/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #define PCI_MMIO_CONFIG_SPACE_SIZE 4096 uint32_t PCI::MMIOAccess::get_segments_count() { return m_segments.size(); } uint8_t PCI::MMIOAccess::get_segment_start_bus(u32 seg) { ASSERT(m_segments.contains(seg)); return m_segments.get(seg).value()->get_start_bus(); } uint8_t PCI::MMIOAccess::get_segment_end_bus(u32 seg) { ASSERT(m_segments.contains(seg)); return m_segments.get(seg).value()->get_end_bus(); } void PCI::MMIOAccess::initialize(ACPI_RAW::MCFG& mcfg) { if (!PCI::Access::is_initialized()) new PCI::MMIOAccess(mcfg); } PCI::MMIOAccess::MMIOAccess(ACPI_RAW::MCFG& raw_mcfg) : m_mcfg(raw_mcfg) , m_segments(*new HashMap()) , m_mapped_address(ChangeableAddress(0xFFFF, 0xFF, 0xFF, 0xFF)) { kprintf("PCI: Using MMIO Mechanism for PCI Configuartion Space Access\n"); m_mmio_window = *AnonymousVMObject::create_with_size(PAGE_ROUND_UP(PCI_MMIO_CONFIG_SPACE_SIZE)); m_mmio_window_region = MM.allocate_kernel_region_with_vmobject(*m_mmio_window, m_mmio_window->size(), "PCI MMIO", Region::Access::Read | Region::Access::Write); auto checkup_region = MM.allocate_kernel_region((PAGE_SIZE * 2), "PCI MCFG Checkup", Region::Access::Read | Region::Access::Write); #ifdef PCI_DEBUG dbgprintf("PCI: Checking MCFG Table length to choose the correct mapping size\n"); #endif mmap_region(*checkup_region, PhysicalAddress((u32)&raw_mcfg & 0xfffff000)); ACPI_RAW::SDTHeader* sdt = (ACPI_RAW::SDTHeader*)(checkup_region->vaddr().get() + ((u32)&raw_mcfg & 0xfff)); u32 length = sdt->length; u8 revision = sdt->revision; kprintf("PCI: MCFG, length - %u, revision %d\n", length, revision); checkup_region->unmap(); auto mcfg_region = MM.allocate_kernel_region(PAGE_ROUND_UP(length) + PAGE_SIZE, "PCI Parsing MCFG", Region::Access::Read | Region::Access::Write); mmap_region(*mcfg_region, PhysicalAddress((u32)&raw_mcfg & 0xfffff000)); ACPI_RAW::MCFG& mcfg = *((ACPI_RAW::MCFG*)(mcfg_region->vaddr().get() + ((u32)&raw_mcfg & 0xfff))); #ifdef PCI_DEBUG dbgprintf("PCI: Checking MCFG @ V 0x%x, P 0x%x\n", &mcfg, &raw_mcfg); #endif for (u32 index = 0; index < ((mcfg.header.length - sizeof(ACPI_RAW::MCFG)) / sizeof(ACPI_RAW::PCI_MMIO_Descriptor)); index++) { u8 start_bus = mcfg.descriptors[index].start_pci_bus; u8 end_bus = mcfg.descriptors[index].end_pci_bus; u32 lower_addr = mcfg.descriptors[index].base_addr; m_segments.set(index, new PCI::MMIOSegment(PhysicalAddress(lower_addr), start_bus, end_bus)); kprintf("PCI: New PCI segment @ P 0x%x, PCI buses (%d-%d)\n", lower_addr, start_bus, end_bus); } mcfg_region->unmap(); kprintf("PCI: MMIO segments - %d\n", m_segments.size()); InterruptDisabler disabler; #ifdef PCI_DEBUG dbgprintf("PCI: mapped address (%w:%b:%b.%b)\n", m_mapped_address.seg(), m_mapped_address.bus(), m_mapped_address.slot(), m_mapped_address.function()); #endif map_device(Address(0, 0, 0, 0)); #ifdef PCI_DEBUG dbgprintf("PCI: Default mapped address (%w:%b:%b.%b)\n", m_mapped_address.seg(), m_mapped_address.bus(), m_mapped_address.slot(), m_mapped_address.function()); #endif } void PCI::MMIOAccess::map_device(Address address) { if (m_mapped_address == address) return; // FIXME: Map and put some lock! ASSERT_INTERRUPTS_DISABLED(); ASSERT(m_segments.contains(address.seg())); auto segment = m_segments.get(address.seg()); PhysicalAddress segment_lower_addr = segment.value()->get_paddr(); PhysicalAddress device_physical_mmio_space = segment_lower_addr.offset( PCI_MMIO_CONFIG_SPACE_SIZE * address.function() + (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE) * address.slot() + (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS) * (address.bus() - segment.value()->get_start_bus())); #ifdef PCI_DEBUG dbgprintf("PCI: Mapping device @ pci (%w:%b:%b.%b), V 0x%x, P 0x%x\n", address.seg(), address.bus(), address.slot(), address.function(), m_mmio_window_region->vaddr().get(), device_physical_mmio_space.get()); #endif MM.map_for_kernel(m_mmio_window_region->vaddr(), device_physical_mmio_space); m_mapped_address = address; } u8 PCI::MMIOAccess::read8_field(Address address, u32 field) { InterruptDisabler disabler; ASSERT(field <= 0xfff); #ifdef PCI_DEBUG dbgprintf("PCI: Reading field %u, Address(%w:%b:%b.%b)\n", field, address.seg(), address.bus(), address.slot(), address.function()); #endif map_device(address); return *((u8*)(m_mmio_window_region->vaddr().get() + (field & 0xfff))); } u16 PCI::MMIOAccess::read16_field(Address address, u32 field) { InterruptDisabler disabler; ASSERT(field < 0xfff); #ifdef PCI_DEBUG dbgprintf("PCI: Reading field %u, Address(%w:%b:%b.%b)\n", field, address.seg(), address.bus(), address.slot(), address.function()); #endif map_device(address); return *((u16*)(m_mmio_window_region->vaddr().get() + (field & 0xfff))); } u32 PCI::MMIOAccess::read32_field(Address address, u32 field) { InterruptDisabler disabler; ASSERT(field <= 0xffc); #ifdef PCI_DEBUG dbgprintf("PCI: Reading field %u, Address(%w:%b:%b.%b)\n", field, address.seg(), address.bus(), address.slot(), address.function()); #endif map_device(address); return *((u32*)(m_mmio_window_region->vaddr().get() + (field & 0xfff))); } void PCI::MMIOAccess::write8_field(Address address, u32 field, u8 value) { InterruptDisabler disabler; ASSERT(field <= 0xfff); #ifdef PCI_DEBUG dbgprintf("PCI: Write to field %u, Address(%w:%b:%b.%b), value 0x%x\n", field, address.seg(), address.bus(), address.slot(), address.function(), value); #endif map_device(address); *((u8*)(m_mmio_window_region->vaddr().get() + (field & 0xfff))) = value; } void PCI::MMIOAccess::write16_field(Address address, u32 field, u16 value) { InterruptDisabler disabler; ASSERT(field < 0xfff); #ifdef PCI_DEBUG dbgprintf("PCI: Write to field %u, Address(%w:%b:%b.%b), value 0x%x\n", field, address.seg(), address.bus(), address.slot(), address.function(), value); #endif map_device(address); *((u16*)(m_mmio_window_region->vaddr().get() + (field & 0xfff))) = value; } void PCI::MMIOAccess::write32_field(Address address, u32 field, u32 value) { InterruptDisabler disabler; ASSERT(field <= 0xffc); #ifdef PCI_DEBUG dbgprintf("PCI: Write to field %u, Address(%w:%b:%b.%b), value 0x%x\n", field, address.seg(), address.bus(), address.slot(), address.function(), value); #endif map_device(address); *((u32*)(m_mmio_window_region->vaddr().get() + (field & 0xfff))) = value; } void PCI::MMIOAccess::enumerate_all(Function& callback) { for (u16 seg = 0; seg < m_segments.size(); seg++) { #ifdef PCI_DEBUG dbgprintf("PCI: Enumerating Memory mapped IO segment %u\n", seg); #endif // Single PCI host controller. if ((read8_field(Address(seg), PCI_HEADER_TYPE) & 0x80) == 0) { enumerate_bus(-1, 0, callback); return; } // Multiple PCI host controllers. for (u8 function = 0; function < 8; ++function) { if (read16_field(Address(seg, 0, 0, function), PCI_VENDOR_ID) == PCI_NONE) break; enumerate_bus(-1, function, callback); } } } void PCI::MMIOAccess::mmap(VirtualAddress vaddr, PhysicalAddress paddr, u32 length) { unsigned i = 0; while (length >= PAGE_SIZE) { MM.map_for_kernel(VirtualAddress(vaddr.offset(i * PAGE_SIZE).get()), PhysicalAddress(paddr.offset(i * PAGE_SIZE).get())); #ifdef PCI_DEBUG dbgprintf("PCI: map - V 0x%x -> P 0x%x\n", vaddr.offset(i * PAGE_SIZE).get(), paddr.offset(i * PAGE_SIZE).get()); #endif length -= PAGE_SIZE; i++; } if (length > 0) { MM.map_for_kernel(vaddr.offset(i * PAGE_SIZE), paddr.offset(i * PAGE_SIZE), true); } #ifdef PCI_DEBUG dbgprintf("PCI: Finished mapping\n"); #endif } void PCI::MMIOAccess::mmap_region(Region& region, PhysicalAddress paddr) { #ifdef PCI_DEBUG dbgprintf("PCI: Mapping region, size - %u\n", region.size()); #endif mmap(region.vaddr(), paddr, region.size()); } PCI::MMIOSegment::MMIOSegment(PhysicalAddress segment_base_addr, u8 start_bus, u8 end_bus) : m_base_addr(segment_base_addr) , m_start_bus(start_bus) , m_end_bus(end_bus) { } u8 PCI::MMIOSegment::get_start_bus() { return m_start_bus; } u8 PCI::MMIOSegment::get_end_bus() { return m_end_bus; } size_t PCI::MMIOSegment::get_size() { return (PCI_MMIO_CONFIG_SPACE_SIZE * PCI_MAX_FUNCTIONS_PER_DEVICE * PCI_MAX_DEVICES_PER_BUS * (get_end_bus() - get_start_bus())); } PhysicalAddress PCI::MMIOSegment::get_paddr() { return m_base_addr; }