#include "types.h" #include "Process.h" #include "kmalloc.h" #include "VGA.h" #include "StdLib.h" #include "i386.h" #include "system.h" #include #include #include #include "MemoryManager.h" #include "errno.h" #include "i8253.h" #include "RTC.h" #include "ProcFileSystem.h" #include #include #include "Syscall.h" //#define DEBUG_IO //#define TASK_DEBUG //#define FORK_DEBUG //#define SCHEDULER_DEBUG #define COOL_GLOBALS #define MAX_PROCESS_GIDS 32 static const dword scheduler_time_slice = 5; // *10 = 50ms #ifdef COOL_GLOBALS struct CoolGlobals { dword current_pid; }; CoolGlobals* g_cool_globals; #endif // FIXME: Only do a single validation for accesses that don't span multiple pages. // FIXME: Some places pass strlen(arg1) as arg2. This doesn't seem entirely perfect.. #define VALIDATE_USER_READ(b, s) \ do { \ LinearAddress laddr((dword)(b)); \ if (!validate_user_read(laddr) || !validate_user_read(laddr.offset((s) - 1))) \ return -EFAULT; \ } while(0) #define VALIDATE_USER_WRITE(b, s) \ do { \ LinearAddress laddr((dword)(b)); \ if (!validate_user_write(laddr) || !validate_user_write(laddr.offset((s) - 1))) \ return -EFAULT; \ } while(0) static const DWORD defaultStackSize = 16384; Process* current; Process* s_kernelProcess; static pid_t next_pid; static InlineLinkedList* s_processes; static InlineLinkedList* s_deadProcesses; static String* s_hostname; static String& hostnameStorage(InterruptDisabler&) { ASSERT(s_hostname); return *s_hostname; } static String getHostname() { InterruptDisabler disabler; return hostnameStorage(disabler).isolatedCopy(); } static bool contextSwitch(Process*); static void redoKernelProcessTSS() { if (!s_kernelProcess->selector()) s_kernelProcess->setSelector(gdt_alloc_entry()); auto& tssDescriptor = getGDTEntry(s_kernelProcess->selector()); tssDescriptor.setBase(&s_kernelProcess->tss()); tssDescriptor.setLimit(0xffff); tssDescriptor.dpl = 0; tssDescriptor.segment_present = 1; tssDescriptor.granularity = 1; tssDescriptor.zero = 0; tssDescriptor.operation_size = 1; tssDescriptor.descriptor_type = 0; tssDescriptor.type = 9; flushGDT(); } void Process::prepForIRETToNewProcess() { redoKernelProcessTSS(); s_kernelProcess->tss().backlink = current->selector(); loadTaskRegister(s_kernelProcess->selector()); } static void hlt_loop() { for (;;) { asm volatile("hlt"); } } void Process::initialize() { #ifdef COOL_GLOBALS g_cool_globals = (CoolGlobals*)0x1000; #endif current = nullptr; next_pid = 0; s_processes = new InlineLinkedList; s_deadProcesses = new InlineLinkedList; s_kernelProcess = Process::createKernelProcess(hlt_loop, "colonel"); s_hostname = new String("birx"); redoKernelProcessTSS(); loadTaskRegister(s_kernelProcess->selector()); } template static void forEachProcess(Callback callback) { ASSERT_INTERRUPTS_DISABLED(); for (auto* process = s_processes->head(); process; process = process->next()) { if (!callback(*process)) break; } } void Process::for_each_in_pgrp(pid_t pgid, Function callback) { ASSERT_INTERRUPTS_DISABLED(); for (auto* process = s_processes->head(); process; process = process->next()) { if (process->pgid() == pgid) callback(*process); } } Vector Process::allProcesses() { InterruptDisabler disabler; Vector processes; processes.ensureCapacity(s_processes->sizeSlow()); for (auto* process = s_processes->head(); process; process = process->next()) processes.append(process); return processes; } Region* Process::allocate_region(LinearAddress laddr, size_t size, String&& name, bool is_readable, bool is_writable) { // FIXME: This needs sanity checks. What if this overlaps existing regions? if (laddr.is_null()) { laddr = m_nextRegion; m_nextRegion = m_nextRegion.offset(size).offset(PAGE_SIZE); } laddr.mask(0xfffff000); unsigned page_count = ceilDiv(size, PAGE_SIZE); auto physical_pages = MM.allocate_physical_pages(page_count); ASSERT(physical_pages.size() == page_count); m_regions.append(adopt(*new Region(laddr, size, move(physical_pages), move(name), is_readable, is_writable))); MM.mapRegion(*this, *m_regions.last()); return m_regions.last().ptr(); } bool Process::deallocate_region(Region& region) { InterruptDisabler disabler; for (size_t i = 0; i < m_regions.size(); ++i) { if (m_regions[i].ptr() == ®ion) { MM.unmapRegion(*this, region); m_regions.remove(i); return true; } } return false; } Region* Process::regionFromRange(LinearAddress laddr, size_t size) { for (auto& region : m_regions) { if (region->linearAddress == laddr && region->size == size) return region.ptr(); } return nullptr; } int Process::sys$set_mmap_name(void* addr, size_t size, const char* name) { VALIDATE_USER_READ(name, strlen(name)); auto* region = regionFromRange(LinearAddress((dword)addr), size); if (!region) return -EINVAL; region->name = name; return 0; } void* Process::sys$mmap(void* addr, size_t size) { InterruptDisabler disabler; // FIXME: Implement mapping at a client-preferred address. ASSERT(addr == nullptr); auto* region = allocate_region(LinearAddress(), size, "mmap"); if (!region) return (void*)-1; MM.mapRegion(*this, *region); return (void*)region->linearAddress.get(); } int Process::sys$munmap(void* addr, size_t size) { InterruptDisabler disabler; auto* region = regionFromRange(LinearAddress((dword)addr), size); if (!region) return -1; if (!deallocate_region(*region)) return -1; return 0; } int Process::sys$gethostname(char* buffer, size_t size) { VALIDATE_USER_WRITE(buffer, size); auto hostname = getHostname(); if (size < (hostname.length() + 1)) return -ENAMETOOLONG; memcpy(buffer, hostname.characters(), size); return 0; } Process* Process::fork(RegisterDump& regs) { auto* child = new Process(String(m_name), m_uid, m_gid, m_pid, m_ring, m_cwd.copyRef(), m_executable.copyRef(), m_tty, this); #ifdef FORK_DEBUG dbgprintf("fork: child=%p\n", child); #endif #if 0 // FIXME: An honest fork() would copy these. Needs a Vector copy ctor. child->m_arguments = m_arguments; child->m_initialEnvironment = m_initialEnvironment; #endif for (auto& region : m_regions) { #ifdef FORK_DEBUG dbgprintf("fork: cloning Region{%p}\n", region.ptr()); #endif auto cloned_region = region->clone(); child->m_regions.append(move(cloned_region)); MM.mapRegion(*child, *child->m_regions.last()); } child->m_tss.eax = 0; // fork() returns 0 in the child :^) child->m_tss.ebx = regs.ebx; child->m_tss.ecx = regs.ecx; child->m_tss.edx = regs.edx; child->m_tss.ebp = regs.ebp; child->m_tss.esp = regs.esp_if_crossRing; child->m_tss.esi = regs.esi; child->m_tss.edi = regs.edi; child->m_tss.eflags = regs.eflags; child->m_tss.eip = regs.eip; child->m_tss.cs = regs.cs; child->m_tss.ds = regs.ds; child->m_tss.es = regs.es; child->m_tss.fs = regs.fs; child->m_tss.gs = regs.gs; child->m_tss.ss = regs.ss_if_crossRing; #ifdef FORK_DEBUG dbgprintf("fork: child will begin executing at %w:%x with stack %w:%x\n", child->m_tss.cs, child->m_tss.eip, child->m_tss.ss, child->m_tss.esp); #endif ProcFileSystem::the().addProcess(*child); s_processes->prepend(child); system.nprocess++; #ifdef TASK_DEBUG kprintf("Process %u (%s) forked from %u @ %p\n", child->pid(), child->name().characters(), m_pid, child->m_tss.eip); #endif return child; } pid_t Process::sys$fork(RegisterDump& regs) { auto* child = fork(regs); ASSERT(child); return child->pid(); } int Process::exec(const String& path, Vector&& arguments, Vector&& environment) { auto parts = path.split('/'); if (parts.isEmpty()) return -ENOENT; int error; auto descriptor = VirtualFileSystem::the().open(path, error, 0, m_cwd ? m_cwd->inode : InodeIdentifier()); if (!descriptor) { ASSERT(error != 0); return error; } if (!descriptor->metadata().mayExecute(m_euid, m_gids)) return -EACCES; auto elfData = descriptor->readEntireFile(); if (!elfData) return -EIO; // FIXME: Get a more detailed error from VFS. dword entry_eip = 0; PageDirectory* old_page_directory; PageDirectory* new_page_directory; { InterruptDisabler disabler; // Okay, here comes the sleight of hand, pay close attention.. auto old_regions = move(m_regions); old_page_directory = m_page_directory; new_page_directory = reinterpret_cast(kmalloc_page_aligned(sizeof(PageDirectory))); MM.populate_page_directory(*new_page_directory); m_page_directory = new_page_directory; MM.enter_process_paging_scope(*this); ELFLoader loader(move(elfData)); loader.alloc_section_hook = [&] (LinearAddress laddr, size_t size, size_t alignment, bool is_readable, bool is_writable, const String& name) { ASSERT(size); size = ((size / 4096) + 1) * 4096; // FIXME: Use ceil_div? (void) allocate_region(laddr, size, String(name), is_readable, is_writable); return laddr.asPtr(); }; bool success = loader.load(); if (!success) { m_page_directory = old_page_directory; MM.enter_process_paging_scope(*this); MM.release_page_directory(*new_page_directory); m_regions = move(old_regions); kprintf("sys$execve: Failure loading %s\n", path.characters()); return -ENOEXEC; } entry_eip = (dword)loader.symbol_ptr("_start"); if (!entry_eip) { m_page_directory = old_page_directory; MM.enter_process_paging_scope(*this); MM.release_page_directory(*new_page_directory); m_regions = move(old_regions); return -ENOEXEC; } } InterruptDisabler disabler; if (current == this) loadTaskRegister(s_kernelProcess->selector()); m_name = parts.takeLast(); dword old_esp0 = m_tss.esp0; memset(&m_tss, 0, sizeof(m_tss)); m_tss.eflags = 0x0202; m_tss.eip = entry_eip; m_tss.cs = 0x1b; m_tss.ds = 0x23; m_tss.es = 0x23; m_tss.fs = 0x23; m_tss.gs = 0x23; m_tss.ss = 0x23; m_tss.cr3 = (dword)m_page_directory; m_stack_region = allocate_region(LinearAddress(), defaultStackSize, "stack"); ASSERT(m_stack_region); m_stackTop3 = m_stack_region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8; m_tss.esp = m_stackTop3; m_tss.ss0 = 0x10; m_tss.esp0 = old_esp0; m_tss.ss2 = m_pid; MM.release_page_directory(*old_page_directory); m_executable = descriptor->vnode(); m_arguments = move(arguments); m_initialEnvironment = move(environment); #ifdef TASK_DEBUG kprintf("Process %u (%s) exec'd %s @ %p\n", pid(), name().characters(), filename, m_tss.eip); #endif if (current == this) sched_yield(); return 0; } int Process::sys$execve(const char* filename, const char** argv, const char** envp) { VALIDATE_USER_READ(filename, strlen(filename)); if (argv) { for (size_t i = 0; argv[i]; ++i) { VALIDATE_USER_READ(argv[i], strlen(argv[i])); } } if (envp) { for (size_t i = 0; envp[i]; ++i) { VALIDATE_USER_READ(envp[i], strlen(envp[i])); } } String path(filename); auto parts = path.split('/'); Vector arguments; if (argv) { for (size_t i = 0; argv[i]; ++i) { arguments.append(argv[i]); } } else { arguments.append(parts.last()); } Vector environment; if (envp) { for (size_t i = 0; envp[i]; ++i) { environment.append(envp[i]); } } int rc = exec(path, move(arguments), move(environment)); ASSERT(rc < 0); return rc; } pid_t Process::sys$spawn(const char* filename, const char** argv, const char** envp) { VALIDATE_USER_READ(filename, strlen(filename)); if (argv) { for (size_t i = 0; argv[i]; ++i) { VALIDATE_USER_READ(argv[i], strlen(argv[i])); } } if (envp) { for (size_t i = 0; envp[i]; ++i) { VALIDATE_USER_READ(envp[i], strlen(envp[i])); } } String path(filename); auto parts = path.split('/'); Vector arguments; if (argv) { for (size_t i = 0; argv[i]; ++i) { arguments.append(argv[i]); } } else { arguments.append(parts.last()); } Vector environment; if (envp) { for (size_t i = 0; envp[i]; ++i) { environment.append(envp[i]); } } int error; auto* child = create_user_process(path, m_uid, m_gid, m_pid, error, move(arguments), move(environment), m_tty); if (child) return child->pid(); return error; } Process* Process::create_user_process(const String& path, uid_t uid, gid_t gid, pid_t parent_pid, int& error, Vector&& arguments, Vector&& environment, TTY* tty) { // FIXME: Don't split() the path twice (sys$spawn also does it...) auto parts = path.split('/'); if (arguments.isEmpty()) { arguments.append(parts.last()); } RetainPtr cwd; { InterruptDisabler disabler; if (auto* parent = Process::fromPID(parent_pid)) cwd = parent->m_cwd.copyRef(); } if (!cwd) cwd = VirtualFileSystem::the().root(); auto* process = new Process(parts.takeLast(), uid, gid, parent_pid, Ring3, move(cwd), nullptr, tty); error = process->exec(path, move(arguments), move(environment)); if (error != 0) return nullptr; ProcFileSystem::the().addProcess(*process); s_processes->prepend(process); system.nprocess++; #ifdef TASK_DEBUG kprintf("Process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip); #endif error = 0; return process; } int Process::sys$get_environment(char*** environ) { auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "environ"); if (!region) return -ENOMEM; MM.mapRegion(*this, *region); char* envpage = (char*)region->linearAddress.get(); *environ = (char**)envpage; char* bufptr = envpage + (sizeof(char*) * (m_initialEnvironment.size() + 1)); for (size_t i = 0; i < m_initialEnvironment.size(); ++i) { (*environ)[i] = bufptr; memcpy(bufptr, m_initialEnvironment[i].characters(), m_initialEnvironment[i].length()); bufptr += m_initialEnvironment[i].length(); *(bufptr++) = '\0'; } (*environ)[m_initialEnvironment.size()] = nullptr; return 0; } int Process::sys$get_arguments(int* argc, char*** argv) { auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "argv"); if (!region) return -ENOMEM; MM.mapRegion(*this, *region); char* argpage = (char*)region->linearAddress.get(); *argc = m_arguments.size(); *argv = (char**)argpage; char* bufptr = argpage + (sizeof(char*) * m_arguments.size()); for (size_t i = 0; i < m_arguments.size(); ++i) { (*argv)[i] = bufptr; memcpy(bufptr, m_arguments[i].characters(), m_arguments[i].length()); bufptr += m_arguments[i].length(); *(bufptr++) = '\0'; } return 0; } Process* Process::createKernelProcess(void (*e)(), String&& name) { auto* process = new Process(move(name), (uid_t)0, (gid_t)0, (pid_t)0, Ring0); process->m_tss.eip = (dword)e; if (process->pid() != 0) { InterruptDisabler disabler; s_processes->prepend(process); system.nprocess++; ProcFileSystem::the().addProcess(*process); #ifdef TASK_DEBUG kprintf("Kernel process %u (%s) spawned @ %p\n", process->pid(), process->name().characters(), process->m_tss.eip); #endif } return process; } Process::Process(String&& name, uid_t uid, gid_t gid, pid_t ppid, RingLevel ring, RetainPtr&& cwd, RetainPtr&& executable, TTY* tty, Process* fork_parent) : m_name(move(name)) , m_pid(next_pid++) // FIXME: RACE: This variable looks racy! , m_uid(uid) , m_gid(gid) , m_euid(uid) , m_egid(gid) , m_state(Runnable) , m_ring(ring) , m_cwd(move(cwd)) , m_executable(move(executable)) , m_tty(tty) , m_ppid(ppid) { m_gids.set(m_gid); if (fork_parent) { m_sid = fork_parent->m_sid; m_pgid = fork_parent->m_pgid; } else { // FIXME: Use a ProcessHandle? Presumably we're executing *IN* the parent right now though.. InterruptDisabler disabler; if (auto* parent = Process::fromPID(m_ppid)) { m_sid = parent->m_sid; m_pgid = parent->m_pgid; } } m_page_directory = (PageDirectory*)kmalloc_page_aligned(sizeof(PageDirectory)); MM.populate_page_directory(*m_page_directory); if (fork_parent) { m_file_descriptors.resize(fork_parent->m_file_descriptors.size()); for (size_t i = 0; i < fork_parent->m_file_descriptors.size(); ++i) { if (!fork_parent->m_file_descriptors[i]) continue; #ifdef FORK_DEBUG dbgprintf("fork: cloning fd %u... (%p) istty? %um\n", i, fork_parent->m_file_descriptors[i].ptr(), fork_parent->m_file_descriptors[i]->isTTY()); #endif m_file_descriptors[i] = fork_parent->m_file_descriptors[i]->clone(); } } else { m_file_descriptors.resize(m_max_open_file_descriptors); if (tty) { m_file_descriptors[0] = tty->open(O_RDONLY); m_file_descriptors[1] = tty->open(O_WRONLY); m_file_descriptors[2] = tty->open(O_WRONLY); } } if (fork_parent) m_nextRegion = fork_parent->m_nextRegion; else m_nextRegion = LinearAddress(0x10000000); if (fork_parent) { memcpy(&m_tss, &fork_parent->m_tss, sizeof(m_tss)); } else { memset(&m_tss, 0, sizeof(m_tss)); // Only IF is set when a process boots. m_tss.eflags = 0x0202; word cs, ds, ss; if (isRing0()) { cs = 0x08; ds = 0x10; ss = 0x10; } else { cs = 0x1b; ds = 0x23; ss = 0x23; } m_tss.ds = ds; m_tss.es = ds; m_tss.fs = ds; m_tss.gs = ds; m_tss.ss = ss; m_tss.cs = cs; } m_tss.cr3 = (dword)m_page_directory; if (isRing0()) { // FIXME: This memory is leaked. // But uh, there's also no kernel process termination, so I guess it's not technically leaked... dword stackBottom = (dword)kmalloc_eternal(defaultStackSize); m_stackTop0 = (stackBottom + defaultStackSize) & 0xffffff8; m_tss.esp = m_stackTop0; } else { if (fork_parent) { m_stackTop3 = fork_parent->m_stackTop3; } else { auto* region = allocate_region(LinearAddress(), defaultStackSize, "stack"); ASSERT(region); m_stackTop3 = region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8; m_tss.esp = m_stackTop3; } } if (isRing3()) { // Ring3 processes need a separate stack for Ring0. m_kernelStack = kmalloc(defaultStackSize); m_stackTop0 = ((DWORD)m_kernelStack + defaultStackSize) & 0xffffff8; m_tss.ss0 = 0x10; m_tss.esp0 = m_stackTop0; } // HACK: Ring2 SS in the TSS is the current PID. m_tss.ss2 = m_pid; m_farPtr.offset = 0x98765432; } Process::~Process() { InterruptDisabler disabler; ProcFileSystem::the().removeProcess(*this); system.nprocess--; gdt_free_entry(selector()); if (m_kernelStack) { kfree(m_kernelStack); m_kernelStack = nullptr; } MM.release_page_directory(*m_page_directory); } void Process::dumpRegions() { kprintf("Process %s(%u) regions:\n", name().characters(), pid()); kprintf("BEGIN END SIZE NAME\n"); for (auto& region : m_regions) { kprintf("%x -- %x %x %s\n", region->linearAddress.get(), region->linearAddress.offset(region->size - 1).get(), region->size, region->name.characters()); } } void Process::sys$exit(int status) { cli(); #ifdef TASK_DEBUG kprintf("sys$exit: %s(%u) exit with status %d\n", name().characters(), pid(), status); #endif set_state(Dead); m_termination_status = status; m_termination_signal = 0; if (!scheduleNewProcess()) { kprintf("Process::sys$exit: Failed to schedule a new process :(\n"); HANG; } switchNow(); } void Process::terminate_due_to_signal(byte signal) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(signal < 32); dbgprintf("terminate_due_to_signal %s(%u) <- %u\n", name().characters(), pid(), signal); m_termination_status = 0; m_termination_signal = signal; set_state(Dead); } void Process::send_signal(byte signal, Process* sender) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(signal < 32); m_pending_signals |= 1 << signal; if (sender) dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, name().characters(), pid()); else dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, name().characters(), pid()); } bool Process::has_unmasked_pending_signals() const { return m_pending_signals & ~m_signal_mask; } void Process::dispatch_one_pending_signal() { ASSERT_INTERRUPTS_DISABLED(); dword signal_candidates = m_pending_signals & ~m_signal_mask; ASSERT(signal_candidates); byte signal = 0; for (; signal < 32; ++signal) { if (signal_candidates & (1 << signal)) { break; } } dispatch_signal(signal); } void Process::dispatch_signal(byte signal) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(signal < 32); dbgprintf("dispatch_signal %s(%u) <- %u\n", name().characters(), pid(), signal); auto& action = m_signal_action_data[signal]; // FIXME: Implement SA_SIGINFO signal handlers. ASSERT(!(action.flags & SA_SIGINFO)); auto handler_laddr = action.handler_or_sigaction; if (handler_laddr.is_null()) { // FIXME: Is termination really always the appropriate action? return terminate_due_to_signal(signal); } m_tss_to_resume_kernel = m_tss; #ifdef SIGNAL_DEBUG kprintf("resume tss pc: %w:%x\n", m_tss_to_resume_kernel.cs, m_tss_to_resume_kernel.eip); #endif word ret_ss = m_tss.ss; dword ret_esp = m_tss.esp; word ret_cs = m_tss.cs; dword ret_eip = m_tss.eip; dword ret_eflags = m_tss.eflags; bool interrupting_in_kernel = (ret_cs & 3) == 0; if ((ret_cs & 3) == 0) { // FIXME: Handle send_signal to process currently in kernel code. dbgprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", name().characters(), pid(), toString(state()), ret_cs, ret_eip); ASSERT(is_blocked()); } ProcessPagingScope pagingScope(*this); if (interrupting_in_kernel) { if (!m_signal_stack_user_region) { m_signal_stack_user_region = allocate_region(LinearAddress(), defaultStackSize, "signal stack (user)"); ASSERT(m_signal_stack_user_region); m_signal_stack_kernel_region = allocate_region(LinearAddress(), defaultStackSize, "signal stack (kernel)"); ASSERT(m_signal_stack_user_region); } m_tss.ss = 0x23; m_tss.esp = m_signal_stack_user_region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8; m_tss.ss0 = 0x10; m_tss.esp0 = m_signal_stack_kernel_region->linearAddress.offset(defaultStackSize).get() & 0xfffffff8; push_value_on_stack(ret_eflags); push_value_on_stack(ret_cs); push_value_on_stack(ret_eip); } else { push_value_on_stack(ret_cs); push_value_on_stack(ret_eip); push_value_on_stack(ret_eflags); } // PUSHA dword old_esp = m_tss.esp; push_value_on_stack(m_tss.eax); push_value_on_stack(m_tss.ecx); push_value_on_stack(m_tss.edx); push_value_on_stack(m_tss.ebx); push_value_on_stack(old_esp); push_value_on_stack(m_tss.ebp); push_value_on_stack(m_tss.esi); push_value_on_stack(m_tss.edi); m_tss.eax = (dword)signal; m_tss.cs = 0x1b; m_tss.ds = 0x23; m_tss.es = 0x23; m_tss.fs = 0x23; m_tss.gs = 0x23; m_tss.eip = handler_laddr.get(); if (m_return_to_ring3_from_signal_trampoline.is_null()) { // FIXME: This should be a global trampoline shared by all processes, not one created per process! // FIXME: Remap as read-only after setup. auto* region = allocate_region(LinearAddress(), PAGE_SIZE, "signal_trampoline", true, true); m_return_to_ring3_from_signal_trampoline = region->linearAddress; byte* code_ptr = m_return_to_ring3_from_signal_trampoline.asPtr(); *code_ptr++ = 0x61; // popa *code_ptr++ = 0x9d; // popf *code_ptr++ = 0xc3; // ret *code_ptr++ = 0x0f; // ud2 *code_ptr++ = 0x0b; m_return_to_ring0_from_signal_trampoline = LinearAddress((dword)code_ptr); *code_ptr++ = 0x61; // popa *code_ptr++ = 0xb8; // mov eax, *(dword*)code_ptr = Syscall::SC_sigreturn; code_ptr += sizeof(dword); *code_ptr++ = 0xcd; // int 0x80 *code_ptr++ = 0x80; *code_ptr++ = 0x0f; // ud2 *code_ptr++ = 0x0b; // FIXME: For !SA_NODEFER, maybe we could do something like emitting an int 0x80 syscall here that // unmasks the signal so it can be received again? I guess then I would need one trampoline // per signal number if it's hard-coded, but it's just a few bytes per each. } if (interrupting_in_kernel) push_value_on_stack(m_return_to_ring0_from_signal_trampoline.get()); else push_value_on_stack(m_return_to_ring3_from_signal_trampoline.get()); m_pending_signals &= ~(1 << signal); #ifdef SIGNAL_DEBUG dbgprintf("signal: Okay, %s(%u) has been primed\n", name().characters(), pid()); #endif } void Process::sys$sigreturn() { InterruptDisabler disabler; m_tss = m_tss_to_resume_kernel; #ifdef SIGNAL_DEBUG dbgprintf("sys$sigreturn in %s(%u)\n", name().characters(), pid()); dbgprintf(" -> resuming execution at %w:%x\n", m_tss.cs, m_tss.eip); #endif loadTaskRegister(s_kernelProcess->selector()); sched_yield(); kprintf("sys$sigreturn failed in %s(%u)\n", name().characters(), pid()); ASSERT_NOT_REACHED(); } void Process::push_value_on_stack(dword value) { m_tss.esp -= 4; dword* stack_ptr = (dword*)m_tss.esp; *stack_ptr = value; } void Process::crash() { ASSERT_INTERRUPTS_DISABLED(); ASSERT(state() != Dead); m_termination_signal = SIGSEGV; set_state(Dead); dumpRegions(); if (!scheduleNewProcess()) { kprintf("Process::crash: Failed to schedule a new process :(\n"); HANG; } switchNow(); } void Process::doHouseKeeping() { if (s_deadProcesses->isEmpty()) return; InterruptDisabler disabler; Process* next = nullptr; for (auto* deadProcess = s_deadProcesses->head(); deadProcess; deadProcess = next) { next = deadProcess->next(); delete deadProcess; } s_deadProcesses->clear(); } int sched_yield() { if (!current) { kprintf("PANIC: sched_yield() with !current"); HANG; } //kprintf("%s<%u> yield()\n", current->name().characters(), current->pid()); InterruptDisabler disabler; if (!scheduleNewProcess()) return 1; //kprintf("yield() jumping to new process: %x (%s)\n", current->farPtr().selector, current->name().characters()); switchNow(); return 0; } void switchNow() { Descriptor& descriptor = getGDTEntry(current->selector()); descriptor.type = 9; flushGDT(); asm("sti\n" "ljmp *(%%eax)\n" ::"a"(¤t->farPtr()) ); } template static void for_each_process_in_state(Process::State state, Callback callback) { ASSERT_INTERRUPTS_DISABLED(); for (auto* process = s_processes->head(); process;) { auto* next_process = process->next(); if (process->state() == state) callback(*process); process = next_process; } } template static void for_each_process_not_in_state(Process::State state, Callback callback) { ASSERT_INTERRUPTS_DISABLED(); for (auto* process = s_processes->head(); process;) { auto* next_process = process->next(); if (process->state() != state) callback(*process); process = next_process; } } template static void for_each_blocked_process(Callback callback) { ASSERT_INTERRUPTS_DISABLED(); for (auto* process = s_processes->head(); process;) { auto* next_process = process->next(); if (process->is_blocked()) callback(*process); process = next_process; } } bool scheduleNewProcess() { ASSERT_INTERRUPTS_DISABLED(); if (!current) { // XXX: The first ever context_switch() goes to the idle process. // This to setup a reliable place we can return to. return contextSwitch(Process::kernelProcess()); } // Check and unblock processes whose wait conditions have been met. for (auto* process = s_processes->head(); process; process = process->next()) { if (process->state() == Process::BlockedSleep) { if (process->wakeupTime() <= system.uptime) process->unblock(); continue; } if (process->state() == Process::BlockedWait) { auto* waitee = Process::fromPID(process->waitee()); if (!waitee) { kprintf("waitee %u of %s(%u) reaped before I could wait?\n", process->waitee(), process->name().characters(), process->pid()); ASSERT_NOT_REACHED(); } if (waitee->state() == Process::Dead) { process->m_waitee_status = (waitee->m_termination_status << 8) | waitee->m_termination_signal; process->unblock(); waitee->set_state(Process::Forgiven); } continue; } if (process->state() == Process::BlockedRead) { ASSERT(process->m_fdBlockedOnRead != -1); // FIXME: Block until the amount of data wanted is available. if (process->m_file_descriptors[process->m_fdBlockedOnRead]->hasDataAvailableForRead()) process->unblock(); continue; } } // Forgive dead orphans. // FIXME: Does this really make sense? for_each_process_in_state(Process::Dead, [] (auto& process) { if (!Process::fromPID(process.ppid())) process.set_state(Process::Forgiven); }); // Clean up forgiven processes. // FIXME: Do we really need this to be a separate pass over the process list? for_each_process_in_state(Process::Forgiven, [] (auto& process) { s_processes->remove(&process); s_deadProcesses->append(&process); }); // Dispatch any pending signals. // FIXME: Do we really need this to be a separate pass over the process list? for_each_process_not_in_state(Process::Dead, [] (auto& process) { if (!process.has_unmasked_pending_signals()) return; // We know how to interrupt blocked processes, but if they are just executing // at some random point in the kernel, let them continue. They'll be in userspace // sooner or later and we can deliver the signal then. // FIXME: Maybe we could check when returning from a syscall if there's a pending // signal and dispatch it then and there? Would that be doable without the // syscall effectively being "interrupted" despite having completed? if (process.in_kernel() && !process.is_blocked()) return; process.dispatch_one_pending_signal(); if (process.is_blocked()) { process.m_was_interrupted_while_blocked = true; process.unblock(); } }); #ifdef SCHEDULER_DEBUG dbgprintf("Scheduler choices:\n"); for (auto* process = s_processes->head(); process; process = process->next()) { //if (process->state() == Process::BlockedWait || process->state() == Process::BlockedSleep) // continue; dbgprintf("% 12s %s(%u) @ %w:%x\n", toString(process->state()), process->name().characters(), process->pid(), process->tss().cs, process->tss().eip); } #endif auto* prevHead = s_processes->head(); for (;;) { // Move head to tail. s_processes->append(s_processes->removeHead()); auto* process = s_processes->head(); if (process->state() == Process::Runnable || process->state() == Process::Running) { #ifdef SCHEDULER_DEBUG dbgprintf("switch to %s(%u)\n", process->name().characters(), process->pid()); #endif return contextSwitch(process); } if (process == prevHead) { // Back at process_head, nothing wants to run. kprintf("Nothing wants to run!\n"); kprintf("PID OWNER STATE NSCHED NAME\n"); for (auto* process = s_processes->head(); process; process = process->next()) { kprintf("%w %w:%w %b %w %s\n", process->pid(), process->uid(), process->gid(), process->state(), process->timesScheduled(), process->name().characters()); } kprintf("Switch to kernel process @ %w:%x\n", s_kernelProcess->tss().cs, s_kernelProcess->tss().eip); return contextSwitch(Process::kernelProcess()); } } } static bool contextSwitch(Process* t) { t->setTicksLeft(scheduler_time_slice); t->didSchedule(); if (current == t) return false; #ifdef SCHEDULER_DEBUG // Some sanity checking to force a crash earlier. auto csRPL = t->tss().cs & 3; auto ssRPL = t->tss().ss & 3; if (csRPL != ssRPL) { kprintf("Fuckup! Switching from %s(%u) to %s(%u) has RPL mismatch\n", current->name().characters(), current->pid(), t->name().characters(), t->pid() ); kprintf("code: %w:%x\n", t->tss().cs, t->tss().eip); kprintf(" stk: %w:%x\n", t->tss().ss, t->tss().esp); ASSERT(csRPL == ssRPL); } #endif if (current) { // If the last process hasn't blocked (still marked as running), // mark it as runnable for the next round. if (current->state() == Process::Running) current->set_state(Process::Runnable); } current = t; t->set_state(Process::Running); #ifdef COOL_GLOBALS g_cool_globals->current_pid = t->pid(); #endif if (!t->selector()) { t->setSelector(gdt_alloc_entry()); auto& descriptor = getGDTEntry(t->selector()); descriptor.setBase(&t->tss()); descriptor.setLimit(0xffff); descriptor.dpl = 0; descriptor.segment_present = 1; descriptor.granularity = 1; descriptor.zero = 0; descriptor.operation_size = 1; descriptor.descriptor_type = 0; } auto& descriptor = getGDTEntry(t->selector()); descriptor.type = 11; // Busy TSS flushGDT(); return true; } Process* Process::fromPID(pid_t pid) { ASSERT_INTERRUPTS_DISABLED(); for (auto* process = s_processes->head(); process; process = process->next()) { if (process->pid() == pid) return process; } return nullptr; } FileDescriptor* Process::file_descriptor(int fd) { if (fd < 0) return nullptr; if ((size_t)fd < m_file_descriptors.size()) return m_file_descriptors[fd].ptr(); return nullptr; } const FileDescriptor* Process::file_descriptor(int fd) const { if (fd < 0) return nullptr; if ((size_t)fd < m_file_descriptors.size()) return m_file_descriptors[fd].ptr(); return nullptr; } ssize_t Process::sys$get_dir_entries(int fd, void* buffer, size_t size) { VALIDATE_USER_WRITE(buffer, size); auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; return descriptor->get_dir_entries((byte*)buffer, size); } int Process::sys$lseek(int fd, off_t offset, int whence) { auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; return descriptor->seek(offset, whence); } int Process::sys$ttyname_r(int fd, char* buffer, size_t size) { VALIDATE_USER_WRITE(buffer, size); auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; if (!descriptor->isTTY()) return -ENOTTY; auto ttyName = descriptor->tty()->ttyName(); if (size < ttyName.length() + 1) return -ERANGE; strcpy(buffer, ttyName.characters()); return 0; } ssize_t Process::sys$write(int fd, const void* data, size_t size) { VALIDATE_USER_READ(data, size); #ifdef DEBUG_IO kprintf("Process::sys$write: called(%d, %p, %u)\n", fd, data, size); #endif auto* descriptor = file_descriptor(fd); #ifdef DEBUG_IO kprintf("Process::sys$write: handle=%p\n", descriptor); #endif if (!descriptor) return -EBADF; auto nwritten = descriptor->write((const byte*)data, size); #ifdef DEBUG_IO kprintf("Process::sys$write: nwritten=%u\n", nwritten); #endif return nwritten; } ssize_t Process::sys$read(int fd, void* outbuf, size_t nread) { VALIDATE_USER_WRITE(outbuf, nread); #ifdef DEBUG_IO kprintf("Process::sys$read: called(%d, %p, %u)\n", fd, outbuf, nread); #endif auto* descriptor = file_descriptor(fd); #ifdef DEBUG_IO kprintf("Process::sys$read: handle=%p\n", descriptor); #endif if (!descriptor) return -EBADF; if (descriptor->isBlocking()) { if (!descriptor->hasDataAvailableForRead()) { m_fdBlockedOnRead = fd; block(BlockedRead); sched_yield(); if (m_was_interrupted_while_blocked) return -EINTR; } } nread = descriptor->read((byte*)outbuf, nread); #ifdef DEBUG_IO kprintf("Process::sys$read: nread=%u\n", nread); #endif return nread; } int Process::sys$close(int fd) { auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; int rc = descriptor->close(); m_file_descriptors[fd] = nullptr; return rc; } int Process::sys$lstat(const char* path, Unix::stat* statbuf) { VALIDATE_USER_WRITE(statbuf, sizeof(Unix::stat)); int error; auto descriptor = VirtualFileSystem::the().open(move(path), error, O_NOFOLLOW_NOERROR, cwdInode()); if (!descriptor) return error; descriptor->stat(statbuf); return 0; } int Process::sys$stat(const char* path, Unix::stat* statbuf) { VALIDATE_USER_WRITE(statbuf, sizeof(Unix::stat)); int error; auto descriptor = VirtualFileSystem::the().open(move(path), error, 0, cwdInode()); if (!descriptor) return error; descriptor->stat(statbuf); return 0; } int Process::sys$readlink(const char* path, char* buffer, size_t size) { VALIDATE_USER_READ(path, strlen(path)); VALIDATE_USER_WRITE(buffer, size); int error; auto descriptor = VirtualFileSystem::the().open(path, error, O_RDONLY | O_NOFOLLOW_NOERROR, cwdInode()); if (!descriptor) return error; if (!descriptor->metadata().isSymbolicLink()) return -EINVAL; auto contents = descriptor->readEntireFile(); if (!contents) return -EIO; // FIXME: Get a more detailed error from VFS. memcpy(buffer, contents.pointer(), min(size, contents.size())); if (contents.size() + 1 < size) buffer[contents.size()] = '\0'; return 0; } int Process::sys$chdir(const char* path) { VALIDATE_USER_READ(path, strlen(path)); int error; auto descriptor = VirtualFileSystem::the().open(path, error, 0, cwdInode()); if (!descriptor) return error; if (!descriptor->isDirectory()) return -ENOTDIR; m_cwd = descriptor->vnode(); return 0; } int Process::sys$getcwd(char* buffer, size_t size) { VALIDATE_USER_WRITE(buffer, size); auto path = VirtualFileSystem::the().absolutePath(cwdInode()); if (path.isNull()) return -EINVAL; if (size < path.length() + 1) return -ERANGE; strcpy(buffer, path.characters()); return -ENOTIMPL; } size_t Process::number_of_open_file_descriptors() const { size_t count = 0; for (auto& descriptor : m_file_descriptors) { if (descriptor) ++count; } return count; } int Process::sys$open(const char* path, int options) { #ifdef DEBUG_IO kprintf("Process::sys$open(): PID=%u, path=%s {%u}\n", m_pid, path, pathLength); #endif VALIDATE_USER_READ(path, strlen(path)); if (number_of_open_file_descriptors() >= m_max_open_file_descriptors) return -EMFILE; int error; auto descriptor = VirtualFileSystem::the().open(path, error, options, cwdInode()); if (!descriptor) return error; if (options & O_DIRECTORY && !descriptor->isDirectory()) return -ENOTDIR; // FIXME: This should be handled by VFS::open. int fd = 0; for (; fd < m_max_open_file_descriptors; ++fd) { if (!m_file_descriptors[fd]) break; } m_file_descriptors[fd] = move(descriptor); return fd; } int Process::sys$uname(utsname* buf) { VALIDATE_USER_WRITE(buf, sizeof(utsname)); strcpy(buf->sysname, "Serenity"); strcpy(buf->release, "1.0-dev"); strcpy(buf->version, "FIXME"); strcpy(buf->machine, "i386"); strcpy(buf->nodename, getHostname().characters()); return 0; } int Process::sys$isatty(int fd) { auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; if (!descriptor->isTTY()) return -ENOTTY; return 1; } int Process::sys$kill(pid_t pid, int signal) { if (pid == 0) { // FIXME: Send to same-group processes. ASSERT(pid != 0); } if (pid == -1) { // FIXME: Send to all processes. ASSERT(pid != -1); } ASSERT(pid != current->pid()); // FIXME: Support this scenario. InterruptDisabler disabler; auto* peer = Process::fromPID(pid); if (!peer) return -ESRCH; peer->send_signal(signal, this); return 0; } int Process::sys$sleep(unsigned seconds) { if (!seconds) return 0; sleep(seconds * TICKS_PER_SECOND); if (m_wakeupTime > system.uptime) { ASSERT(m_was_interrupted_while_blocked); dword ticks_left_until_original_wakeup_time = m_wakeupTime - system.uptime; return ticks_left_until_original_wakeup_time / TICKS_PER_SECOND; } return 0; } int Process::sys$gettimeofday(timeval* tv) { VALIDATE_USER_WRITE(tv, sizeof(tv)); InterruptDisabler disabler; auto now = RTC::now(); tv->tv_sec = now; tv->tv_usec = 0; return 0; } uid_t Process::sys$getuid() { return m_uid; } gid_t Process::sys$getgid() { return m_gid; } uid_t Process::sys$geteuid() { return m_euid; } gid_t Process::sys$getegid() { return m_egid; } pid_t Process::sys$getpid() { return m_pid; } pid_t Process::sys$getppid() { return m_ppid; } mode_t Process::sys$umask(mode_t mask) { auto old_mask = m_umask; m_umask = mask; return old_mask; } pid_t Process::sys$waitpid(pid_t waitee, int* wstatus, int options) { if (wstatus) VALIDATE_USER_WRITE(wstatus, sizeof(int)); InterruptDisabler disabler; if (!Process::fromPID(waitee)) return -1; m_waitee = waitee; m_waitee_status = 0; block(BlockedWait); sched_yield(); if (m_was_interrupted_while_blocked) return -EINTR; if (wstatus) *wstatus = m_waitee_status; return m_waitee; } void Process::unblock() { ASSERT(m_state != Process::Runnable && m_state != Process::Running); system.nblocked--; m_state = Process::Runnable; } void Process::block(Process::State state) { ASSERT(current->state() == Process::Running); system.nblocked++; m_was_interrupted_while_blocked = false; set_state(state); } void block(Process::State state) { current->block(state); sched_yield(); } void sleep(DWORD ticks) { ASSERT(current->state() == Process::Running); current->setWakeupTime(system.uptime + ticks); current->block(Process::BlockedSleep); sched_yield(); } Process* Process::kernelProcess() { ASSERT(s_kernelProcess); return s_kernelProcess; } bool Process::isValidAddressForKernel(LinearAddress laddr) const { // We check extra carefully here since the first 4MB of the address space is identity-mapped. // This code allows access outside of the known used address ranges to get caught. InterruptDisabler disabler; if (laddr.get() >= ksyms().first().address && laddr.get() <= ksyms().last().address) return true; if (is_kmalloc_address((void*)laddr.get())) return true; return validate_user_read(laddr); } bool Process::validate_user_read(LinearAddress laddr) const { InterruptDisabler disabler; return MM.validate_user_read(*this, laddr); } bool Process::validate_user_write(LinearAddress laddr) const { InterruptDisabler disabler; return MM.validate_user_write(*this, laddr); } pid_t Process::sys$getsid(pid_t pid) { if (pid == 0) return m_sid; InterruptDisabler disabler; auto* process = Process::fromPID(pid); if (!process) return -ESRCH; if (m_sid != process->m_sid) return -EPERM; return process->m_sid; } pid_t Process::sys$setsid() { InterruptDisabler disabler; bool found_process_with_same_pgid_as_my_pid = false; forEachProcess([&] (auto& process) { if (process.pgid() == pid()) { found_process_with_same_pgid_as_my_pid = true; return false; } return true; }); if (found_process_with_same_pgid_as_my_pid) return -EPERM; m_sid = m_pid; m_pgid = m_pid; return m_sid; } pid_t Process::sys$getpgid(pid_t pid) { if (pid == 0) return m_pgid; InterruptDisabler disabler; // FIXME: Use a ProcessHandle auto* process = Process::fromPID(pid); if (!process) return -ESRCH; return process->m_pgid; } pid_t Process::sys$getpgrp() { return m_pgid; } static pid_t get_sid_from_pgid(pid_t pgid) { InterruptDisabler disabler; auto* group_leader = Process::fromPID(pgid); if (!group_leader) return -1; return group_leader->sid(); } int Process::sys$setpgid(pid_t specified_pid, pid_t specified_pgid) { InterruptDisabler disabler; // FIXME: Use a ProcessHandle pid_t pid = specified_pid ? specified_pid : m_pid; if (specified_pgid < 0) return -EINVAL; auto* process = Process::fromPID(pid); if (!process) return -ESRCH; pid_t new_pgid = specified_pgid ? specified_pgid : process->m_pid; pid_t current_sid = get_sid_from_pgid(process->m_pgid); pid_t new_sid = get_sid_from_pgid(new_pgid); if (current_sid != new_sid) { // Can't move a process between sessions. return -EPERM; } // FIXME: There are more EPERM conditions to check for here.. process->m_pgid = new_pgid; return 0; } pid_t Process::sys$tcgetpgrp(int fd) { auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; if (!descriptor->isTTY()) return -ENOTTY; auto& tty = *descriptor->tty(); if (&tty != m_tty) return -ENOTTY; return tty.pgid(); } int Process::sys$tcsetpgrp(int fd, pid_t pgid) { if (pgid < 0) return -EINVAL; if (get_sid_from_pgid(pgid) != m_sid) return -EINVAL; auto* descriptor = file_descriptor(fd); if (!descriptor) return -EBADF; if (!descriptor->isTTY()) return -ENOTTY; auto& tty = *descriptor->tty(); if (&tty != m_tty) return -ENOTTY; tty.set_pgid(pgid); return 0; } int Process::sys$getdtablesize() { return m_max_open_file_descriptors; } int Process::sys$dup(int old_fd) { auto* descriptor = file_descriptor(old_fd); if (!descriptor) return -EBADF; if (number_of_open_file_descriptors() == m_max_open_file_descriptors) return -EMFILE; int new_fd = 0; for (; new_fd < m_max_open_file_descriptors; ++new_fd) { if (!m_file_descriptors[new_fd]) break; } m_file_descriptors[new_fd] = descriptor; return new_fd; } int Process::sys$dup2(int old_fd, int new_fd) { auto* descriptor = file_descriptor(old_fd); if (!descriptor) return -EBADF; if (number_of_open_file_descriptors() == m_max_open_file_descriptors) return -EMFILE; m_file_descriptors[new_fd] = descriptor; return new_fd; } Unix::sighandler_t Process::sys$signal(int signum, Unix::sighandler_t handler) { // FIXME: Fail with -EINVAL if attepmting to catch or ignore SIGKILL or SIGSTOP. if (signum >= 32) return (Unix::sighandler_t)-EINVAL; dbgprintf("sys$signal: %d => L%x\n", signum, handler); return nullptr; } int Process::sys$sigaction(int signum, const Unix::sigaction* act, Unix::sigaction* old_act) { // FIXME: Fail with -EINVAL if attepmting to change action for SIGKILL or SIGSTOP. if (signum >= 32) return -EINVAL; VALIDATE_USER_READ(act, sizeof(Unix::sigaction)); InterruptDisabler disabler; // FIXME: This should use a narrower lock. auto& action = m_signal_action_data[signum]; if (old_act) { VALIDATE_USER_WRITE(old_act, sizeof(Unix::sigaction)); old_act->sa_flags = action.flags; old_act->sa_restorer = (decltype(old_act->sa_restorer))action.restorer.get(); old_act->sa_sigaction = (decltype(old_act->sa_sigaction))action.handler_or_sigaction.get(); } action.restorer = LinearAddress((dword)act->sa_restorer); action.flags = act->sa_flags; action.handler_or_sigaction = LinearAddress((dword)act->sa_sigaction); return 0; } int Process::sys$getgroups(int count, gid_t* gids) { if (count < 0) return -EINVAL; ASSERT(m_gids.size() < MAX_PROCESS_GIDS); if (!count) return m_gids.size(); if (count != m_gids.size()) return -EINVAL; VALIDATE_USER_WRITE(gids, sizeof(gid_t) * count); size_t i = 0; for (auto gid : m_gids) gids[i++] = gid; return 0; } int Process::sys$setgroups(size_t count, const gid_t* gids) { if (!is_root()) return -EPERM; if (count >= MAX_PROCESS_GIDS) return -EINVAL; VALIDATE_USER_READ(gids, sizeof(gid_t) * count); m_gids.clear(); m_gids.set(m_gid); for (size_t i = 0; i < count; ++i) m_gids.set(gids[i]); return 0; }