#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#define DEBUG_POLL_SELECT //#define DEBUG_IO //#define TASK_DEBUG //#define FORK_DEBUG //#define SIGNAL_DEBUG //#define SHARED_BUFFER_DEBUG static void create_signal_trampolines(); static pid_t next_pid; InlineLinkedList* g_processes; static String* s_hostname; static Lock* s_hostname_lock; VirtualAddress g_return_to_ring3_from_signal_trampoline; VirtualAddress g_return_to_ring0_from_signal_trampoline; void Process::initialize() { next_pid = 0; g_processes = new InlineLinkedList; s_hostname = new String("courage"); s_hostname_lock = new Lock; create_signal_trampolines(); } Vector Process::all_pids() { Vector pids; InterruptDisabler disabler; pids.ensure_capacity(g_processes->size_slow()); for (auto& process : *g_processes) pids.append(process.pid()); return pids; } Vector Process::all_processes() { Vector processes; InterruptDisabler disabler; processes.ensure_capacity(g_processes->size_slow()); for (auto& process : *g_processes) processes.append(&process); return processes; } bool Process::in_group(gid_t gid) const { return m_gids.contains(gid); } Range Process::allocate_range(VirtualAddress vaddr, size_t size) { vaddr.mask(PAGE_MASK); size = PAGE_ROUND_UP(size); if (vaddr.is_null()) return page_directory().range_allocator().allocate_anywhere(size); return page_directory().range_allocator().allocate_specific(vaddr, size); } static unsigned prot_to_region_access_flags(int prot) { unsigned access = 0; if (prot & PROT_READ) access |= Region::Access::Read; if (prot & PROT_WRITE) access |= Region::Access::Write; if (prot & PROT_EXEC) access |= Region::Access::Execute; return access; } Region* Process::allocate_region(VirtualAddress vaddr, size_t size, const String& name, int prot, bool commit) { auto range = allocate_range(vaddr, size); if (!range.is_valid()) return nullptr; m_regions.append(Region::create_user_accessible(range, name, prot_to_region_access_flags(prot))); MM.map_region(*this, m_regions.last()); if (commit) m_regions.last().commit(); return &m_regions.last(); } Region* Process::allocate_file_backed_region(VirtualAddress vaddr, size_t size, NonnullRefPtr inode, const String& name, int prot) { auto range = allocate_range(vaddr, size); if (!range.is_valid()) return nullptr; m_regions.append(Region::create_user_accessible(range, inode, name, prot_to_region_access_flags(prot))); MM.map_region(*this, m_regions.last()); return &m_regions.last(); } Region* Process::allocate_region_with_vmo(VirtualAddress vaddr, size_t size, NonnullRefPtr vmo, size_t offset_in_vmo, const String& name, int prot) { auto range = allocate_range(vaddr, size); if (!range.is_valid()) return nullptr; offset_in_vmo &= PAGE_MASK; m_regions.append(Region::create_user_accessible(range, move(vmo), offset_in_vmo, name, prot_to_region_access_flags(prot))); MM.map_region(*this, m_regions.last()); return &m_regions.last(); } bool Process::deallocate_region(Region& region) { InterruptDisabler disabler; for (int i = 0; i < m_regions.size(); ++i) { if (&m_regions[i] == ®ion) { MM.unmap_region(region); m_regions.remove(i); return true; } } return false; } Region* Process::region_from_range(VirtualAddress vaddr, size_t size) { size = PAGE_ROUND_UP(size); for (auto& region : m_regions) { if (region.vaddr() == vaddr && region.size() == size) return ®ion; } return nullptr; } int Process::sys$set_mmap_name(void* addr, size_t size, const char* name) { if (!validate_read_str(name)) return -EFAULT; auto* region = region_from_range(VirtualAddress((u32)addr), size); if (!region) return -EINVAL; region->set_name(String(name)); return 0; } void* Process::sys$mmap(const Syscall::SC_mmap_params* params) { if (!validate_read(params, sizeof(Syscall::SC_mmap_params))) return (void*)-EFAULT; if (params->name && !validate_read_str(params->name)) return (void*)-EFAULT; void* addr = (void*)params->addr; size_t size = params->size; int prot = params->prot; int flags = params->flags; int fd = params->fd; off_t offset = params->offset; const char* name = params->name; if (size == 0) return (void*)-EINVAL; if ((u32)addr & ~PAGE_MASK) return (void*)-EINVAL; if (flags & MAP_ANONYMOUS) { auto* region = allocate_region(VirtualAddress((u32)addr), size, "mmap", prot, false); if (!region) return (void*)-ENOMEM; if (flags & MAP_SHARED) region->set_shared(true); if (name) region->set_name(name); return region->vaddr().as_ptr(); } if (offset & ~PAGE_MASK) return (void*)-EINVAL; auto* description = file_description(fd); if (!description) return (void*)-EBADF; auto region_or_error = description->mmap(*this, VirtualAddress((u32)addr), offset, size, prot); if (region_or_error.is_error()) return (void*)(int)region_or_error.error(); auto region = region_or_error.value(); if (flags & MAP_SHARED) region->set_shared(true); if (name) region->set_name(name); return region->vaddr().as_ptr(); } int Process::sys$munmap(void* addr, size_t size) { auto* region = region_from_range(VirtualAddress((u32)addr), size); if (!region) return -EINVAL; if (!deallocate_region(*region)) return -EINVAL; return 0; } int Process::sys$gethostname(char* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; LOCKER(*s_hostname_lock); if (size < (s_hostname->length() + 1)) return -ENAMETOOLONG; strcpy(buffer, s_hostname->characters()); return 0; } Process* Process::fork(RegisterDump& regs) { auto* child = new Process(String(m_name), m_uid, m_gid, m_pid, m_ring, m_cwd, m_executable, m_tty, this); #ifdef FORK_DEBUG dbgprintf("fork: child=%p\n", child); #endif for (auto& region : m_regions) { #ifdef FORK_DEBUG dbgprintf("fork: cloning Region{%p} \"%s\" L%x\n", region.ptr(), region->name().characters(), region->vaddr().get()); #endif auto cloned_region = region.clone(); child->m_regions.append(move(cloned_region)); MM.map_region(*child, child->m_regions.last()); } for (auto gid : m_gids) child->m_gids.set(gid); auto& child_tss = child->main_thread().m_tss; child_tss.eax = 0; // fork() returns 0 in the child :^) child_tss.ebx = regs.ebx; child_tss.ecx = regs.ecx; child_tss.edx = regs.edx; child_tss.ebp = regs.ebp; child_tss.esp = regs.esp_if_crossRing; child_tss.esi = regs.esi; child_tss.edi = regs.edi; child_tss.eflags = regs.eflags; child_tss.eip = regs.eip; child_tss.cs = regs.cs; child_tss.ds = regs.ds; child_tss.es = regs.es; child_tss.fs = regs.fs; child_tss.gs = regs.gs; child_tss.ss = regs.ss_if_crossRing; #ifdef FORK_DEBUG dbgprintf("fork: child will begin executing at %w:%x with stack %w:%x, kstack %w:%x\n", child_tss.cs, child_tss.eip, child_tss.ss, child_tss.esp, child_tss.ss0, child_tss.esp0); #endif { InterruptDisabler disabler; g_processes->prepend(child); } #ifdef TASK_DEBUG kprintf("Process %u (%s) forked from %u @ %p\n", child->pid(), child->name().characters(), m_pid, child_tss.eip); #endif child->main_thread().set_state(Thread::State::Skip1SchedulerPass); return child; } pid_t Process::sys$fork(RegisterDump& regs) { auto* child = fork(regs); ASSERT(child); return child->pid(); } int Process::do_exec(String path, Vector arguments, Vector environment) { ASSERT(is_ring3()); dbgprintf("%s(%d) do_exec(%s): thread_count() = %d\n", m_name.characters(), m_pid, path.characters(), thread_count()); // FIXME(Thread): Kill any threads the moment we commit to the exec(). if (thread_count() != 1) { dbgprintf("Gonna die because I have many threads! These are the threads:\n"); for_each_thread([](Thread& thread) { dbgprintf("Thread{%p}: TID=%d, PID=%d\n", &thread, thread.tid(), thread.pid()); return IterationDecision::Continue; }); ASSERT(thread_count() == 1); ASSERT_NOT_REACHED(); } auto parts = path.split('/'); if (parts.is_empty()) return -ENOENT; auto result = VFS::the().open(path, 0, 0, current_directory()); if (result.is_error()) return result.error(); auto description = result.value(); auto metadata = description->metadata(); if (!metadata.may_execute(m_euid, m_gids)) return -EACCES; if (!metadata.size) return -ENOTIMPL; u32 entry_eip = 0; // FIXME: Is there a race here? auto old_page_directory = move(m_page_directory); m_page_directory = PageDirectory::create_for_userspace(*this); #ifdef MM_DEBUG dbgprintf("Process %u exec: PD=%x created\n", pid(), m_page_directory.ptr()); #endif ProcessPagingScope paging_scope(*this); ASSERT(description->inode()); auto vmo = InodeVMObject::create_with_inode(*description->inode()); RefPtr region = allocate_region_with_vmo(VirtualAddress(), metadata.size, vmo, 0, description->absolute_path(), PROT_READ); ASSERT(region); if (this != ¤t->process()) { // FIXME: Don't force-load the entire executable at once, let the on-demand pager take care of it. bool success = region->page_in(); ASSERT(success); } #ifdef EXPENSIVE_USERSPACE_STACKS region->page_in(); #endif OwnPtr loader; { // Okay, here comes the sleight of hand, pay close attention.. auto old_regions = move(m_regions); m_regions.append(*region); loader = make(region->vaddr().as_ptr()); loader->map_section_hook = [&](VirtualAddress vaddr, size_t size, size_t alignment, size_t offset_in_image, bool is_readable, bool is_writable, bool is_executable, const String& name) { ASSERT(size); ASSERT(alignment == PAGE_SIZE); int prot = 0; if (is_readable) prot |= PROT_READ; if (is_writable) prot |= PROT_WRITE; if (is_executable) prot |= PROT_EXEC; (void)allocate_region_with_vmo(vaddr, size, vmo, offset_in_image, String(name), prot); return vaddr.as_ptr(); }; loader->alloc_section_hook = [&](VirtualAddress vaddr, size_t size, size_t alignment, bool is_readable, bool is_writable, const String& name) { ASSERT(size); ASSERT(alignment == PAGE_SIZE); int prot = 0; if (is_readable) prot |= PROT_READ; if (is_writable) prot |= PROT_WRITE; (void)allocate_region(vaddr, size, String(name), prot); return vaddr.as_ptr(); }; bool success = loader->load(); if (!success || !loader->entry().get()) { m_page_directory = move(old_page_directory); // FIXME: RAII this somehow instead. ASSERT(¤t->process() == this); MM.enter_process_paging_scope(*this); m_regions = move(old_regions); kprintf("do_exec: Failure loading %s\n", path.characters()); return -ENOEXEC; } // NOTE: At this point, we've committed to the new executable. entry_eip = loader->entry().get(); } m_elf_loader = move(loader); m_executable = description->custody(); if (metadata.is_setuid()) m_euid = metadata.uid; if (metadata.is_setgid()) m_egid = metadata.gid; current->m_kernel_stack_for_signal_handler_region = nullptr; current->m_signal_stack_user_region = nullptr; current->set_default_signal_dispositions(); current->m_signal_mask = 0; current->m_pending_signals = 0; for (int i = 0; i < m_fds.size(); ++i) { auto& daf = m_fds[i]; if (daf.description && daf.flags & FD_CLOEXEC) { daf.description->close(); daf = {}; } } // We cli() manually here because we don't want to get interrupted between do_exec() and Schedule::yield(). // The reason is that the task redirection we've set up above will be clobbered by the timer IRQ. // If we used an InterruptDisabler that sti()'d on exit, we might timer tick'd too soon in exec(). if (¤t->process() == this) cli(); Scheduler::prepare_to_modify_tss(main_thread()); m_name = parts.take_last(); // ss0 sp!!!!!!!!! u32 old_esp0 = main_thread().m_tss.esp0; memset(&main_thread().m_tss, 0, sizeof(main_thread().m_tss)); main_thread().m_tss.eflags = 0x0202; main_thread().m_tss.eip = entry_eip; main_thread().m_tss.cs = 0x1b; main_thread().m_tss.ds = 0x23; main_thread().m_tss.es = 0x23; main_thread().m_tss.fs = 0x23; main_thread().m_tss.gs = 0x23; main_thread().m_tss.ss = 0x23; main_thread().m_tss.cr3 = page_directory().cr3(); main_thread().make_userspace_stack_for_main_thread(move(arguments), move(environment)); main_thread().m_tss.ss0 = 0x10; main_thread().m_tss.esp0 = old_esp0; main_thread().m_tss.ss2 = m_pid; #ifdef TASK_DEBUG kprintf("Process %u (%s) exec'd %s @ %p\n", pid(), name().characters(), path.characters(), main_thread().tss().eip); #endif main_thread().set_state(Thread::State::Skip1SchedulerPass); big_lock().unlock_if_locked(); return 0; } int Process::exec(String path, Vector arguments, Vector environment) { // The bulk of exec() is done by do_exec(), which ensures that all locals // are cleaned up by the time we yield-teleport below. int rc = do_exec(move(path), move(arguments), move(environment)); if (rc < 0) return rc; if (¤t->process() == this) { Scheduler::yield(); ASSERT_NOT_REACHED(); } return 0; } int Process::sys$execve(const char* filename, const char** argv, const char** envp) { // NOTE: Be extremely careful with allocating any kernel memory in exec(). // On success, the kernel stack will be lost. if (!validate_read_str(filename)) return -EFAULT; if (!*filename) return -ENOENT; if (argv) { if (!validate_read_typed(argv)) return -EFAULT; for (size_t i = 0; argv[i]; ++i) { if (!validate_read_str(argv[i])) return -EFAULT; } } if (envp) { if (!validate_read_typed(envp)) return -EFAULT; for (size_t i = 0; envp[i]; ++i) { if (!validate_read_str(envp[i])) return -EFAULT; } } String path(filename); Vector arguments; Vector environment; { auto parts = path.split('/'); if (argv) { for (size_t i = 0; argv[i]; ++i) { arguments.append(argv[i]); } } else { arguments.append(parts.last()); } if (envp) { for (size_t i = 0; envp[i]; ++i) environment.append(envp[i]); } } int rc = exec(move(path), move(arguments), move(environment)); ASSERT(rc < 0); // We should never continue after a successful exec! return rc; } Process* Process::create_user_process(const String& path, uid_t uid, gid_t gid, pid_t parent_pid, int& error, Vector&& arguments, Vector&& environment, TTY* tty) { // FIXME: Don't split() the path twice (sys$spawn also does it...) auto parts = path.split('/'); if (arguments.is_empty()) { arguments.append(parts.last()); } RefPtr cwd; { InterruptDisabler disabler; if (auto* parent = Process::from_pid(parent_pid)) cwd = parent->m_cwd; } if (!cwd) cwd = VFS::the().root_custody(); auto* process = new Process(parts.take_last(), uid, gid, parent_pid, Ring3, move(cwd), nullptr, tty); error = process->exec(path, move(arguments), move(environment)); if (error != 0) { delete process; return nullptr; } { InterruptDisabler disabler; g_processes->prepend(process); } #ifdef TASK_DEBUG kprintf("Process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->main_thread().tss().eip); #endif error = 0; return process; } Process* Process::create_kernel_process(String&& name, void (*e)()) { auto* process = new Process(move(name), (uid_t)0, (gid_t)0, (pid_t)0, Ring0); process->main_thread().tss().eip = (u32)e; if (process->pid() != 0) { InterruptDisabler disabler; g_processes->prepend(process); #ifdef TASK_DEBUG kprintf("Kernel process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->main_thread().tss().eip); #endif } process->main_thread().set_state(Thread::State::Runnable); return process; } Process::Process(String&& name, uid_t uid, gid_t gid, pid_t ppid, RingLevel ring, RefPtr cwd, RefPtr executable, TTY* tty, Process* fork_parent) : m_name(move(name)) , m_pid(next_pid++) // FIXME: RACE: This variable looks racy! , m_uid(uid) , m_gid(gid) , m_euid(uid) , m_egid(gid) , m_ring(ring) , m_executable(move(executable)) , m_cwd(move(cwd)) , m_tty(tty) , m_ppid(ppid) { dbgprintf("Process: New process PID=%u with name=%s\n", m_pid, m_name.characters()); m_page_directory = PageDirectory::create_for_userspace(*this, fork_parent ? &fork_parent->page_directory().range_allocator() : nullptr); #ifdef MM_DEBUG dbgprintf("Process %u ctor: PD=%x created\n", pid(), m_page_directory.ptr()); #endif // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the main thread in the new process. if (fork_parent) m_main_thread = current->clone(*this); else m_main_thread = new Thread(*this); m_gids.set(m_gid); if (fork_parent) { m_sid = fork_parent->m_sid; m_pgid = fork_parent->m_pgid; } else { // FIXME: Use a ProcessHandle? Presumably we're executing *IN* the parent right now though.. InterruptDisabler disabler; if (auto* parent = Process::from_pid(m_ppid)) { m_sid = parent->m_sid; m_pgid = parent->m_pgid; } } if (fork_parent) { m_fds.resize(fork_parent->m_fds.size()); for (int i = 0; i < fork_parent->m_fds.size(); ++i) { if (!fork_parent->m_fds[i].description) continue; #ifdef FORK_DEBUG dbgprintf("fork: cloning fd %u... (%p) istty? %u\n", i, fork_parent->m_fds[i].description.ptr(), fork_parent->m_fds[i].description->is_tty()); #endif m_fds[i] = fork_parent->m_fds[i]; } } else { m_fds.resize(m_max_open_file_descriptors); auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the(); m_fds[0].set(*device_to_use_as_tty.open(O_RDONLY).value()); m_fds[1].set(*device_to_use_as_tty.open(O_WRONLY).value()); m_fds[2].set(*device_to_use_as_tty.open(O_WRONLY).value()); } if (fork_parent) { m_sid = fork_parent->m_sid; m_pgid = fork_parent->m_pgid; m_umask = fork_parent->m_umask; } } Process::~Process() { dbgprintf("~Process{%p} name=%s pid=%d, m_fds=%d\n", this, m_name.characters(), pid(), m_fds.size()); delete m_main_thread; m_main_thread = nullptr; Vector my_threads; for_each_thread([&my_threads](auto& thread) { my_threads.append(&thread); return IterationDecision::Continue; }); for (auto* thread : my_threads) delete thread; } void Process::dump_regions() { kprintf("Process %s(%u) regions:\n", name().characters(), pid()); kprintf("BEGIN END SIZE NAME\n"); for (auto& region : m_regions) { kprintf("%x -- %x %x %s\n", region.vaddr().get(), region.vaddr().offset(region.size() - 1).get(), region.size(), region.name().characters()); } } void Process::sys$exit(int status) { cli(); #ifdef TASK_DEBUG kprintf("sys$exit: %s(%u) exit with status %d\n", name().characters(), pid(), status); #endif dump_backtrace(); m_termination_status = status; m_termination_signal = 0; die(); ASSERT_NOT_REACHED(); } void create_signal_trampolines() { InterruptDisabler disabler; // NOTE: We leak this region. auto* trampoline_region = MM.allocate_user_accessible_kernel_region(PAGE_SIZE, "Signal trampolines").leak_ref(); g_return_to_ring3_from_signal_trampoline = trampoline_region->vaddr(); u8* code_ptr = (u8*)trampoline_region->vaddr().as_ptr(); *code_ptr++ = 0x58; // pop eax (Argument to signal handler (ignored here)) *code_ptr++ = 0x5a; // pop edx (Original signal mask to restore) *code_ptr++ = 0xb8; // mov eax, *(u32*)code_ptr = Syscall::SC_restore_signal_mask; code_ptr += sizeof(u32); *code_ptr++ = 0xcd; // int 0x82 *code_ptr++ = 0x82; *code_ptr++ = 0x83; // add esp, (stack alignment padding) *code_ptr++ = 0xc4; *code_ptr++ = sizeof(u32) * 3; *code_ptr++ = 0x61; // popa *code_ptr++ = 0x9d; // popf *code_ptr++ = 0xc3; // ret *code_ptr++ = 0x0f; // ud2 *code_ptr++ = 0x0b; g_return_to_ring0_from_signal_trampoline = VirtualAddress((u32)code_ptr); *code_ptr++ = 0x58; // pop eax (Argument to signal handler (ignored here)) *code_ptr++ = 0x5a; // pop edx (Original signal mask to restore) *code_ptr++ = 0xb8; // mov eax, *(u32*)code_ptr = Syscall::SC_restore_signal_mask; code_ptr += sizeof(u32); *code_ptr++ = 0xcd; // int 0x82 // NOTE: Stack alignment padding doesn't matter when returning to ring0. // Nothing matters really, as we're returning by replacing the entire TSS. *code_ptr++ = 0x82; *code_ptr++ = 0xb8; // mov eax, *(u32*)code_ptr = Syscall::SC_sigreturn; code_ptr += sizeof(u32); *code_ptr++ = 0xcd; // int 0x82 *code_ptr++ = 0x82; *code_ptr++ = 0x0f; // ud2 *code_ptr++ = 0x0b; trampoline_region->set_writable(false); MM.remap_region(*trampoline_region->page_directory(), *trampoline_region); } int Process::sys$restore_signal_mask(u32 mask) { current->m_signal_mask = mask; return 0; } void Process::sys$sigreturn() { InterruptDisabler disabler; Scheduler::prepare_to_modify_tss(*current); current->m_tss = *current->m_tss_to_resume_kernel; current->m_tss_to_resume_kernel.clear(); #ifdef SIGNAL_DEBUG kprintf("sys$sigreturn in %s(%u)\n", name().characters(), pid()); auto& tss = current->tss(); kprintf(" -> resuming execution at %w:%x stack %w:%x flags %x cr3 %x\n", tss.cs, tss.eip, tss.ss, tss.esp, tss.eflags, tss.cr3); #endif current->set_state(Thread::State::Skip1SchedulerPass); Scheduler::yield(); kprintf("sys$sigreturn failed in %s(%u)\n", name().characters(), pid()); ASSERT_NOT_REACHED(); } void Process::crash(int signal, u32 eip) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(!is_dead()); if (m_elf_loader && ksyms_ready) dbgprintf("\033[31;1m%p %s\033[0m\n", eip, m_elf_loader->symbolicate(eip).characters()); dump_backtrace(); m_termination_signal = signal; dump_regions(); ASSERT(is_ring3()); die(); ASSERT_NOT_REACHED(); } Process* Process::from_pid(pid_t pid) { ASSERT_INTERRUPTS_DISABLED(); for (auto& process : *g_processes) { if (process.pid() == pid) return &process; } return nullptr; } FileDescription* Process::file_description(int fd) { if (fd < 0) return nullptr; if (fd < m_fds.size()) return m_fds[fd].description.ptr(); return nullptr; } const FileDescription* Process::file_description(int fd) const { if (fd < 0) return nullptr; if (fd < m_fds.size()) return m_fds[fd].description.ptr(); return nullptr; } ssize_t Process::sys$get_dir_entries(int fd, void* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; auto* description = file_description(fd); if (!description) return -EBADF; return description->get_dir_entries((u8*)buffer, size); } int Process::sys$lseek(int fd, off_t offset, int whence) { auto* description = file_description(fd); if (!description) return -EBADF; return description->seek(offset, whence); } int Process::sys$ttyname_r(int fd, char* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; auto* description = file_description(fd); if (!description) return -EBADF; if (!description->is_tty()) return -ENOTTY; auto tty_name = description->tty()->tty_name(); if (size < tty_name.length() + 1) return -ERANGE; strcpy(buffer, tty_name.characters()); return 0; } int Process::sys$ptsname_r(int fd, char* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; auto* description = file_description(fd); if (!description) return -EBADF; auto* master_pty = description->master_pty(); if (!master_pty) return -ENOTTY; auto pts_name = master_pty->pts_name(); if (size < pts_name.length() + 1) return -ERANGE; strcpy(buffer, pts_name.characters()); return 0; } ssize_t Process::sys$writev(int fd, const struct iovec* iov, int iov_count) { if (iov_count < 0) return -EINVAL; if (!validate_read_typed(iov, iov_count)) return -EFAULT; // FIXME: Return EINVAL if sum of iovecs is greater than INT_MAX auto* description = file_description(fd); if (!description) return -EBADF; int nwritten = 0; for (int i = 0; i < iov_count; ++i) { int rc = do_write(*description, (const u8*)iov[i].iov_base, iov[i].iov_len); if (rc < 0) { if (nwritten == 0) return rc; return nwritten; } nwritten += rc; } if (current->has_unmasked_pending_signals()) { if (current->block(Thread::SemiPermanentBlocker::Reason::Signal) == Thread::BlockResult::InterruptedBySignal) { if (nwritten == 0) return -EINTR; } } return nwritten; } ssize_t Process::do_write(FileDescription& description, const u8* data, int data_size) { ssize_t nwritten = 0; if (!description.is_blocking()) { if (!description.can_write()) return -EAGAIN; } if (description.should_append()) { #ifdef IO_DEBUG dbgprintf("seeking to end (O_APPEND)\n"); #endif description.seek(0, SEEK_END); } while (nwritten < data_size) { #ifdef IO_DEBUG dbgprintf("while %u < %u\n", nwritten, size); #endif if (!description.can_write()) { #ifdef IO_DEBUG dbgprintf("block write on %d\n", fd); #endif if (current->block(description) == Thread::BlockResult::InterruptedBySignal) { if (nwritten == 0) return -EINTR; } } ssize_t rc = description.write(data + nwritten, data_size - nwritten); #ifdef IO_DEBUG dbgprintf(" -> write returned %d\n", rc); #endif if (rc < 0) { // FIXME: Support returning partial nwritten with errno. ASSERT(nwritten == 0); return rc; } if (rc == 0) break; if (current->has_unmasked_pending_signals()) { if (current->block(Thread::SemiPermanentBlocker::Reason::Signal) == Thread::BlockResult::InterruptedBySignal) { if (nwritten == 0) return -EINTR; } } nwritten += rc; } return nwritten; } ssize_t Process::sys$write(int fd, const u8* data, ssize_t size) { if (size < 0) return -EINVAL; if (size == 0) return 0; if (!validate_read(data, size)) return -EFAULT; #ifdef DEBUG_IO dbgprintf("%s(%u): sys$write(%d, %p, %u)\n", name().characters(), pid(), fd, data, size); #endif auto* description = file_description(fd); if (!description) return -EBADF; auto nwritten = do_write(*description, data, size); if (current->has_unmasked_pending_signals()) { if (current->block(Thread::SemiPermanentBlocker::Reason::Signal) == Thread::BlockResult::InterruptedBySignal) { if (nwritten == 0) return -EINTR; } } return nwritten; } ssize_t Process::sys$read(int fd, u8* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (size == 0) return 0; if (!validate_write(buffer, size)) return -EFAULT; #ifdef DEBUG_IO dbgprintf("%s(%u) sys$read(%d, %p, %u)\n", name().characters(), pid(), fd, buffer, size); #endif auto* description = file_description(fd); if (!description) return -EBADF; if (description->is_blocking()) { if (!description->can_read()) { if (current->block(*description) == Thread::BlockResult::InterruptedBySignal) return -EINTR; } } return description->read(buffer, size); } int Process::sys$close(int fd) { auto* description = file_description(fd); if (!description) return -EBADF; int rc = description->close(); m_fds[fd] = {}; return rc; } int Process::sys$utime(const char* pathname, const utimbuf* buf) { if (!validate_read_str(pathname)) return -EFAULT; if (buf && !validate_read_typed(buf)) return -EFAULT; time_t atime; time_t mtime; if (buf) { atime = buf->actime; mtime = buf->modtime; } else { struct timeval now; kgettimeofday(now); mtime = now.tv_sec; atime = now.tv_sec; } return VFS::the().utime(StringView(pathname), current_directory(), atime, mtime); } int Process::sys$access(const char* pathname, int mode) { if (!validate_read_str(pathname)) return -EFAULT; return VFS::the().access(StringView(pathname), mode, current_directory()); } int Process::sys$fcntl(int fd, int cmd, u32 arg) { (void)cmd; (void)arg; dbgprintf("sys$fcntl: fd=%d, cmd=%d, arg=%u\n", fd, cmd, arg); auto* description = file_description(fd); if (!description) return -EBADF; // NOTE: The FD flags are not shared between FileDescription objects. // This means that dup() doesn't copy the FD_CLOEXEC flag! switch (cmd) { case F_DUPFD: { int arg_fd = (int)arg; if (arg_fd < 0) return -EINVAL; int new_fd = alloc_fd(arg_fd); if (new_fd < 0) return new_fd; m_fds[new_fd].set(*description); break; } case F_GETFD: return m_fds[fd].flags; case F_SETFD: m_fds[fd].flags = arg; break; case F_GETFL: return description->file_flags(); case F_SETFL: description->set_file_flags(arg); break; default: ASSERT_NOT_REACHED(); } return 0; } int Process::sys$fstat(int fd, stat* statbuf) { if (!validate_write_typed(statbuf)) return -EFAULT; auto* description = file_description(fd); if (!description) return -EBADF; return description->fstat(*statbuf); } int Process::sys$lstat(const char* path, stat* statbuf) { if (!validate_write_typed(statbuf)) return -EFAULT; auto metadata_or_error = VFS::the().lookup_metadata(StringView(path), current_directory(), O_NOFOLLOW_NOERROR); if (metadata_or_error.is_error()) return metadata_or_error.error(); return metadata_or_error.value().stat(*statbuf); } int Process::sys$stat(const char* path, stat* statbuf) { if (!validate_write_typed(statbuf)) return -EFAULT; auto metadata_or_error = VFS::the().lookup_metadata(StringView(path), current_directory()); if (metadata_or_error.is_error()) return metadata_or_error.error(); return metadata_or_error.value().stat(*statbuf); } int Process::sys$readlink(const char* path, char* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_read_str(path)) return -EFAULT; if (!validate_write(buffer, size)) return -EFAULT; auto result = VFS::the().open(path, O_RDONLY | O_NOFOLLOW_NOERROR, 0, current_directory()); if (result.is_error()) return result.error(); auto description = result.value(); if (!description->metadata().is_symlink()) return -EINVAL; auto contents = description->read_entire_file(); if (!contents) return -EIO; // FIXME: Get a more detailed error from VFS. memcpy(buffer, contents.pointer(), min(size, (ssize_t)contents.size())); if (contents.size() + 1 < size) buffer[contents.size()] = '\0'; return 0; } int Process::sys$chdir(const char* path) { if (!validate_read_str(path)) return -EFAULT; auto directory_or_error = VFS::the().open_directory(StringView(path), current_directory()); if (directory_or_error.is_error()) return directory_or_error.error(); m_cwd = *directory_or_error.value(); return 0; } int Process::sys$getcwd(char* buffer, ssize_t size) { if (size < 0) return -EINVAL; if (!validate_write(buffer, size)) return -EFAULT; auto path = current_directory().absolute_path(); if (size < path.length() + 1) return -ERANGE; strcpy(buffer, path.characters()); return 0; } int Process::number_of_open_file_descriptors() const { int count = 0; for (auto& description : m_fds) { if (description) ++count; } return count; } int Process::sys$open(const Syscall::SC_open_params* params) { if (!validate_read_typed(params)) return -EFAULT; auto* path = params->path; auto path_length = params->path_length; auto options = params->options; auto mode = params->mode; #ifdef DEBUG_IO dbgprintf("%s(%u) sys$open(\"%s\")\n", name().characters(), pid(), path); #endif if (!validate_read(path, path_length)) return -EFAULT; int fd = alloc_fd(); if (fd < 0) return fd; auto result = VFS::the().open(path, options, mode & ~umask(), current_directory()); if (result.is_error()) return result.error(); auto description = result.value(); if (options & O_DIRECTORY && !description->is_directory()) return -ENOTDIR; // FIXME: This should be handled by VFS::open. description->set_file_flags(options); u32 fd_flags = (options & O_CLOEXEC) ? FD_CLOEXEC : 0; m_fds[fd].set(move(description), fd_flags); return fd; } int Process::alloc_fd(int first_candidate_fd) { int fd = -EMFILE; for (int i = first_candidate_fd; i < (int)m_max_open_file_descriptors; ++i) { if (!m_fds[i]) { fd = i; break; } } return fd; } int Process::sys$pipe(int pipefd[2], int flags) { if (!validate_write_typed(pipefd)) return -EFAULT; if (number_of_open_file_descriptors() + 2 > max_open_file_descriptors()) return -EMFILE; // Reject flags other than O_CLOEXEC. if ((flags & O_CLOEXEC) != flags) return -EINVAL; u32 fd_flags = (flags & O_CLOEXEC) ? FD_CLOEXEC : 0; auto fifo = FIFO::create(m_uid); int reader_fd = alloc_fd(); m_fds[reader_fd].set(fifo->open_direction(FIFO::Direction::Reader), fd_flags); pipefd[0] = reader_fd; int writer_fd = alloc_fd(); m_fds[writer_fd].set(fifo->open_direction(FIFO::Direction::Writer), fd_flags); pipefd[1] = writer_fd; return 0; } int Process::sys$killpg(int pgrp, int signum) { if (signum < 1 || signum >= 32) return -EINVAL; (void)pgrp; ASSERT_NOT_REACHED(); } int Process::sys$setuid(uid_t uid) { if (uid != m_uid && !is_superuser()) return -EPERM; m_uid = uid; m_euid = uid; return 0; } int Process::sys$setgid(gid_t gid) { if (gid != m_gid && !is_superuser()) return -EPERM; m_gid = gid; m_egid = gid; return 0; } unsigned Process::sys$alarm(unsigned seconds) { unsigned previous_alarm_remaining = 0; if (m_alarm_deadline && m_alarm_deadline > g_uptime) { previous_alarm_remaining = (m_alarm_deadline - g_uptime) / TICKS_PER_SECOND; } if (!seconds) { m_alarm_deadline = 0; return previous_alarm_remaining; } m_alarm_deadline = g_uptime + seconds * TICKS_PER_SECOND; return previous_alarm_remaining; } int Process::sys$uname(utsname* buf) { if (!validate_write_typed(buf)) return -EFAULT; strcpy(buf->sysname, "Serenity"); strcpy(buf->release, "1.0-dev"); strcpy(buf->version, "FIXME"); strcpy(buf->machine, "i386"); LOCKER(*s_hostname_lock); strncpy(buf->nodename, s_hostname->characters(), sizeof(utsname::nodename)); return 0; } int Process::sys$isatty(int fd) { auto* description = file_description(fd); if (!description) return -EBADF; if (!description->is_tty()) return -ENOTTY; return 1; } int Process::sys$kill(pid_t pid, int signal) { if (signal < 0 || signal >= 32) return -EINVAL; if (pid == 0) { // FIXME: Send to same-group processes. ASSERT(pid != 0); } if (pid == -1) { // FIXME: Send to all processes. ASSERT(pid != -1); } if (pid == m_pid) { // FIXME: If we ignore this signal anyway, we don't need to block here, right? current->send_signal(signal, this); (void)current->block(Thread::SemiPermanentBlocker::Reason::Signal); return 0; } InterruptDisabler disabler; auto* peer = Process::from_pid(pid); if (!peer) return -ESRCH; // FIXME: Allow sending SIGCONT to everyone in the process group. // FIXME: Should setuid processes have some special treatment here? if (!is_superuser() && m_euid != peer->m_uid && m_uid != peer->m_uid) return -EPERM; if (peer->is_ring0() && signal == SIGKILL) { kprintf("%s(%u) attempted to send SIGKILL to ring 0 process %s(%u)\n", name().characters(), m_pid, peer->name().characters(), peer->pid()); return -EPERM; } peer->send_signal(signal, this); return 0; } int Process::sys$usleep(useconds_t usec) { if (!usec) return 0; u64 wakeup_time = current->sleep(usec / 1000); if (wakeup_time > g_uptime) { u32 ticks_left_until_original_wakeup_time = wakeup_time - g_uptime; return ticks_left_until_original_wakeup_time / TICKS_PER_SECOND; } return 0; } int Process::sys$sleep(unsigned seconds) { if (!seconds) return 0; u64 wakeup_time = current->sleep(seconds * TICKS_PER_SECOND); if (wakeup_time > g_uptime) { u32 ticks_left_until_original_wakeup_time = wakeup_time - g_uptime; return ticks_left_until_original_wakeup_time / TICKS_PER_SECOND; } return 0; } timeval kgettimeofday() { timeval tv; tv.tv_sec = RTC::boot_time() + PIT::seconds_since_boot(); tv.tv_usec = PIT::ticks_this_second() * 1000; return tv; } void kgettimeofday(timeval& tv) { tv = kgettimeofday(); } int Process::sys$gettimeofday(timeval* tv) { if (!validate_write_typed(tv)) return -EFAULT; kgettimeofday(*tv); return 0; } uid_t Process::sys$getuid() { return m_uid; } gid_t Process::sys$getgid() { return m_gid; } uid_t Process::sys$geteuid() { return m_euid; } gid_t Process::sys$getegid() { return m_egid; } pid_t Process::sys$getpid() { return m_pid; } pid_t Process::sys$getppid() { return m_ppid; } mode_t Process::sys$umask(mode_t mask) { auto old_mask = m_umask; m_umask = mask & 0777; return old_mask; } int Process::reap(Process& process) { int exit_status; { InterruptDisabler disabler; exit_status = (process.m_termination_status << 8) | process.m_termination_signal; if (process.ppid()) { auto* parent = Process::from_pid(process.ppid()); if (parent) { parent->m_ticks_in_user_for_dead_children += process.m_ticks_in_user + process.m_ticks_in_user_for_dead_children; parent->m_ticks_in_kernel_for_dead_children += process.m_ticks_in_kernel + process.m_ticks_in_kernel_for_dead_children; } } dbgprintf("reap: %s(%u) {%s}\n", process.name().characters(), process.pid(), process.main_thread().state_string()); ASSERT(process.is_dead()); g_processes->remove(&process); } delete &process; return exit_status; } pid_t Process::sys$waitpid(pid_t waitee, int* wstatus, int options) { dbgprintf("sys$waitpid(%d, %p, %d)\n", waitee, wstatus, options); if (!options) { // FIXME: This can't be right.. can it? Figure out how this should actually work. options = WEXITED; } if (wstatus) if (!validate_write_typed(wstatus)) return -EFAULT; int dummy_wstatus; int& exit_status = wstatus ? *wstatus : dummy_wstatus; { InterruptDisabler disabler; if (waitee != -1 && !Process::from_pid(waitee)) return -ECHILD; } if (options & WNOHANG) { // FIXME: Figure out what WNOHANG should do with stopped children. if (waitee == -1) { pid_t reaped_pid = 0; InterruptDisabler disabler; for_each_child([&reaped_pid, &exit_status](Process& process) { if (process.is_dead()) { reaped_pid = process.pid(); exit_status = reap(process); } return IterationDecision::Continue; }); return reaped_pid; } else { ASSERT(waitee > 0); // FIXME: Implement other PID specs. InterruptDisabler disabler; auto* waitee_process = Process::from_pid(waitee); if (!waitee_process) return -ECHILD; if (waitee_process->is_dead()) { exit_status = reap(*waitee_process); return waitee; } return 0; } } pid_t waitee_pid = waitee; if (current->block(options, waitee_pid) == Thread::BlockResult::InterruptedBySignal) return -EINTR; InterruptDisabler disabler; // NOTE: If waitee was -1, m_waitee_pid will have been filled in by the scheduler. Process* waitee_process = Process::from_pid(waitee_pid); ASSERT(waitee_process); if (waitee_process->is_dead()) { exit_status = reap(*waitee_process); } else { ASSERT(waitee_process->main_thread().state() == Thread::State::Stopped); exit_status = 0x7f; } return waitee_pid; } enum class KernelMemoryCheckResult { NotInsideKernelMemory, AccessGranted, AccessDenied }; static KernelMemoryCheckResult check_kernel_memory_access(VirtualAddress vaddr, bool is_write) { auto& sections = multiboot_info_ptr->u.elf_sec; auto* kernel_program_headers = (Elf32_Phdr*)(sections.addr); for (unsigned i = 0; i < sections.num; ++i) { auto& segment = kernel_program_headers[i]; if (segment.p_type != PT_LOAD || !segment.p_vaddr || !segment.p_memsz) continue; if (vaddr.get() < segment.p_vaddr || vaddr.get() > (segment.p_vaddr + segment.p_memsz)) continue; if (is_write && !(kernel_program_headers[i].p_flags & PF_W)) return KernelMemoryCheckResult::AccessDenied; if (!is_write && !(kernel_program_headers[i].p_flags & PF_R)) return KernelMemoryCheckResult::AccessDenied; return KernelMemoryCheckResult::AccessGranted; } return KernelMemoryCheckResult::NotInsideKernelMemory; } bool Process::validate_read_from_kernel(VirtualAddress vaddr) const { if (vaddr.is_null()) return false; // We check extra carefully here since the first 4MB of the address space is identity-mapped. // This code allows access outside of the known used address ranges to get caught. auto kmc_result = check_kernel_memory_access(vaddr, false); if (kmc_result == KernelMemoryCheckResult::AccessGranted) return true; if (kmc_result == KernelMemoryCheckResult::AccessDenied) return false; if (is_kmalloc_address(vaddr.as_ptr())) return true; return validate_read(vaddr.as_ptr(), 1); } bool Process::validate_read_str(const char* str) { if (!validate_read(str, 1)) return false; return validate_read(str, strlen(str) + 1); } bool Process::validate_read(const void* address, ssize_t size) const { ASSERT(size >= 0); VirtualAddress first_address((u32)address); VirtualAddress last_address = first_address.offset(size - 1); if (is_ring0()) { auto kmc_result = check_kernel_memory_access(first_address, false); if (kmc_result == KernelMemoryCheckResult::AccessGranted) return true; if (kmc_result == KernelMemoryCheckResult::AccessDenied) return false; if (is_kmalloc_address(address)) return true; } ASSERT(size); if (!size) return false; if (first_address.page_base() != last_address.page_base()) { if (!MM.validate_user_read(*this, last_address)) return false; } return MM.validate_user_read(*this, first_address); } bool Process::validate_write(void* address, ssize_t size) const { ASSERT(size >= 0); VirtualAddress first_address((u32)address); VirtualAddress last_address = first_address.offset(size - 1); if (is_ring0()) { if (is_kmalloc_address(address)) return true; auto kmc_result = check_kernel_memory_access(first_address, true); if (kmc_result == KernelMemoryCheckResult::AccessGranted) return true; if (kmc_result == KernelMemoryCheckResult::AccessDenied) return false; } if (!size) return false; if (first_address.page_base() != last_address.page_base()) { if (!MM.validate_user_write(*this, last_address)) return false; } return MM.validate_user_write(*this, last_address); } pid_t Process::sys$getsid(pid_t pid) { if (pid == 0) return m_sid; InterruptDisabler disabler; auto* process = Process::from_pid(pid); if (!process) return -ESRCH; if (m_sid != process->m_sid) return -EPERM; return process->m_sid; } pid_t Process::sys$setsid() { InterruptDisabler disabler; bool found_process_with_same_pgid_as_my_pid = false; Process::for_each_in_pgrp(pid(), [&](auto&) { found_process_with_same_pgid_as_my_pid = true; return false; }); if (found_process_with_same_pgid_as_my_pid) return -EPERM; m_sid = m_pid; m_pgid = m_pid; return m_sid; } pid_t Process::sys$getpgid(pid_t pid) { if (pid == 0) return m_pgid; InterruptDisabler disabler; // FIXME: Use a ProcessHandle auto* process = Process::from_pid(pid); if (!process) return -ESRCH; return process->m_pgid; } pid_t Process::sys$getpgrp() { return m_pgid; } static pid_t get_sid_from_pgid(pid_t pgid) { InterruptDisabler disabler; auto* group_leader = Process::from_pid(pgid); if (!group_leader) return -1; return group_leader->sid(); } int Process::sys$setpgid(pid_t specified_pid, pid_t specified_pgid) { InterruptDisabler disabler; // FIXME: Use a ProcessHandle pid_t pid = specified_pid ? specified_pid : m_pid; if (specified_pgid < 0) return -EINVAL; auto* process = Process::from_pid(pid); if (!process) return -ESRCH; pid_t new_pgid = specified_pgid ? specified_pgid : process->m_pid; pid_t current_sid = get_sid_from_pgid(process->m_pgid); pid_t new_sid = get_sid_from_pgid(new_pgid); if (current_sid != new_sid) { // Can't move a process between sessions. return -EPERM; } // FIXME: There are more EPERM conditions to check for here.. process->m_pgid = new_pgid; return 0; } int Process::sys$ioctl(int fd, unsigned request, unsigned arg) { auto* description = file_description(fd); if (!description) return -EBADF; return description->file().ioctl(*description, request, arg); } int Process::sys$getdtablesize() { return m_max_open_file_descriptors; } int Process::sys$dup(int old_fd) { auto* description = file_description(old_fd); if (!description) return -EBADF; int new_fd = alloc_fd(0); if (new_fd < 0) return new_fd; m_fds[new_fd].set(*description); return new_fd; } int Process::sys$dup2(int old_fd, int new_fd) { auto* description = file_description(old_fd); if (!description) return -EBADF; if (new_fd < 0 || new_fd >= m_max_open_file_descriptors) return -EINVAL; m_fds[new_fd].set(*description); return new_fd; } int Process::sys$sigprocmask(int how, const sigset_t* set, sigset_t* old_set) { if (old_set) { if (!validate_write_typed(old_set)) return -EFAULT; *old_set = current->m_signal_mask; } if (set) { if (!validate_read_typed(set)) return -EFAULT; switch (how) { case SIG_BLOCK: current->m_signal_mask &= ~(*set); break; case SIG_UNBLOCK: current->m_signal_mask |= *set; break; case SIG_SETMASK: current->m_signal_mask = *set; break; default: return -EINVAL; } } return 0; } int Process::sys$sigpending(sigset_t* set) { if (!validate_write_typed(set)) return -EFAULT; *set = current->m_pending_signals; return 0; } int Process::sys$sigaction(int signum, const sigaction* act, sigaction* old_act) { if (signum < 1 || signum >= 32 || signum == SIGKILL || signum == SIGSTOP) return -EINVAL; if (!validate_read_typed(act)) return -EFAULT; InterruptDisabler disabler; // FIXME: This should use a narrower lock. Maybe a way to ignore signals temporarily? auto& action = current->m_signal_action_data[signum]; if (old_act) { if (!validate_write_typed(old_act)) return -EFAULT; old_act->sa_flags = action.flags; old_act->sa_sigaction = (decltype(old_act->sa_sigaction))action.handler_or_sigaction.get(); } action.flags = act->sa_flags; action.handler_or_sigaction = VirtualAddress((u32)act->sa_sigaction); return 0; } int Process::sys$getgroups(ssize_t count, gid_t* gids) { if (count < 0) return -EINVAL; if (!count) return m_gids.size(); if (count != (int)m_gids.size()) return -EINVAL; if (!validate_write_typed(gids, m_gids.size())) return -EFAULT; size_t i = 0; for (auto gid : m_gids) gids[i++] = gid; return 0; } int Process::sys$setgroups(ssize_t count, const gid_t* gids) { if (count < 0) return -EINVAL; if (!is_superuser()) return -EPERM; if (!validate_read(gids, count)) return -EFAULT; m_gids.clear(); m_gids.set(m_gid); for (int i = 0; i < count; ++i) m_gids.set(gids[i]); return 0; } int Process::sys$mkdir(const char* pathname, mode_t mode) { if (!validate_read_str(pathname)) return -EFAULT; size_t pathname_length = strlen(pathname); if (pathname_length == 0) return -EINVAL; if (pathname_length >= 255) return -ENAMETOOLONG; return VFS::the().mkdir(StringView(pathname, pathname_length), mode & ~umask(), current_directory()); } clock_t Process::sys$times(tms* times) { if (!validate_write_typed(times)) return -EFAULT; times->tms_utime = m_ticks_in_user; times->tms_stime = m_ticks_in_kernel; times->tms_cutime = m_ticks_in_user_for_dead_children; times->tms_cstime = m_ticks_in_kernel_for_dead_children; return g_uptime & 0x7fffffff; } int Process::sys$select(const Syscall::SC_select_params* params) { // FIXME: Return -EINTR if a signal is caught. // FIXME: Return -EINVAL if timeout is invalid. if (!validate_read_typed(params)) return -EFAULT; if (params->writefds && !validate_write_typed(params->writefds)) return -EFAULT; if (params->readfds && !validate_write_typed(params->readfds)) return -EFAULT; if (params->exceptfds && !validate_write_typed(params->exceptfds)) return -EFAULT; if (params->timeout && !validate_read_typed(params->timeout)) return -EFAULT; if (params->nfds < 0) return -EINVAL; timeval timeout; bool select_has_timeout = false; if (params->timeout && (params->timeout->tv_sec || params->timeout->tv_usec)) { timeval_add(kgettimeofday(), *params->timeout, timeout); select_has_timeout = true; } Thread::SelectBlocker::FDVector rfds; Thread::SelectBlocker::FDVector wfds; Thread::SelectBlocker::FDVector efds; auto transfer_fds = [&](auto* fds, auto& vector) -> int { vector.clear_with_capacity(); if (!fds) return 0; for (int fd = 0; fd < params->nfds; ++fd) { if (FD_ISSET(fd, fds)) { if (!file_description(fd)) return -EBADF; vector.append(fd); } } return 0; }; if (int error = transfer_fds(params->writefds, wfds)) return error; if (int error = transfer_fds(params->readfds, rfds)) return error; if (int error = transfer_fds(params->exceptfds, efds)) return error; #if defined(DEBUG_IO) || defined(DEBUG_POLL_SELECT) dbgprintf("%s<%u> selecting on (read:%u, write:%u), timeout=%p\n", name().characters(), pid(), rfds.size(), wfds.size(), params->timeout); #endif if (!params->timeout || select_has_timeout) { if (current->block(timeout, select_has_timeout, rfds, wfds, efds) == Thread::BlockResult::InterruptedBySignal) return -EINTR; } int marked_fd_count = 0; auto mark_fds = [&](auto* fds, auto& vector, auto should_mark) { if (!fds) return; FD_ZERO(fds); for (int fd : vector) { if (auto* description = file_description(fd); description && should_mark(*description)) { FD_SET(fd, fds); ++marked_fd_count; } } }; mark_fds(params->readfds, rfds, [](auto& description) { return description.can_read(); }); mark_fds(params->writefds, wfds, [](auto& description) { return description.can_write(); }); // FIXME: We should also mark params->exceptfds as appropriate. return marked_fd_count; } int Process::sys$poll(pollfd* fds, int nfds, int timeout) { if (!validate_read_typed(fds)) return -EFAULT; Thread::SelectBlocker::FDVector rfds; Thread::SelectBlocker::FDVector wfds; for (int i = 0; i < nfds; ++i) { if (fds[i].events & POLLIN) rfds.append(fds[i].fd); if (fds[i].events & POLLOUT) wfds.append(fds[i].fd); } timeval actual_timeout; bool has_timeout = false; if (timeout >= 0) { // poll is in ms, we want s/us. struct timeval tvtimeout; tvtimeout.tv_sec = 0; while (timeout >= 1000) { tvtimeout.tv_sec += 1; timeout -= 1000; } tvtimeout.tv_usec = timeout * 1000; timeval_add(kgettimeofday(), tvtimeout, actual_timeout); has_timeout = true; } #if defined(DEBUG_IO) || defined(DEBUG_POLL_SELECT) dbgprintf("%s<%u> polling on (read:%u, write:%u), timeout=%d\n", name().characters(), pid(), rfds.size(), wfds.size(), timeout); #endif if (has_timeout || timeout < 0) { if (current->block(actual_timeout, has_timeout, rfds, wfds, Thread::SelectBlocker::FDVector()) == Thread::BlockResult::InterruptedBySignal) return -EINTR; } int fds_with_revents = 0; for (int i = 0; i < nfds; ++i) { auto* description = file_description(fds[i].fd); if (!description) { fds[i].revents = POLLNVAL; continue; } fds[i].revents = 0; if (fds[i].events & POLLIN && description->can_read()) fds[i].revents |= POLLIN; if (fds[i].events & POLLOUT && description->can_write()) fds[i].revents |= POLLOUT; if (fds[i].revents) ++fds_with_revents; } return fds_with_revents; } Custody& Process::current_directory() { if (!m_cwd) m_cwd = VFS::the().root_custody(); return *m_cwd; } int Process::sys$link(const char* old_path, const char* new_path) { if (!validate_read_str(old_path)) return -EFAULT; if (!validate_read_str(new_path)) return -EFAULT; return VFS::the().link(StringView(old_path), StringView(new_path), current_directory()); } int Process::sys$unlink(const char* pathname) { if (!validate_read_str(pathname)) return -EFAULT; return VFS::the().unlink(StringView(pathname), current_directory()); } int Process::sys$symlink(const char* target, const char* linkpath) { if (!validate_read_str(target)) return -EFAULT; if (!validate_read_str(linkpath)) return -EFAULT; return VFS::the().symlink(StringView(target), StringView(linkpath), current_directory()); } int Process::sys$rmdir(const char* pathname) { if (!validate_read_str(pathname)) return -EFAULT; return VFS::the().rmdir(StringView(pathname), current_directory()); } int Process::sys$read_tsc(u32* lsw, u32* msw) { if (!validate_write_typed(lsw)) return -EFAULT; if (!validate_write_typed(msw)) return -EFAULT; read_tsc(*lsw, *msw); return 0; } int Process::sys$chmod(const char* pathname, mode_t mode) { if (!validate_read_str(pathname)) return -EFAULT; return VFS::the().chmod(StringView(pathname), mode, current_directory()); } int Process::sys$fchmod(int fd, mode_t mode) { auto* description = file_description(fd); if (!description) return -EBADF; return description->fchmod(mode); } int Process::sys$fchown(int fd, uid_t uid, gid_t gid) { auto* description = file_description(fd); if (!description) return -EBADF; return description->chown(uid, gid); } int Process::sys$chown(const char* pathname, uid_t uid, gid_t gid) { if (!validate_read_str(pathname)) return -EFAULT; return VFS::the().chown(StringView(pathname), uid, gid, current_directory()); } void Process::finalize() { ASSERT(current == g_finalizer); dbgprintf("Finalizing Process %s(%u)\n", m_name.characters(), m_pid); m_fds.clear(); m_tty = nullptr; m_executable = nullptr; m_cwd = nullptr; m_elf_loader = nullptr; disown_all_shared_buffers(); { InterruptDisabler disabler; if (auto* parent_process = Process::from_pid(m_ppid)) { // FIXME(Thread): What should we do here? Should we look at all threads' signal actions? if (parent_process->main_thread().m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT) { // NOTE: If the parent doesn't care about this process, let it go. m_ppid = 0; } else { parent_process->send_signal(SIGCHLD, this); } } } m_dead = true; } void Process::die() { if (m_tracer) m_tracer->set_dead(); { InterruptDisabler disabler; for_each_thread([](Thread& thread) { if (thread.state() != Thread::State::Dead) thread.set_state(Thread::State::Dying); return IterationDecision::Continue; }); } if (!Scheduler::is_active()) Scheduler::pick_next_and_switch_now(); } size_t Process::amount_virtual() const { size_t amount = 0; for (auto& region : m_regions) { amount += region.size(); } return amount; } size_t Process::amount_resident() const { // FIXME: This will double count if multiple regions use the same physical page. size_t amount = 0; for (auto& region : m_regions) { amount += region.amount_resident(); } return amount; } size_t Process::amount_shared() const { // FIXME: This will double count if multiple regions use the same physical page. // FIXME: It doesn't work at the moment, since it relies on PhysicalPage ref counts, // and each PhysicalPage is only reffed by its VMObject. This needs to be refactored // so that every Region contributes +1 ref to each of its PhysicalPages. size_t amount = 0; for (auto& region : m_regions) { amount += region.amount_shared(); } return amount; } int Process::sys$socket(int domain, int type, int protocol) { int fd = alloc_fd(); if (fd < 0) return fd; auto result = Socket::create(domain, type, protocol); if (result.is_error()) return result.error(); auto description = FileDescription::create(*result.value()); unsigned flags = 0; if (type & SOCK_CLOEXEC) flags |= FD_CLOEXEC; if (type & SOCK_NONBLOCK) description->set_blocking(false); m_fds[fd].set(move(description), flags); return fd; } int Process::sys$bind(int sockfd, const sockaddr* address, socklen_t address_length) { if (!validate_read(address, address_length)) return -EFAULT; auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); return socket.bind(address, address_length); } int Process::sys$listen(int sockfd, int backlog) { auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); return socket.listen(backlog); } int Process::sys$accept(int accepting_socket_fd, sockaddr* address, socklen_t* address_size) { if (!validate_write_typed(address_size)) return -EFAULT; if (!validate_write(address, *address_size)) return -EFAULT; int accepted_socket_fd = alloc_fd(); if (accepted_socket_fd < 0) return accepted_socket_fd; auto* accepting_socket_description = file_description(accepting_socket_fd); if (!accepting_socket_description) return -EBADF; if (!accepting_socket_description->is_socket()) return -ENOTSOCK; auto& socket = *accepting_socket_description->socket(); if (!socket.can_accept()) { if (accepting_socket_description->is_blocking()) { if (current->block(*accepting_socket_description) == Thread::BlockResult::InterruptedBySignal) return -EINTR; } else { return -EAGAIN; } } auto accepted_socket = socket.accept(); ASSERT(accepted_socket); bool success = accepted_socket->get_peer_address(address, address_size); ASSERT(success); auto accepted_socket_description = FileDescription::create(*accepted_socket); // NOTE: The accepted socket inherits fd flags from the accepting socket. // I'm not sure if this matches other systems but it makes sense to me. accepted_socket_description->set_blocking(accepting_socket_description->is_blocking()); m_fds[accepted_socket_fd].set(move(accepted_socket_description), m_fds[accepting_socket_fd].flags); return accepted_socket_fd; } int Process::sys$connect(int sockfd, const sockaddr* address, socklen_t address_size) { if (!validate_read(address, address_size)) return -EFAULT; int fd = alloc_fd(); if (fd < 0) return fd; auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); return socket.connect(*description, address, address_size, description->is_blocking() ? ShouldBlock::Yes : ShouldBlock::No); } ssize_t Process::sys$sendto(const Syscall::SC_sendto_params* params) { if (!validate_read_typed(params)) return -EFAULT; int sockfd = params->sockfd; const void* data = params->data; size_t data_length = params->data_length; int flags = params->flags; auto* addr = (const sockaddr*)params->addr; auto addr_length = (socklen_t)params->addr_length; if (!validate_read(data, data_length)) return -EFAULT; if (addr && !validate_read(addr, addr_length)) return -EFAULT; auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); kprintf("sendto %p (%u), flags=%u, addr: %p (%u)\n", data, data_length, flags, addr, addr_length); return socket.sendto(*description, data, data_length, flags, addr, addr_length); } ssize_t Process::sys$recvfrom(const Syscall::SC_recvfrom_params* params) { if (!validate_read_typed(params)) return -EFAULT; int sockfd = params->sockfd; void* buffer = params->buffer; size_t buffer_length = params->buffer_length; int flags = params->flags; auto* addr = (sockaddr*)params->addr; auto* addr_length = (socklen_t*)params->addr_length; if (!validate_write(buffer, buffer_length)) return -EFAULT; if (addr_length) { if (!validate_write_typed(addr_length)) return -EFAULT; if (!validate_write(addr, *addr_length)) return -EFAULT; } else if (addr) { return -EINVAL; } auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); bool original_blocking = description->is_blocking(); if (flags & MSG_DONTWAIT) description->set_blocking(false); auto nrecv = socket.recvfrom(*description, buffer, buffer_length, flags, addr, addr_length); if (flags & MSG_DONTWAIT) description->set_blocking(original_blocking); return nrecv; } int Process::sys$getsockname(int sockfd, sockaddr* addr, socklen_t* addrlen) { if (!validate_read_typed(addrlen)) return -EFAULT; if (*addrlen <= 0) return -EINVAL; if (!validate_write(addr, *addrlen)) return -EFAULT; auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); if (!socket.get_local_address(addr, addrlen)) return -EINVAL; // FIXME: Should this be another error? I'm not sure. return 0; } int Process::sys$getpeername(int sockfd, sockaddr* addr, socklen_t* addrlen) { if (!validate_read_typed(addrlen)) return -EFAULT; if (*addrlen <= 0) return -EINVAL; if (!validate_write(addr, *addrlen)) return -EFAULT; auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); if (socket.setup_state() != Socket::SetupState::Completed) return -ENOTCONN; if (!socket.get_peer_address(addr, addrlen)) return -EINVAL; // FIXME: Should this be another error? I'm not sure. return 0; } int Process::sys$sched_setparam(pid_t pid, const struct sched_param* param) { if (!validate_read_typed(param)) return -EFAULT; InterruptDisabler disabler; auto* peer = this; if (pid != 0) peer = Process::from_pid(pid); if (!peer) return -ESRCH; if (!is_superuser() && m_euid != peer->m_uid && m_uid != peer->m_uid) return -EPERM; if (param->sched_priority < Process::FirstPriority || param->sched_priority > Process::LastPriority) return -EINVAL; peer->set_priority(Priority(param->sched_priority)); return 0; } int Process::sys$sched_getparam(pid_t pid, struct sched_param* param) { if (!validate_read_typed(param)) return -EFAULT; InterruptDisabler disabler; auto* peer = this; if (pid != 0) peer = Process::from_pid(pid); if (!peer) return -ESRCH; if (!is_superuser() && m_euid != peer->m_uid && m_uid != peer->m_uid) return -EPERM; param->sched_priority = peer->priority(); return 0; } int Process::sys$getsockopt(const Syscall::SC_getsockopt_params* params) { if (!validate_read_typed(params)) return -EFAULT; int sockfd = params->sockfd; int level = params->level; int option = params->option; auto* value = params->value; auto* value_size = (socklen_t*)params->value_size; if (!validate_write_typed(value_size)) return -EFAULT; if (!validate_write(value, *value_size)) return -EFAULT; auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); return socket.getsockopt(level, option, value, value_size); } int Process::sys$setsockopt(const Syscall::SC_setsockopt_params* params) { if (!validate_read_typed(params)) return -EFAULT; int sockfd = params->sockfd; int level = params->level; int option = params->option; auto* value = params->value; auto value_size = (socklen_t)params->value_size; if (!validate_read(value, value_size)) return -EFAULT; auto* description = file_description(sockfd); if (!description) return -EBADF; if (!description->is_socket()) return -ENOTSOCK; auto& socket = *description->socket(); return socket.setsockopt(level, option, value, value_size); } void Process::disown_all_shared_buffers() { LOCKER(shared_buffers().lock()); Vector buffers_to_disown; for (auto& it : shared_buffers().resource()) buffers_to_disown.append(it.value.ptr()); for (auto* shared_buffer : buffers_to_disown) shared_buffer->disown(m_pid); } int Process::sys$create_shared_buffer(int size, void** buffer) { if (!size || size < 0) return -EINVAL; size = PAGE_ROUND_UP(size); if (!validate_write_typed(buffer)) return -EFAULT; LOCKER(shared_buffers().lock()); static int s_next_shared_buffer_id; int shared_buffer_id = ++s_next_shared_buffer_id; auto shared_buffer = make(shared_buffer_id, size); shared_buffer->share_with(m_pid); *buffer = shared_buffer->ref_for_process_and_get_address(*this); ASSERT((int)shared_buffer->size() >= size); #ifdef SHARED_BUFFER_DEBUG kprintf("%s(%u): Created shared buffer %d @ %p (%u bytes, vmo is %u)\n", name().characters(), pid(), shared_buffer_id, *buffer, size, shared_buffer->size()); #endif shared_buffers().resource().set(shared_buffer_id, move(shared_buffer)); return shared_buffer_id; } int Process::sys$share_buffer_with(int shared_buffer_id, pid_t peer_pid) { if (!peer_pid || peer_pid < 0 || peer_pid == m_pid) return -EINVAL; LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shared_buffer_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; { InterruptDisabler disabler; auto* peer = Process::from_pid(peer_pid); if (!peer) return -ESRCH; } shared_buffer.share_with(peer_pid); return 0; } int Process::sys$share_buffer_globally(int shared_buffer_id) { LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shared_buffer_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; shared_buffer.share_globally(); return 0; } int Process::sys$release_shared_buffer(int shared_buffer_id) { LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shared_buffer_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; #ifdef SHARED_BUFFER_DEBUG kprintf("%s(%u): Releasing shared buffer %d, buffer count: %u\n", name().characters(), pid(), shared_buffer_id, shared_buffers().resource().size()); #endif shared_buffer.deref_for_process(*this); return 0; } void* Process::sys$get_shared_buffer(int shared_buffer_id) { LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shared_buffer_id); if (it == shared_buffers().resource().end()) return (void*)-EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return (void*)-EPERM; #ifdef SHARED_BUFFER_DEBUG kprintf("%s(%u): Retaining shared buffer %d, buffer count: %u\n", name().characters(), pid(), shared_buffer_id, shared_buffers().resource().size()); #endif return shared_buffer.ref_for_process_and_get_address(*this); } int Process::sys$seal_shared_buffer(int shared_buffer_id) { LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shared_buffer_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; #ifdef SHARED_BUFFER_DEBUG kprintf("%s(%u): Sealing shared buffer %d\n", name().characters(), pid(), shared_buffer_id); #endif shared_buffer.seal(); return 0; } int Process::sys$get_shared_buffer_size(int shared_buffer_id) { LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(shared_buffer_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; #ifdef SHARED_BUFFER_DEBUG kprintf("%s(%u): Get shared buffer %d size: %u\n", name().characters(), pid(), shared_buffer_id, shared_buffers().resource().size()); #endif return shared_buffer.size(); } const char* to_string(Process::Priority priority) { switch (priority) { case Process::IdlePriority: return "Idle"; case Process::LowPriority: return "Low"; case Process::NormalPriority: return "Normal"; case Process::HighPriority: return "High"; } kprintf("to_string(Process::Priority): Invalid priority: %u\n", priority); ASSERT_NOT_REACHED(); return nullptr; } void Process::terminate_due_to_signal(u8 signal) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(signal < 32); dbgprintf("terminate_due_to_signal %s(%u) <- %u\n", name().characters(), pid(), signal); m_termination_status = 0; m_termination_signal = signal; die(); } void Process::send_signal(u8 signal, Process* sender) { // FIXME(Thread): Find the appropriate thread to deliver the signal to. main_thread().send_signal(signal, sender); } int Process::thread_count() const { int count = 0; for_each_thread([&count](auto&) { ++count; return IterationDecision::Continue; }); return count; } int Process::sys$create_thread(int (*entry)(void*), void* argument) { if (!validate_read((const void*)entry, sizeof(void*))) return -EFAULT; auto* thread = new Thread(*this); auto& tss = thread->tss(); tss.eip = (u32)entry; tss.eflags = 0x0202; tss.cr3 = page_directory().cr3(); thread->make_userspace_stack_for_secondary_thread(argument); thread->set_state(Thread::State::Runnable); return thread->tid(); } void Process::sys$exit_thread(int code) { cli(); if (¤t->process().main_thread() == current) { sys$exit(code); return; } current->set_state(Thread::State::Dying); big_lock().unlock_if_locked(); Scheduler::pick_next_and_switch_now(); ASSERT_NOT_REACHED(); } int Process::sys$gettid() { return current->tid(); } int Process::sys$donate(int tid) { if (tid < 0) return -EINVAL; InterruptDisabler disabler; Thread* beneficiary = nullptr; for_each_thread([&](Thread& thread) { if (thread.tid() == tid) { beneficiary = &thread; return IterationDecision::Break; } return IterationDecision::Continue; }); if (!beneficiary) return -ENOTHREAD; Scheduler::donate_to(beneficiary, "sys$donate"); return 0; } int Process::sys$rename(const char* oldpath, const char* newpath) { if (!validate_read_str(oldpath)) return -EFAULT; if (!validate_read_str(newpath)) return -EFAULT; return VFS::the().rename(StringView(oldpath), StringView(newpath), current_directory()); } int Process::sys$shm_open(const char* name, int flags, mode_t mode) { if (!validate_read_str(name)) return -EFAULT; int fd = alloc_fd(); if (fd < 0) return fd; auto shm_or_error = SharedMemory::open(String(name), flags, mode); if (shm_or_error.is_error()) return shm_or_error.error(); auto description = FileDescription::create(shm_or_error.value()); m_fds[fd].set(move(description), FD_CLOEXEC); return fd; } int Process::sys$shm_unlink(const char* name) { if (!validate_read_str(name)) return -EFAULT; return SharedMemory::unlink(String(name)); } int Process::sys$ftruncate(int fd, off_t length) { auto* description = file_description(fd); if (!description) return -EBADF; // FIXME: Check that fd is writable, otherwise EINVAL. return description->truncate(length); } int Process::sys$watch_file(const char* path, int path_length) { if (!validate_read(path, path_length)) return -EFAULT; auto custody_or_error = VFS::the().resolve_path({ path, path_length }, current_directory()); if (custody_or_error.is_error()) return custody_or_error.error(); auto& custody = custody_or_error.value(); auto& inode = custody->inode(); int fd = alloc_fd(); if (fd < 0) return fd; m_fds[fd].set(FileDescription::create(*InodeWatcher::create(inode))); return fd; } int Process::sys$systrace(pid_t pid) { InterruptDisabler disabler; auto* peer = Process::from_pid(pid); if (!peer) return -ESRCH; if (peer->uid() != m_euid) return -EACCES; int fd = alloc_fd(); if (fd < 0) return fd; auto description = FileDescription::create(peer->ensure_tracer()); m_fds[fd].set(move(description), 0); return fd; } int Process::sys$halt() { if (!is_superuser()) return -EPERM; dbgprintf("acquiring FS locks...\n"); FS::lock_all(); dbgprintf("syncing mounted filesystems...\n"); FS::sync(); dbgprintf("attempting system shutdown...\n"); IO::out16(0x604, 0x2000); return ESUCCESS; } int Process::sys$reboot() { if (!is_superuser()) return -EPERM; dbgprintf("acquiring FS locks...\n"); FS::lock_all(); dbgprintf("syncing mounted filesystems...\n"); FS::sync(); dbgprintf("attempting reboot via KB Controller...\n"); IO::out8(0x64, 0xFE); return ESUCCESS; } int Process::sys$mount(const char* device_path, const char* mountpoint) { if (!is_superuser()) return -EPERM; if (!validate_read_str(device_path) || !validate_read_str(mountpoint)) return -EFAULT; dbg() << "mount: device " << device_path << " @ " << mountpoint; auto custody_or_error = VFS::the().resolve_path(mountpoint, current_directory()); if (custody_or_error.is_error()) return custody_or_error.error(); auto& mountpoint_custody = custody_or_error.value(); auto metadata_or_error = VFS::the().lookup_metadata(device_path, current_directory()); if (metadata_or_error.is_error()) return metadata_or_error.error(); auto major = metadata_or_error.value().major_device; auto minor = metadata_or_error.value().minor_device; auto* device = VFS::the().get_device(major, minor); if (!device) { dbg() << "mount: device (" << major << "," << minor << ") not found"; return -ENODEV; } if (!device->is_disk_device()) { dbg() << "mount: device (" << major << "," << minor << ") is not a DiskDevice"; return -ENODEV; } auto& disk_device = static_cast(*device); dbg() << "mount: attempting to mount device (" << major << "," << minor << ") on " << mountpoint; // We currently only support ext2. Sorry :^) auto ext2fs = Ext2FS::create(disk_device); if (!ext2fs->initialize()) { dbg() << "mount: could not find ext2 filesystem on " << device_path; return -ENODEV; } // Let's mount the volume now auto result = VFS::the().mount(ext2fs, mountpoint_custody); dbg() << "mount: successfully mounted " << device_path << " on " << mountpoint; return result; } ProcessTracer& Process::ensure_tracer() { if (!m_tracer) m_tracer = ProcessTracer::create(m_pid); return *m_tracer; } void Process::FileDescriptionAndFlags::clear() { description = nullptr; flags = 0; } void Process::FileDescriptionAndFlags::set(NonnullRefPtr&& d, u32 f) { description = move(d); flags = f; } int Process::sys$mknod(const char* pathname, mode_t mode, dev_t dev) { if (!validate_read_str(pathname)) return -EFAULT; return VFS::the().mknod(StringView(pathname), mode, dev, current_directory()); } int Process::sys$dump_backtrace() { dump_backtrace(); return 0; } int Process::sys$dbgputch(u8 ch) { IO::out8(0xe9, ch); return 0; } int Process::sys$dbgputstr(const u8* characters, int length) { if (!length) return 0; if (!validate_read(characters, length)) return -EFAULT; for (int i = 0; i < length; ++i) IO::out8(0xe9, characters[i]); return 0; } KBuffer Process::backtrace(ProcessInspectionHandle& handle) const { KBufferBuilder builder; for_each_thread([&](Thread& thread) { builder.appendf("Thread %d:\n", thread.tid()); builder.append(thread.backtrace(handle)); return IterationDecision::Continue; }); return builder.build(); } int Process::sys$set_process_icon(int icon_id) { LOCKER(shared_buffers().lock()); auto it = shared_buffers().resource().find(icon_id); if (it == shared_buffers().resource().end()) return -EINVAL; auto& shared_buffer = *(*it).value; if (!shared_buffer.is_shared_with(m_pid)) return -EPERM; m_icon_id = icon_id; return 0; }