#include #include #include #include #include #include #include #include #include #include #include #include #include #include //#define NETWORK_TASK_DEBUG //#define ETHERNET_DEBUG //#define ETHERNET_VERY_DEBUG //#define ARP_DEBUG //#define IPV4_DEBUG //#define ICMP_DEBUG //#define UDP_DEBUG //#define TCP_DEBUG static void handle_arp(const EthernetFrameHeader&, size_t frame_size); static void handle_ipv4(const EthernetFrameHeader&, size_t frame_size); static void handle_icmp(const EthernetFrameHeader&, const IPv4Packet&); static void handle_udp(const IPv4Packet&); static void handle_tcp(const IPv4Packet&); void NetworkTask_main() { WaitQueue packet_wait_queue; u8 octet = 15; int pending_packets = 0; NetworkAdapter::for_each([&](auto& adapter) { if (String(adapter.class_name()) == "LoopbackAdapter") { adapter.set_ipv4_address({ 127, 0, 0, 1 }); adapter.set_ipv4_netmask({ 255, 0, 0, 0 }); adapter.set_ipv4_gateway({ 0, 0, 0, 0 }); } else { adapter.set_ipv4_address({ 10, 0, 2, octet++ }); adapter.set_ipv4_netmask({ 255, 255, 255, 0 }); adapter.set_ipv4_gateway({ 10, 0, 2, 2 }); } kprintf("NetworkTask: %s network adapter found: hw=%s address=%s netmask=%s gateway=%s\n", adapter.class_name(), adapter.mac_address().to_string().characters(), adapter.ipv4_address().to_string().characters(), adapter.ipv4_netmask().to_string().characters(), adapter.ipv4_gateway().to_string().characters()); adapter.on_receive = [&]() { pending_packets++; packet_wait_queue.wake_all(); }; }); auto dequeue_packet = [&pending_packets](u8* buffer, size_t buffer_size) -> size_t { if (pending_packets == 0) return 0; size_t packet_size = 0; NetworkAdapter::for_each([&](auto& adapter) { if (packet_size || !adapter.has_queued_packets()) return; packet_size = adapter.dequeue_packet(buffer, buffer_size); pending_packets--; #ifdef NETWORK_TASK_DEBUG kprintf("NetworkTask: Dequeued packet from %s (%d bytes)\n", adapter.name().characters(), packet_size); #endif }); return packet_size; }; size_t buffer_size = 64 * KB; auto buffer_region = MM.allocate_kernel_region(buffer_size, "Kernel Packet Buffer", Region::Access::Read | Region::Access::Write, false, true); auto buffer = (u8*)buffer_region->vaddr().get(); kprintf("NetworkTask: Enter main loop.\n"); for (;;) { size_t packet_size = dequeue_packet(buffer, buffer_size); if (!packet_size) { current->wait_on(packet_wait_queue); continue; } if (packet_size < sizeof(EthernetFrameHeader)) { kprintf("NetworkTask: Packet is too small to be an Ethernet packet! (%zu)\n", packet_size); continue; } auto& eth = *(const EthernetFrameHeader*)buffer; #ifdef ETHERNET_DEBUG kprintf("NetworkTask: From %s to %s, ether_type=%w, packet_length=%u\n", eth.source().to_string().characters(), eth.destination().to_string().characters(), eth.ether_type(), packet_size); #endif #ifdef ETHERNET_VERY_DEBUG for (size_t i = 0; i < packet_size; i++) { kprintf("%b", buffer[i]); switch (i % 16) { case 7: kprintf(" "); break; case 15: kprintf("\n"); break; default: kprintf(" "); break; } } kprintf("\n"); #endif switch (eth.ether_type()) { case EtherType::ARP: handle_arp(eth, packet_size); break; case EtherType::IPv4: handle_ipv4(eth, packet_size); break; case EtherType::IPv6: // ignore break; default: kprintf("NetworkTask: Unknown ethernet type %#04x\n", eth.ether_type()); } } } void handle_arp(const EthernetFrameHeader& eth, size_t frame_size) { constexpr size_t minimum_arp_frame_size = sizeof(EthernetFrameHeader) + sizeof(ARPPacket); if (frame_size < minimum_arp_frame_size) { kprintf("handle_arp: Frame too small (%d, need %d)\n", frame_size, minimum_arp_frame_size); return; } auto& packet = *static_cast(eth.payload()); if (packet.hardware_type() != 1 || packet.hardware_address_length() != sizeof(MACAddress)) { kprintf("handle_arp: Hardware type not ethernet (%w, len=%u)\n", packet.hardware_type(), packet.hardware_address_length()); return; } if (packet.protocol_type() != EtherType::IPv4 || packet.protocol_address_length() != sizeof(IPv4Address)) { kprintf("handle_arp: Protocol type not IPv4 (%w, len=%u)\n", packet.hardware_type(), packet.protocol_address_length()); return; } #ifdef ARP_DEBUG kprintf("handle_arp: operation=%w, sender=%s/%s, target=%s/%s\n", packet.operation(), packet.sender_hardware_address().to_string().characters(), packet.sender_protocol_address().to_string().characters(), packet.target_hardware_address().to_string().characters(), packet.target_protocol_address().to_string().characters()); #endif if (!packet.sender_hardware_address().is_zero() && !packet.sender_protocol_address().is_zero()) { // Someone has this IPv4 address. I guess we can try to remember that. // FIXME: Protect against ARP spamming. // FIXME: Support static ARP table entries. LOCKER(arp_table().lock()); arp_table().resource().set(packet.sender_protocol_address(), packet.sender_hardware_address()); kprintf("ARP table (%d entries):\n", arp_table().resource().size()); for (auto& it : arp_table().resource()) { kprintf("%s :: %s\n", it.value.to_string().characters(), it.key.to_string().characters()); } } if (packet.operation() == ARPOperation::Request) { // Who has this IP address? if (auto adapter = NetworkAdapter::from_ipv4_address(packet.target_protocol_address())) { // We do! kprintf("handle_arp: Responding to ARP request for my IPv4 address (%s)\n", adapter->ipv4_address().to_string().characters()); ARPPacket response; response.set_operation(ARPOperation::Response); response.set_target_hardware_address(packet.sender_hardware_address()); response.set_target_protocol_address(packet.sender_protocol_address()); response.set_sender_hardware_address(adapter->mac_address()); response.set_sender_protocol_address(adapter->ipv4_address()); adapter->send(packet.sender_hardware_address(), response); } return; } } void handle_ipv4(const EthernetFrameHeader& eth, size_t frame_size) { constexpr size_t minimum_ipv4_frame_size = sizeof(EthernetFrameHeader) + sizeof(IPv4Packet); if (frame_size < minimum_ipv4_frame_size) { kprintf("handle_ipv4: Frame too small (%d, need %d)\n", frame_size, minimum_ipv4_frame_size); return; } auto& packet = *static_cast(eth.payload()); if (packet.length() < sizeof(IPv4Packet)) { kprintf("handle_ipv4: IPv4 packet too short (%u, need %u)\n", packet.length(), sizeof(IPv4Packet)); return; } size_t actual_ipv4_packet_length = frame_size - sizeof(EthernetFrameHeader); if (packet.length() > actual_ipv4_packet_length) { kprintf("handle_ipv4: IPv4 packet claims to be longer than it is (%u, actually %zu)\n", packet.length(), actual_ipv4_packet_length); return; } #ifdef IPV4_DEBUG kprintf("handle_ipv4: source=%s, target=%s\n", packet.source().to_string().characters(), packet.destination().to_string().characters()); #endif switch ((IPv4Protocol)packet.protocol()) { case IPv4Protocol::ICMP: return handle_icmp(eth, packet); case IPv4Protocol::UDP: return handle_udp(packet); case IPv4Protocol::TCP: return handle_tcp(packet); default: kprintf("handle_ipv4: Unhandled protocol %u\n", packet.protocol()); break; } } void handle_icmp(const EthernetFrameHeader& eth, const IPv4Packet& ipv4_packet) { auto& icmp_header = *static_cast(ipv4_packet.payload()); #ifdef ICMP_DEBUG kprintf("handle_icmp: source=%s, destination=%s, type=%b, code=%b\n", ipv4_packet.source().to_string().characters(), ipv4_packet.destination().to_string().characters(), icmp_header.type(), icmp_header.code()); #endif { LOCKER(IPv4Socket::all_sockets().lock()); for (RefPtr socket : IPv4Socket::all_sockets().resource()) { LOCKER(socket->lock()); if (socket->protocol() != (unsigned)IPv4Protocol::ICMP) continue; socket->did_receive(ipv4_packet.source(), 0, KBuffer::copy(&ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size())); } } auto adapter = NetworkAdapter::from_ipv4_address(ipv4_packet.destination()); if (!adapter) return; if (icmp_header.type() == ICMPType::EchoRequest) { auto& request = reinterpret_cast(icmp_header); kprintf("handle_icmp: EchoRequest from %s: id=%u, seq=%u\n", ipv4_packet.source().to_string().characters(), (u16)request.identifier, (u16)request.sequence_number); size_t icmp_packet_size = ipv4_packet.payload_size(); auto buffer = ByteBuffer::create_zeroed(icmp_packet_size); auto& response = *(ICMPEchoPacket*)buffer.data(); response.header.set_type(ICMPType::EchoReply); response.header.set_code(0); response.identifier = request.identifier; response.sequence_number = request.sequence_number; if (size_t icmp_payload_size = icmp_packet_size - sizeof(ICMPEchoPacket)) memcpy(response.payload(), request.payload(), icmp_payload_size); response.header.set_checksum(internet_checksum(&response, icmp_packet_size)); // FIXME: What is the right TTL value here? Is 64 ok? Should we use the same TTL as the echo request? adapter->send_ipv4(eth.source(), ipv4_packet.source(), IPv4Protocol::ICMP, buffer.data(), buffer.size(), 64); } } void handle_udp(const IPv4Packet& ipv4_packet) { if (ipv4_packet.payload_size() < sizeof(UDPPacket)) { kprintf("handle_udp: Packet too small (%u, need %zu)\n", ipv4_packet.payload_size()); return; } auto adapter = NetworkAdapter::from_ipv4_address(ipv4_packet.destination()); if (!adapter) { kprintf("handle_udp: this packet is not for me, it's for %s\n", ipv4_packet.destination().to_string().characters()); return; } auto& udp_packet = *static_cast(ipv4_packet.payload()); #ifdef UDP_DEBUG kprintf("handle_udp: source=%s:%u, destination=%s:%u length=%u\n", ipv4_packet.source().to_string().characters(), udp_packet.source_port(), ipv4_packet.destination().to_string().characters(), udp_packet.destination_port(), udp_packet.length()); #endif auto socket = UDPSocket::from_port(udp_packet.destination_port()); if (!socket) { kprintf("handle_udp: No UDP socket for port %u\n", udp_packet.destination_port()); return; } ASSERT(socket->type() == SOCK_DGRAM); ASSERT(socket->local_port() == udp_packet.destination_port()); socket->did_receive(ipv4_packet.source(), udp_packet.source_port(), KBuffer::copy(&ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size())); } void handle_tcp(const IPv4Packet& ipv4_packet) { if (ipv4_packet.payload_size() < sizeof(TCPPacket)) { kprintf("handle_tcp: IPv4 payload is too small to be a TCP packet (%u, need %zu)\n", ipv4_packet.payload_size(), sizeof(TCPPacket)); return; } auto& tcp_packet = *static_cast(ipv4_packet.payload()); size_t minimum_tcp_header_size = 5 * sizeof(u32); size_t maximum_tcp_header_size = 15 * sizeof(u32); if (tcp_packet.header_size() < minimum_tcp_header_size || tcp_packet.header_size() > maximum_tcp_header_size) { kprintf("handle_tcp: TCP packet header has invalid size %zu\n", tcp_packet.header_size()); } if (ipv4_packet.payload_size() < tcp_packet.header_size()) { kprintf("handle_tcp: IPv4 payload is smaller than TCP header claims (%u, supposedly %u)\n", ipv4_packet.payload_size(), tcp_packet.header_size()); return; } size_t payload_size = ipv4_packet.payload_size() - tcp_packet.header_size(); #ifdef TCP_DEBUG kprintf("handle_tcp: source=%s:%u, destination=%s:%u seq_no=%u, ack_no=%u, flags=%w (%s%s%s%s), window_size=%u, payload_size=%u\n", ipv4_packet.source().to_string().characters(), tcp_packet.source_port(), ipv4_packet.destination().to_string().characters(), tcp_packet.destination_port(), tcp_packet.sequence_number(), tcp_packet.ack_number(), tcp_packet.flags(), tcp_packet.has_syn() ? "SYN " : "", tcp_packet.has_ack() ? "ACK " : "", tcp_packet.has_fin() ? "FIN " : "", tcp_packet.has_rst() ? "RST " : "", tcp_packet.window_size(), payload_size); #endif auto adapter = NetworkAdapter::from_ipv4_address(ipv4_packet.destination()); if (!adapter) { kprintf("handle_tcp: this packet is not for me, it's for %s\n", ipv4_packet.destination().to_string().characters()); return; } IPv4SocketTuple tuple(ipv4_packet.destination(), tcp_packet.destination_port(), ipv4_packet.source(), tcp_packet.source_port()); #ifdef TCP_DEBUG kprintf("handle_tcp: looking for socket; tuple=%s\n", tuple.to_string().characters()); #endif auto socket = TCPSocket::from_tuple(tuple); if (!socket) { kprintf("handle_tcp: No TCP socket for tuple %s\n", tuple.to_string().characters()); kprintf("handle_tcp: source=%s:%u, destination=%s:%u seq_no=%u, ack_no=%u, flags=%w (%s%s%s%s), window_size=%u, payload_size=%u\n", ipv4_packet.source().to_string().characters(), tcp_packet.source_port(), ipv4_packet.destination().to_string().characters(), tcp_packet.destination_port(), tcp_packet.sequence_number(), tcp_packet.ack_number(), tcp_packet.flags(), tcp_packet.has_syn() ? "SYN " : "", tcp_packet.has_ack() ? "ACK " : "", tcp_packet.has_fin() ? "FIN " : "", tcp_packet.has_rst() ? "RST " : "", tcp_packet.window_size(), payload_size); return; } ASSERT(socket->type() == SOCK_STREAM); ASSERT(socket->local_port() == tcp_packet.destination_port()); #ifdef TCP_DEBUG kprintf("handle_tcp: got socket; state=%s\n", socket->tuple().to_string().characters(), TCPSocket::to_string(socket->state())); #endif socket->receive_tcp_packet(tcp_packet, ipv4_packet.payload_size()); switch (socket->state()) { case TCPSocket::State::Closed: kprintf("handle_tcp: unexpected flags in Closed state\n"); // TODO: we may want to send an RST here, maybe as a configurable option return; case TCPSocket::State::TimeWait: kprintf("handle_tcp: unexpected flags in TimeWait state\n"); socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; case TCPSocket::State::Listen: switch (tcp_packet.flags()) { case TCPFlags::SYN: { #ifdef TCP_DEBUG kprintf("handle_tcp: incoming connection\n"); #endif auto& local_address = ipv4_packet.destination(); auto& peer_address = ipv4_packet.source(); auto client = socket->create_client(local_address, tcp_packet.destination_port(), peer_address, tcp_packet.source_port()); if (!client) { kprintf("handle_tcp: couldn't create client socket\n"); return; } #ifdef TCP_DEBUG kprintf("handle_tcp: created new client socket with tuple %s\n", client->tuple().to_string().characters()); #endif client->set_sequence_number(1000); client->set_ack_number(tcp_packet.sequence_number() + payload_size + 1); client->send_tcp_packet(TCPFlags::SYN | TCPFlags::ACK); client->set_state(TCPSocket::State::SynReceived); return; } default: kprintf("handle_tcp: unexpected flags in Listen state\n"); // socket->send_tcp_packet(TCPFlags::RST); return; } case TCPSocket::State::SynSent: switch (tcp_packet.flags()) { case TCPFlags::SYN: socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1); socket->send_tcp_packet(TCPFlags::ACK); socket->set_state(TCPSocket::State::SynReceived); return; case TCPFlags::ACK | TCPFlags::SYN: socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1); socket->send_tcp_packet(TCPFlags::ACK); socket->set_state(TCPSocket::State::Established); socket->set_setup_state(Socket::SetupState::Completed); socket->set_connected(true); return; case TCPFlags::ACK | TCPFlags::FIN: socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1); socket->send_tcp_packet(TCPFlags::ACK); socket->set_state(TCPSocket::State::Closed); socket->set_error(TCPSocket::Error::FINDuringConnect); socket->set_setup_state(Socket::SetupState::Completed); return; case TCPFlags::ACK | TCPFlags::RST: socket->set_ack_number(tcp_packet.sequence_number() + payload_size); socket->send_tcp_packet(TCPFlags::ACK); socket->set_state(TCPSocket::State::Closed); socket->set_error(TCPSocket::Error::RSTDuringConnect); socket->set_setup_state(Socket::SetupState::Completed); return; default: kprintf("handle_tcp: unexpected flags in SynSent state\n"); socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); socket->set_error(TCPSocket::Error::UnexpectedFlagsDuringConnect); socket->set_setup_state(Socket::SetupState::Completed); return; } case TCPSocket::State::SynReceived: switch (tcp_packet.flags()) { case TCPFlags::ACK: socket->set_ack_number(tcp_packet.sequence_number() + payload_size); switch (socket->direction()) { case TCPSocket::Direction::Incoming: if (!socket->has_originator()) { kprintf("handle_tcp: connection doesn't have an originating socket; maybe it went away?\n"); socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; } socket->set_state(TCPSocket::State::Established); socket->set_setup_state(Socket::SetupState::Completed); socket->release_to_originator(); return; case TCPSocket::Direction::Outgoing: socket->set_state(TCPSocket::State::Established); socket->set_setup_state(Socket::SetupState::Completed); socket->set_connected(true); return; default: kprintf("handle_tcp: got ACK in SynReceived state but direction is invalid (%s)\n", TCPSocket::to_string(socket->direction())); socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; } return; default: kprintf("handle_tcp: unexpected flags in SynReceived state\n"); socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; } case TCPSocket::State::CloseWait: switch (tcp_packet.flags()) { default: kprintf("handle_tcp: unexpected flags in CloseWait state\n"); socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; } case TCPSocket::State::LastAck: switch (tcp_packet.flags()) { case TCPFlags::ACK: socket->set_ack_number(tcp_packet.sequence_number() + payload_size); socket->set_state(TCPSocket::State::Closed); return; default: kprintf("handle_tcp: unexpected flags in LastAck state\n"); socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; } case TCPSocket::State::FinWait1: switch (tcp_packet.flags()) { case TCPFlags::ACK: socket->set_ack_number(tcp_packet.sequence_number() + payload_size); socket->set_state(TCPSocket::State::FinWait2); return; case TCPFlags::FIN: socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1); socket->set_state(TCPSocket::State::Closing); return; default: kprintf("handle_tcp: unexpected flags in FinWait1 state\n"); socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; } case TCPSocket::State::FinWait2: switch (tcp_packet.flags()) { case TCPFlags::FIN: socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1); socket->set_state(TCPSocket::State::TimeWait); return; default: kprintf("handle_tcp: unexpected flags in FinWait2 state\n"); socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; } case TCPSocket::State::Closing: switch (tcp_packet.flags()) { case TCPFlags::ACK: socket->set_ack_number(tcp_packet.sequence_number() + payload_size); socket->set_state(TCPSocket::State::TimeWait); return; default: kprintf("handle_tcp: unexpected flags in Closing state\n"); socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; } case TCPSocket::State::Established: if (tcp_packet.has_fin()) { if (payload_size != 0) socket->did_receive(ipv4_packet.source(), tcp_packet.source_port(), KBuffer::copy(&ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size())); socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1); // TODO: We should only send a FIN packet out once we're shutting // down our side of the socket, so we should change this back to // just being an ACK and a transition to CloseWait once we have a // shutdown() implementation. socket->send_tcp_packet(TCPFlags::FIN | TCPFlags::ACK); socket->set_state(TCPSocket::State::Closing); socket->set_connected(false); return; } socket->set_ack_number(tcp_packet.sequence_number() + payload_size); #ifdef TCP_DEBUG kprintf("Got packet with ack_no=%u, seq_no=%u, payload_size=%u, acking it with new ack_no=%u, seq_no=%u\n", tcp_packet.ack_number(), tcp_packet.sequence_number(), payload_size, socket->ack_number(), socket->sequence_number()); #endif bool should_ack = true; if (payload_size != 0) { should_ack = socket->did_receive(ipv4_packet.source(), tcp_packet.source_port(), KBuffer::copy(&ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size())); } if (should_ack) socket->send_tcp_packet(TCPFlags::ACK); } }