_time = current->m_wakeup_time - g_uptime; return ticks_left_until_original_wakeup_time / TICKS_PER_SECOND; } return 0; } int Process::sys$sleep(unsigned seconds) { if (!seconds) return 0; current->sleep(seconds * TICKS_PER_SECOND); if (current->m_wakeup_time > g_uptime) { ASSERT(current->m_was_interrupted_while_blocked); dword ticks_left_until_original_wakeup_time = current->m_wakeup_time - g_uptime; return ticks_left_until_original_wakeup_time / TICKS_PER_SECOND; } return 0; } void kgettimeofday(timeval& tv) { tv.tv_sec = RTC::boot_time() + PIT::seconds_since_boot(); tv.tv_usec = PIT::ticks_this_second() * 1000; } int Process::sys$gettimeofday(timeval* tv) { if (!validate_write_typed(tv)) return -EFAULT; kgettimeofday(*tv); return 0; } uid_t Process::sys$getuid() { return m_uid; } gid_t Process::sys$getgid() { return m_gid; } uid_t Process::sys$geteuid() { return m_euid; } gid_t Process::sys$getegid() { return m_egid; } pid_t Process::sys$getpid() { return m_pid; } pid_t Process::sys$getppid() { return m_ppid; } mode_t Process::sys$umask(mode_t mask) { auto old_mask = m_umask; m_umask = mask & 0777; return old_mask; } int Process::reap(Process& process) { int exit_status; { InterruptDisabler disabler; exit_status = (process.m_termination_status << 8) | process.m_termination_signal; if (process.ppid()) { auto* parent = Process::from_pid(process.ppid()); if (parent) { parent->m_ticks_in_user_for_dead_children += process.m_ticks_in_user + process.m_ticks_in_user_for_dead_children; parent->m_ticks_in_kernel_for_dead_children += process.m_ticks_in_kernel + process.m_ticks_in_kernel_for_dead_children; } } dbgprintf("reap: %s(%u) {%s}\n", process.name().characters(), process.pid(), to_string(process.state())); ASSERT(process.is_dead()); g_processes->remove(&process); } delete &process; return exit_status; } pid_t Process::sys$waitpid(pid_t waitee, int* wstatus, int options) { dbgprintf("sys$waitpid(%d, %p, %d)\n", waitee, wstatus, options); // FIXME: Respect options (void) options; if (wstatus) if (!validate_write_typed(wstatus)) return -EFAULT; int dummy_wstatus; int& exit_status = wstatus ? *wstatus : dummy_wstatus; { InterruptDisabler disabler; if (waitee != -1 && !Process::from_pid(waitee)) return -ECHILD; } if (options & WNOHANG) { if (waitee == -1) { pid_t reaped_pid = 0; InterruptDisabler disabler; for_each_child([&reaped_pid, &exit_status] (Process& process) { if (process.is_dead()) { reaped_pid = process.pid(); exit_status = reap(process); } return true; }); return reaped_pid; } else { ASSERT(waitee > 0); // FIXME: Implement other PID specs. InterruptDisabler disabler; auto* waitee_process = Process::from_pid(waitee); if (!waitee_process) return -ECHILD; if (waitee_process->is_dead()) { exit_status = reap(*waitee_process); return waitee; } return 0; } } current->m_waitee_pid = waitee; current->block(Thread::State::BlockedWait); if (current->m_was_interrupted_while_blocked) return -EINTR; Process* waitee_process; { InterruptDisabler disabler; // NOTE: If waitee was -1, m_waitee will have been filled in by the scheduler. waitee_process = Process::from_pid(current->m_waitee_pid); } ASSERT(waitee_process); exit_status = reap(*waitee_process); return current->m_waitee_pid; } enum class KernelMemoryCheckResult { NotInsideKernelMemory, AccessGranted, AccessDenied }; static KernelMemoryCheckResult check_kernel_memory_access(LinearAddress laddr, bool is_write) { auto* kernel_elf_header = (Elf32_Ehdr*)0xf000; auto* kernel_program_headers = (Elf32_Phdr*)(0xf000 + kernel_elf_header->e_phoff); for (unsigned i = 0; i < kernel_elf_header->e_phnum; ++i) { auto& segment = kernel_program_headers[i]; if (segment.p_type != PT_LOAD || !segment.p_vaddr || !segment.p_memsz) continue; if (laddr.get() < segment.p_vaddr || laddr.get() > (segment.p_vaddr + segment.p_memsz)) continue; if (is_write && !(kernel_program_headers[i].p_flags & PF_W)) return KernelMemoryCheckResult::AccessDenied; if (!is_write && !(kernel_program_headers[i].p_flags & PF_R)) return KernelMemoryCheckResult::AccessDenied; return KernelMemoryCheckResult::AccessGranted; } return KernelMemoryCheckResult::NotInsideKernelMemory; } bool Process::validate_read_from_kernel(LinearAddress laddr) const { if (laddr.is_null()) return false; // We check extra carefully here since the first 4MB of the address space is identity-mapped. // This code allows access outside of the known used address ranges to get caught. auto kmc_result = check_kernel_memory_access(laddr, false); if (kmc_result == KernelMemoryCheckResult::AccessGranted) return true; if (kmc_result == KernelMemoryCheckResult::AccessDenied) return false; if (is_kmalloc_address(laddr.as_ptr())) return true; return validate_read(laddr.as_ptr(), 1); } bool Process::validate_read_str(const char* str) { if (!validate_read(str, 1)) return false; return validate_read(str, strlen(str) + 1); } bool Process::validate_read(const void* address, ssize_t size) const { ASSERT(size >= 0); LinearAddress first_address((dword)address); LinearAddress last_address = first_address.offset(size - 1); if (is_ring0()) { auto kmc_result = check_kernel_memory_access(first_address, false); if (kmc_result == KernelMemoryCheckResult::AccessGranted) return true; if (kmc_result == KernelMemoryCheckResult::AccessDenied) return false; if (is_kmalloc_address(address)) return true; } ASSERT(size); if (!size) return false; if (first_address.page_base() != last_address.page_base()) { if (!MM.validate_user_read(*this, last_address)) return false; } return MM.validate_user_read(*this, first_address); } bool Process::validate_write(void* address, ssize_t size) const { ASSERT(size >= 0); LinearAddress first_address((dword)address); LinearAddress last_address = first_address.offset(size - 1); if (is_ring0()) { if (is_kmalloc_address(address)) return true; auto kmc_result = check_kernel_memory_access(first_address, true); if (kmc_result == KernelMemoryCheckResult::AccessGranted) return true; if (kmc_result == KernelMemoryCheckResult::AccessDenied) return false; } if (!size) return false; if (first_address.page_base() != last_address.page_base()) { if (!MM.validate_user_write(*this, last_address)) return false; } return MM.validate_user_write(*this, last_address); } pid_t Process::sys$getsid(pid_t pid) { if (pid == 0) return m_sid; InterruptDisabler disabler; auto* process = Process::from_pid(pid); if (!process) return -ESRCH; if (m_sid != process->m_sid) return -EPERM; return process->m_sid; } pid_t Process::sys$setsid() { InterruptDisabler disabler; bool found_process_with_same_pgid_as_my_pid = false; Process::for_each_in_pgrp(pid(), [&] (auto&) { found_process_with_same_pgid_as_my_pid = true; return false; }); if (found_process_with_same_pgid_as_my_pid) return -EPERM; m_sid = m_pid; m_pgid = m_pid; return m_sid; } pid_t Process::sys$getpgid(pid_t pid) { if (pid == 0) return m_pgid; InterruptDisabler disabler; // FIXME: Use a ProcessHandle auto* process = Process::from_pid(pid); if (!process) return -ESRCH; return process->m_pgid; } pid_t Process::sys$getpgrp() { return m_pgid; } static pid_t get_sid_from_pgid(pid_t pgid) { InterruptDisabler disabler; auto* group_leader = Process::from_pid(pgid); if (!group_leader) return -1; return group_leader->sid(); } int Process::sys$setpgid(pid_t specified_pid, pid_t specified_pgid) { InterruptDisabler disabler; // FIXME: Use a ProcessHandle pid_t pid = specified_pid ? specified_pid : m_pid; if (specified_pgid < 0) return -EINVAL; auto* process = Process::from_pid(pid); if (!process) return -ESRCH; pid_t new_pgid = specified_pgid ? specified_pgid : process->m_pid; pid_t current_sid = get_sid_from_pgid(process->m_pgid); pid_t new_sid = get_sid_from_pgid(new_pgid); if (current_sid != new_sid) { // Can't move a process between sessions. return -EPERM; } // FIXME: There are more EPERM conditions to check for here.. process->m_pgid = new_pgid; return 0; } int Process::sys$ioctl(int fd, unsigned request, unsigned arg) { auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; if (!descriptor->is_device()) return -ENOTTY; return descriptor->device()->ioctl(*this, request, arg); } int Process::sys$getdtablesize() { return m_max_open_file_descriptors; } int Process::sys$dup(int old_fd) { auto* descriptor = file_descriptor(old_fd); if (!descriptor) return -EBADF; int new_fd = alloc_fd(0); if (new_fd < 0) return new_fd; m_fds[new_fd].set(*descriptor); return new_fd; } int Process::sys$dup2(int old_fd, int new_fd) { auto* descriptor = file_descriptor(old_fd); if (!descriptor) return -EBADF; if (new_fd < 0 || new_fd >= m_max_open_file_descriptors) return -EINVAL; m_fds[new_fd].set(*descriptor); return new_fd; } int Process::sys$sigprocmask(int how, const sigset_t* set, sigset_t* old_set) { if (old_set) { if (!validate_write_typed(old_set)) return -EFAULT; *old_set = current->m_signal_mask; } if (set) { if (!validate_read_typed(set)) return -EFAULT; switch (how) { case SIG_BLOCK: current->m_signal_mask &= ~(*set); break; case SIG_UNBLOCK: current->m_signal_mask |= *set; break; case SIG_SETMASK: current->m_signal_mask = *set; break; default: return -EINVAL; } } return 0; } int Process::sys$sigpending(sigset_t* set) { if (!validate_write_typed(set)) return -EFAULT; *set = current->m_pending_signals; return 0; } int Process::sys$sigaction(int signum, const sigaction* act, sigaction* old_act) { if (signum < 1 || signum >= 32 || signum == SIGKILL || signum == SIGSTOP) return -EINVAL; if (!validate_read_typed(act)) return -EFAULT; InterruptDisabler disabler; // FIXME: This should use a narrower lock. Maybe a way to ignore signals temporarily? auto& action = current->m_signal_action_data[signum]; if (old_act) { if (!validate_write_typed(old_act)) return -EFAULT; old_act->sa_flags = action.flags; old_act->sa_sigaction = (decltype(old_act->sa_sigaction))action.handler_or_sigaction.get(); } action.flags = act->sa_flags; action.handler_or_sigaction = LinearAddress((dword)act->sa_sigaction); return 0; } int Process::sys$getgroups(ssize_t count, gid_t* gids) { if (count < 0) return -EINVAL; if (!count) return m_gids.size(); if (count != (int)m_gids.size()) return -EINVAL; if (!validate_write_typed(gids, m_gids.size())) return -EFAULT; size_t i = 0; for (auto gid : m_gids) gids[i++] = gid; return 0; } int Process::sys$setgroups(ssize_t count, const gid_t* gids) { if (count < 0) return -EINVAL; if (!is_superuser()) return -EPERM; if (!validate_read(gids, count)) return -EFAULT; m_gids.clear(); m_gids.set(m_gid); for (int i = 0; i < count; ++i) m_gids.set(gids[i]); return 0; } int Process::sys$mkdir(const char* pathname, mode_t mode) { if (!validate_read_str(pathname)) return -EFAULT; size_t pathname_length = strlen(pathname); if (pathname_length == 0) return -EINVAL; if (pathname_length >= 255) return -ENAMETOOLONG; return VFS::the().mkdir(StringView(pathname, pathname_length), mode & ~umask(), cwd_inode()); } clock_t Process::sys$times(tms* times) { if (!validate_write_typed(times)) return -EFAULT; times->tms_utime = m_ticks_in_user; times->tms_stime = m_ticks_in_kernel; times->tms_cutime = m_ticks_in_user_for_dead_children; times->tms_cstime = m_ticks_in_kernel_for_dead_children; return 0; } int Process::sys$select(const Syscall::SC_select_params* params) { if (!validate_read_typed(params)) return -EFAULT; if (params->writefds && !validate_read_typed(params->writefds)) return -EFAULT; if (params->readfds && !validate_read_typed(params->readfds)) return -EFAULT; if (params->exceptfds && !validate_read_typed(params->exceptfds)) return -EFAULT; if (params->timeout && !validate_read_typed(params->timeout)) return -EFAULT; int nfds = params->nfds; fd_set* writefds = params->writefds; fd_set* readfds = params->readfds; fd_set* exceptfds = params->exceptfds; auto* timeout = params->timeout; // FIXME: Implement exceptfds support. (void)exceptfds; if (timeout) { current->m_select_timeout = *timeout; current->m_select_has_timeout = true; } else { current->m_select_has_timeout = false; } if (nfds < 0) return -EINVAL; // FIXME: Return -EINTR if a signal is caught. // FIXME: Return -EINVAL if timeout is invalid. auto transfer_fds = [this, nfds] (fd_set* set, auto& vector) -> int { if (!set) return 0; vector.clear_with_capacity(); auto bitmap = Bitmap::wrap((byte*)set, FD_SETSIZE); for (int i = 0; i < nfds; ++i) { if (bitmap.get(i)) { if (!file_descriptor(i)) return -EBADF; vector.append(i); } } return 0; }; int error = 0; error = transfer_fds(writefds, current->m_select_write_fds); if (error) return error; error = transfer_fds(readfds, current->m_select_read_fds); if (error) return error; error = transfer_fds(readfds, current->m_select_exceptional_fds); if (error) return error; #ifdef DEBUG_IO dbgprintf("%s<%u> selecting on (read:%u, write:%u), timeout=%p\n", name().characters(), pid(), current->m_select_read_fds.size(), current->m_select_write_fds.size(), timeout); #endif if (!timeout || (timeout->tv_sec || timeout->tv_usec)) current->block(Thread::State::BlockedSelect); int markedfds = 0; if (readfds) { memset(readfds, 0, sizeof(fd_set)); auto bitmap = Bitmap::wrap((byte*)readfds, FD_SETSIZE); for (int fd : current->m_select_read_fds) { auto* descriptor = file_descriptor(fd); if (!descriptor) continue; if (descriptor->can_read(*this)) { bitmap.set(fd, true); ++markedfds; } } } if (writefds) { memset(writefds, 0, sizeof(fd_set)); auto bitmap = Bitmap::wrap((byte*)writefds, FD_SETSIZE); for (int fd : current->m_select_write_fds) { auto* descriptor = file_descriptor(fd); if (!descriptor) continue; if (descriptor->can_write(*this)) { bitmap.set(fd, true); ++markedfds; } } } // FIXME: Check for exceptional conditions. return markedfds; } int Process::sys$poll(pollfd* fds, int nfds, int timeout) { if (!validate_read_typed(fds)) return -EFAULT; current->m_select_write_fds.clear_with_capacity(); current->m_select_read_fds.clear_with_capacity(); for (int i = 0; i < nfds; ++i) { if (fds[i].events & POLLIN) current->m_select_read_fds.append(fds[i].fd); if (fds[i].events & POLLOUT) current->m_select_write_fds.append(fds[i].fd); } if (timeout < 0) current->block(Thread::State::BlockedSelect); int fds_with_revents = 0; for (int i = 0; i < nfds; ++i) { auto* descriptor = file_descriptor(fds[i].fd); if (!descriptor) { fds[i].revents = POLLNVAL; continue; } fds[i].revents = 0; if (fds[i].events & POLLIN && descriptor->can_read(*this)) fds[i].revents |= POLLIN; if (fds[i].events & POLLOUT && descriptor->can_write(*this)) fds[i].revents |= POLLOUT; if (fds[i].revents) ++fds_with_revents; } return fds_with_revents; } Inode& Process::cwd_inode() { // FIXME: This is retarded factoring. if (!m_cwd) m_cwd = VFS::the().root_inode(); return *m_cwd; } int Process::sys$link(const char* old_path, const char* new_path) { if (!validate_read_str(old_path)) return -EFAULT; if (!validate_read_str(new_path)) return -EFAULT; return VFS::the().link(StringView(old_path), StringView(new_path), cwd_inode()); } int Process::sys$unlink(const char* pathname) { if (!validate_read_str(pathname)) return -EFAULT; return VFS::the().unlink(StringView(pathname), cwd_inode()); } int Process::sys$symlink(const char* target, const char* linkpath) { if (!validate_read_str(target)) return -EFAULT; if (!validate_read_str(linkpath)) return -EFAULT; return VFS::the().symlink(StringView(target), StringView(linkpath), cwd_inode()); } int Process::sys$rmdir(const char* pathname) { if (!validate_read_str(pathname)) return -EFAULT; return VFS::the().rmdir(StringView(pathname), cwd_inode()); } int Process::sys$read_tsc(dword* lsw, dword* msw) { if (!validate_write_typed(lsw)) return -EFAULT; if (!validate_write_typed(msw)) return -EFAULT; read_tsc(*lsw, *msw); return 0; } int Process::sys$chmod(const char* pathname, mode_t mode) { if (!validate_read_str(pathname)) return -EFAULT; return VFS::the().chmod(StringView(pathname), mode, cwd_inode()); } int Process::sys$fchmod(int fd, mode_t mode) { auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; return descriptor->fchmod(mode); } int Process::sys$chown(const char* pathname, uid_t uid, gid_t gid) { if (!validate_read_str(pathname)) return -EFAULT; return VFS::the().chown(StringView(pathname), uid, gid, cwd_inode()); } void Process::finalize() { ASSERT(current == g_finalizer); dbgprintf("Finalizing Process %s(%u)\n", m_name.characters(), m_pid); m_fds.clear(); m_tty = nullptr; disown_all_shared_buffers(); { InterruptDisabler disabler; if (auto* parent_process = Process::from_pid(m_ppid)) { // FIXME(Thread): What should we do here? Should we look at all threads' signal actions? if (parent_process->main_thread().m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT) { // NOTE: If the parent doesn't care about this process, let it go. m_ppid = 0; } else { parent_process->send_signal(SIGCHLD, this); } } } m_dead = true; } void Process::die() { { InterruptDisabler disabler; for_each_thread([] (Thread& thread) { if (thread.state() != Thread::State::Dead) thread.set_state(Thread::State::Dying); return IterationDecision::Continue; }); } if (!Scheduler::is_active()) Scheduler::pick_next_and_switch_now(); } size_t Process::amount_virtual() const { size_t amount = 0; for (auto& region : m_regions) { amount += region->size(); } return amount; } size_t Process::amount_resident() const { // FIXME: This will double count if multiple regions use the same physical page. size_t amount = 0; for (auto& region : m_regions) { amount += region->amount_resident(); } return amount; } size_t Process::amount_shared() const { // FIXME: This will double count if multiple regions use the same physical page. // FIXME: It doesn't work at the moment, since it relies on PhysicalPage retain counts, // and each PhysicalPage is only retained by its VMObject. This needs to be refactored // so that every Region contributes +1 retain to each of its PhysicalPages. size_t amount = 0; for (auto& region : m_regions) { amount += region->amount_shared(); } return amount; } int Process::sys$socket(int domain, int type, int protocol) { int fd = alloc_fd(); if (fd < 0) return fd; auto result = Socket::create(domain, type, protocol); if (result.is_error()) return result.error(); auto descriptor = FileDescriptor::create(*result.value()); unsigned flags = 0; if (type & SOCK_CLOEXEC) flags |= FD_CLOEXEC; if (type & SOCK_NONBLOCK) descriptor->set_blocking(false); m_fds[fd].set(move(descriptor), flags); return fd; } int Process::sys$bind(int sockfd, const sockaddr* address, socklen_t address_length) { if (!validate_read(address, address_length)) return -EFAULT; auto* descriptor = file_descriptor(sockfd); if (!descriptor) return -EBADF; if (!descriptor->is_socket()) return -ENOTSOCK; auto& socket = *descriptor->socket(); return socket.bind(address, address_length); } int Process::sys$listen(int sockfd, int backlog) { auto* descriptor = file_descriptor(sockfd); if (!descriptor) return -EBADF; if (!descriptor->is_socket()) return -ENOTSOCK; auto& socket = *descriptor->socket(); auto result = socket.listen(backlog); if (result.is_error()) return result; descriptor->set_socket_role(SocketRole::Listener); return 0; } int Process::sys$accept(int accepting_socket_fd, sockaddr* address, socklen_t* address_size) { if (!validate_write_typed(address_size)) return -EFAULT; if (!validate_write(address, *address_size)) return -EFAULT; int accepted_socket_fd = alloc_fd(); if (accepted_socket_fd < 0) return accepted_socket_fd; auto* accepting_socket_descriptor = file_descriptor(accepting_socket_fd); if (!accepting_socket_descriptor) return -EBADF; if (!accepting_socket_descriptor->is_socket()) return -ENOTSOCK; auto& socket = *accepting_socket_descriptor->socket(); if (!socket.can_accept()) { ASSERT(!accepting_socket_descriptor->is_blocking()); return -EAGAIN; } auto accepted_socket = socket.accept(); ASSERT(accepted_socket); bool success = accepted_socket->get_address(address, address_size); ASSERT(success); auto accepted_socket_descriptor = FileDescriptor::create(move(accepted_socket), SocketRole::Accepted); // NOTE: The accepted socket inherits fd flags from the accepting socket. // I'm not sure if this matches other systems but it makes sense to me. accepted_socket_descriptor->set_blocking(accepting_socket_descriptor->is_blocking()); m_fds[accepted_socket_fd].set(move(accepted_socket_descriptor), m_fds[accepting_socket_fd].flags); return accepted_socket_fd; } int Process::sys$connect(int sockfd, const sockaddr* address, socklen_t address_size) { if (!validate_read(address, address_size)) return -EFAULT; int fd = alloc_fd(); if (fd < 0) return fd; auto* descriptor = file_descriptor(sockfd); if (!descriptor) return -EBADF; if (!descriptor->is_socket()) return -ENOTSOCK; if (descriptor->socket_role() == SocketRole::Connected) return -EISCONN; auto& socket = *descriptor->socket(); descriptor->set_socket_role(SocketRole::Connecting); auto result = socket.connect(address, address_size, descriptor->is_blocking() ? ShouldBlock::Yes : ShouldBlock::No); if (result.is_error()) { descriptor->set_socket_role(SocketRole::None); return result; } descriptor->set_socket_role(SocketRole::Connected); return 0; } ssize_t Process::sys$sendto(const Syscall::SC_sendto_params* params) { if (!validate_read_typed(params)) return -EFAULT; int sockfd = params->sockfd; const void* data = params->data; size_t data_length = params->data_length; int flags = params->flags; auto* addr = (const sockaddr*)params->addr; auto addr_length = (socklen_t)params->addr_length; if (!validate_read(data, data_length)) return -EFAULT; if (addr && !validate_read(addr, addr_length)) return -EFAULT; auto* descriptor = file_descriptor(sockfd); if (!descriptor) return -EBADF; if (!descriptor->is_socket()) return -ENOTSOCK; auto& socket = *descriptor->socket(); kprintf("sendto %p (%u), flags=%u, addr: %p (%u)\n", data, data_length, flags, addr, addr_length); return socket.sendto(data, data_length, flags, addr, addr_length); } ssize_t Process::sys$recvfrom(const Syscall::SC_recvfrom_params* params) { if (!validate_read_typed(params)) return -EFAULT; int sockfd = params->sockfd; void* buffer = params->buffer; size_t buffer_length = params->buffer_length; int flags = params->flags; auto* addr = (sockaddr*)params->addr; auto* addr_length = (socklen_t*)params->addr_length; if (!validate_write(buffer, buffer_length)) return -EFAULT; if (addr_length) { if (!validate_read_typed(addr_length)) return -EFAULT; if (!validate_read(addr, *addr_length)) return -EFAULT; } else if (addr) { return -EINVAL; } auto* descriptor = file_descriptor(sockfd); if (!descriptor) return -EBADF; if (!descriptor->is_socket()) return -ENOTSOCK; auto& socket = *descriptor->socket(); kprintf("recvfrom %p (%u), flags=%u, addr: %p (%p)\n", buffer, buffer_length, flags, addr, addr_length); return socket.recvfrom(buffer, buffer_length, flags, addr, addr_length); } int Process::sys$getsockopt(const Syscall::SC_getsockopt_params* params) { if (!validate_read_typed(params)) return -EFAULT; int sockfd = params->sockfd; int level = params->level; int option = params->option; auto* value = params->value; auto* value_size = (socklen_t*)params->value_size; if (!validate_write_typed(value_size)) return -EFAULT; if (!validate_write(value, *value_size)) return -EFAULT; auto* descriptor = file_descriptor(sockfd); if (!descriptor) return -EBADF; if (!descriptor->is_socket()) return -ENOTSOCK; auto& socket = *descriptor->socket(); return socket.getsockopt(level, option, value, value_size); } int Process::sys$setsockopt(const Syscall::SC_setsockopt_params* params) { if (!validate_read_typed(params)) return -EFAULT; int sockfd = params->sockfd; int level = params->level; int option = params->option; auto* value = params->value; auto value_size = (socklen_t)params->value_size; if (!validate_read(value, value_size)) return -EFAULT; auto* descriptor = file_descriptor(sockfd); if (!descriptor) return -EBADF; if (!descriptor->is_socket()) return -ENOTSOCK; auto& socket = *descriptor->socket(); return socket.setsockopt(level, option, value, value_size); } struct SharedBuffer { SharedBuffer(pid_t pid1, pid_t pid2, int size) : m_pid1(pid1) , m_pid2(pid2) , m_vmo(VMObject::create_anonymous(size)) { ASSERT(pid1 != pid2); } void* retain(Process& process) { if (m_pid1 == process.pid()) { ++m_pid1_retain_count; if (!m_pid1_region) { m_pid1_region = process.allocate_region_with_vmo(LinearAddress(), size(), m_vmo.copy_ref(), 0, "SharedBuffer", true, m_pid1_writable); m_pid1_region->set_shared(true); } return m_pid1_region->laddr().as_ptr(); } else if (m_pid2 == process.pid()) { ++m_pid2_retain_count; if (!m_pid2_region) { m_pid2_region = process.allocate_region_with_vmo(LinearAddress(), size(), m_vmo.copy_ref(), 0, "SharedBuffer", true, m_pid2_writable); m_pid2_region->set_shared(true); } return m_pid2_region->laddr().as_ptr(); } return nullptr; } void release(Process& process) { if (m_pid1 == process.pid()) { ASSERT(m_pid1_retain_count); --m_pid1_retain_count; if (!m_pid1_retain_count) { if (m_pid1_region) process.deallocate_region(*m_pid1_region); m_pid1_region = nullptr; } destroy_if_unused(); } else if (m_pid2 == process.pid()) { ASSERT(m_pid2_retain_count); --m_pid2_retain_count; if (!m_pid2_retain_count) { if (m_pid2_region) process.deallocate_region(*m_pid2_region); m_pid2_region = nullptr; } destroy_if_unused(); } } void disown(pid_t pid) { if (m_pid1 == pid) { m_pid1 = 0; m_pid1_retain_count = 0; destroy_if_unused(); } else if (m_pid2 == pid) { m_pid2 = 0; m_pid2_retain_count = 0; destroy_if_unused(); } } pid_t pid1() const { return m_pid1; } pid_t pid2() const { return m_pid2; } unsigned pid1_retain_count() const { return m_pid1_retain_count; } unsigned pid2_retain_count() const { return m_pid2_retain_count; } size_t size() const { return m_vmo->size(); } void destroy_if_unused(); void seal() { m_pid1_writable = false; m_pid2_writable = false; if (m_pid1_region) { m_pid1_region->set_writable(false); MM.remap_region(*m_pid1_region->page_directory(), *m_pid1_region); } if (m_pid2_region) { m_pid2_region->set_writable(false); MM.remap_region(*m_pid2_region->page_directory(), *m_pid2_region); } } int m_shared_buffer_id { -1 }; pid_t m_pid1; pid_t m_pid2; unsigned m_pid1_retain_count { 1 }; unsigned m_pid2_retain_count { 0 }; Region* m_pid1_region { nullptr }; Region* m_pid2_region { nullptr }; bool m_pid1_writable { false }; bool m_pid2_writable { false }; Retained m_vmo; }; static int s_next_shared_buffer_id; Lockable>>& shared_buffers() { static Lockable>>* map; if (!map) map = new Lockable>>; return *map; } void SharedBuffer::destroy_if_unused() { if (!m_pid1_retain_count && !m_pid2_retain_count) { LOCKER(shared_buffers().lock()); #ifdef SHARED_BUFFER_DEBUG kprintf("Destroying unused SharedBuffer{%p} id: %d (pid1: %d, pid2: %d)\n", this, m_shared_buffer_id, m_pid1, m_pid2); #endif size_t count_before = shared_buffers().resource().size(); shared_buffers().resource().remove(m_shared_buffer_id); ASSERT(count_before != shared_buffers().resource().size()); } } void Process::disown_all_shared_buffers() { LOCKER(shared_buffers().lock()); Vector buffers_to_disown; for (auto& it : shared_buffers().resource()) buffers_to_disown.append(it.value.ptr()); for (auto* shared_buffer : buffers_to_disown) shared_buffer->disown(m_pid); } int Process::sys$create_shared_buffer(pid_t peer_pid, int size, void** buffer) { if (!size || size < 0) return -EINVAL; size = PAGE_ROUND_UP(size); if (!peer_pid || peer_pid < 0 || peer_pid == m_pid) return -EINVAL; if (!validate_write_typed(buffer)) return -EFAULT; { InterruptDisabler disabler; auto* peer = Process::from_pid(peer_pid); if (!peer) return -ESRCH; } LOCKER(shared_buffers().lock()); int shared_buffer_id = ++s_next_shared_buffer_id; auto shared_buffer = make(m_pid, peer_pid, size); shared_buffer->m_shared_buffer_id = shared_buffer_id; ASSERT(shared_buffer->size() >= size); shared_buffer->m_pid1_region = allocate_region_with_vmo(LinearAddress(), shared_buffer->size(), shared_buffer->m_vmo.copy_ref(), 0, "SharedBuffer", true, true); shared_buffer->m_pid1_region->set_shared(true); *buffer = shared_buffer->m_pid1_region->laddr().as_ptr(); #ifdef SHARED_BUFFER_DEBUG kprintf("%s(%u): Created shared buffer %d (%u bytes, vmo is %u) for sharing with %d\n", name().characters(), pid(),shared_buffer_id, size, shared_buffer->size(), peer_pid); #endif shared_buffers().resource().set(shared_buffer_id, move(shared_buffer)); return shared_buffer_id; } int Process::sys$release_shared_buffer(int shared_buffer_id) { LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shared_buffer_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; #ifdef SHARED_BUFFER_DEBUG kprintf("%s(%u): Releasing shared buffer %d, buffer count: %u\n", name().characters(), pid(), shared_buffer_id, shared_buffers().resource().size()); #endif shared_buffer.release(*this); return 0; } void* Process::sys$get_shared_buffer(int shared_buffer_id) { LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shared_buffer_id); if (it == shared_buffers().resource().end()) return (void*)-EINVAL; auto& shared_buffer = *(*it).value; if (shared_buffer.pid1() != m_pid && shared_buffer.pid2() != m_pid) return (void*)-EINVAL; #ifdef SHARED_BUFFER_DEBUG kprintf("%s(%u): Retaining shared buffer %d, buffer count: %u\n", name().characters(), pid(), shared_buffer_id, shared_buffers().resource().size()); #endif return shared_buffer.retain(*this); } int Process::sys$seal_shared_buffer(int shared_buffer_id) { LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shared_buffer_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (shared_buffer.pid1() != m_pid && shared_buffer.pid2() != m_pid) return -EINVAL; #ifdef SHARED_BUFFER_DEBUG kprintf("%s(%u): Sealing shared buffer %d\n", name().characters(), pid(), shared_buffer_id); #endif shared_buffer.seal(); return 0; } int Process::sys$get_shared_buffer_size(int shared_buffer_id) { LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shared_buffer_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (shared_buffer.pid1() != m_pid && shared_buffer.pid2() != m_pid) return -EINVAL; #ifdef SHARED_BUFFER_DEBUG kprintf("%s(%u): Get shared buffer %d size: %u\n", name().characters(), pid(), shared_buffer_id, shared_buffers().resource().size()); #endif return shared_buffer.size(); } const char* to_string(Process::Priority priority) { switch (priority) { case Process::IdlePriority: return "Idle"; case Process::LowPriority: return "Low"; case Process::NormalPriority: return "Normal"; case Process::HighPriority: return "High"; } kprintf("to_string(Process::Priority): Invalid priority: %u\n", priority); ASSERT_NOT_REACHED(); return nullptr; } void Process::terminate_due_to_signal(byte signal) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(signal < 32); dbgprintf("terminate_due_to_signal %s(%u) <- %u\n", name().characters(), pid(), signal); m_termination_status = 0; m_termination_signal = signal; die(); } void Process::send_signal(byte signal, Process* sender) { // FIXME(Thread): Find the appropriate thread to deliver the signal to. main_thread().send_signal(signal, sender); } int Process::thread_count() const { int count = 0; for_each_thread([&count] (auto&) { ++count; return IterationDecision::Continue; }); return count; } int Process::sys$create_thread(int(*entry)(void*), void* argument) { if (!validate_read((const void*)entry, sizeof(void*))) return -EFAULT; auto* thread = new Thread(*this); auto& tss = thread->tss(); tss.eip = (dword)entry; tss.eflags = 0x0202; tss.cr3 = page_directory().cr3(); thread->make_userspace_stack_for_secondary_thread(argument); thread->set_state(Thread::State::Runnable); return 0; } int Process::sys$gettid() { return current->tid(); } int Process::sys$donate(int tid) { if (tid < 0) return -EINVAL; InterruptDisabler disabler; Thread* beneficiary = nullptr; for_each_thread([&] (Thread& thread) { if (thread.tid() == tid) { beneficiary = &thread; return IterationDecision::Abort; } return IterationDecision::Continue; }); if (!beneficiary) return -ENOTHREAD; Scheduler::donate_to(beneficiary, "sys$donate"); return 0; } int Process::sys$rename(const char* oldpath, const char* newpath) { if (!validate_read_str(oldpath)) return -EFAULT; if (!validate_read_str(newpath)) return -EFAULT; return VFS::the().rename(StringView(oldpath), StringView(newpath), cwd_inode()); } int Process::sys$shm_open(const char* name, int flags, mode_t mode) { if (!validate_read_str(name)) return -EFAULT; int fd = alloc_fd(); if (fd < 0) return fd; auto shm_or_error = SharedMemory::open(String(name), flags, mode); if (shm_or_error.is_error()) return shm_or_error.error(); auto descriptor = FileDescriptor::create(shm_or_error.value().ptr()); m_fds[fd].set(move(descriptor), FD_CLOEXEC); return fd; } int Process::sys$shm_unlink(const char* name) { if (!validate_read_str(name)) return -EFAULT; return SharedMemory::unlink(String(name)); } int Process::sys$ftruncate(int fd, off_t length) { auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; // FIXME: Check that fd is writable, otherwise EINVAL. if (!descriptor->is_file() && !descriptor->is_shared_memory()) return -EINVAL; return descriptor->truncate(length); }