/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Kernel { static void handle_arp(EthernetFrameHeader const&, size_t frame_size); static void handle_ipv4(EthernetFrameHeader const&, size_t frame_size, Time const& packet_timestamp); static void handle_icmp(EthernetFrameHeader const&, IPv4Packet const&, Time const& packet_timestamp); static void handle_udp(IPv4Packet const&, Time const& packet_timestamp); static void handle_tcp(IPv4Packet const&, Time const& packet_timestamp); static void send_delayed_tcp_ack(TCPSocket& socket); static void send_tcp_rst(IPv4Packet const& ipv4_packet, TCPPacket const& tcp_packet, RefPtr adapter); static void flush_delayed_tcp_acks(); static void retransmit_tcp_packets(); static Thread* network_task = nullptr; static HashTable>* delayed_ack_sockets; [[noreturn]] static void NetworkTask_main(void*); void NetworkTask::spawn() { auto name = KString::try_create("Network Task"sv); if (name.is_error()) TODO(); auto [_, first_thread] = MUST(Process::create_kernel_process(name.release_value(), NetworkTask_main, nullptr)); network_task = first_thread; } bool NetworkTask::is_current() { return Thread::current() == network_task; } void NetworkTask_main(void*) { delayed_ack_sockets = new HashTable>; WaitQueue packet_wait_queue; int pending_packets = 0; NetworkingManagement::the().for_each([&](auto& adapter) { dmesgln("NetworkTask: {} network adapter found: hw={}", adapter.class_name(), adapter.mac_address().to_string()); if (adapter.class_name() == "LoopbackAdapter"sv) { adapter.set_ipv4_address({ 127, 0, 0, 1 }); adapter.set_ipv4_netmask({ 255, 0, 0, 0 }); } adapter.on_receive = [&]() { pending_packets++; packet_wait_queue.wake_all(); }; }); auto dequeue_packet = [&pending_packets](u8* buffer, size_t buffer_size, Time& packet_timestamp) -> size_t { if (pending_packets == 0) return 0; size_t packet_size = 0; NetworkingManagement::the().for_each([&](auto& adapter) { if (packet_size || !adapter.has_queued_packets()) return; packet_size = adapter.dequeue_packet(buffer, buffer_size, packet_timestamp); pending_packets--; dbgln_if(NETWORK_TASK_DEBUG, "NetworkTask: Dequeued packet from {} ({} bytes)", adapter.name(), packet_size); }); return packet_size; }; size_t buffer_size = 64 * KiB; auto region_or_error = MM.allocate_kernel_region(buffer_size, "Kernel Packet Buffer"sv, Memory::Region::Access::ReadWrite); if (region_or_error.is_error()) TODO(); auto buffer_region = region_or_error.release_value(); auto buffer = (u8*)buffer_region->vaddr().get(); Time packet_timestamp; for (;;) { flush_delayed_tcp_acks(); retransmit_tcp_packets(); size_t packet_size = dequeue_packet(buffer, buffer_size, packet_timestamp); if (!packet_size) { auto timeout_time = Time::from_milliseconds(500); auto timeout = Thread::BlockTimeout { false, &timeout_time }; [[maybe_unused]] auto result = packet_wait_queue.wait_on(timeout, "NetworkTask"sv); continue; } if (packet_size < sizeof(EthernetFrameHeader)) { dbgln("NetworkTask: Packet is too small to be an Ethernet packet! ({})", packet_size); continue; } auto& eth = *(EthernetFrameHeader const*)buffer; dbgln_if(ETHERNET_DEBUG, "NetworkTask: From {} to {}, ether_type={:#04x}, packet_size={}", eth.source().to_string(), eth.destination().to_string(), eth.ether_type(), packet_size); switch (eth.ether_type()) { case EtherType::ARP: handle_arp(eth, packet_size); break; case EtherType::IPv4: handle_ipv4(eth, packet_size, packet_timestamp); break; case EtherType::IPv6: // ignore break; default: dbgln_if(ETHERNET_DEBUG, "NetworkTask: Unknown ethernet type {:#04x}", eth.ether_type()); } } } void handle_arp(EthernetFrameHeader const& eth, size_t frame_size) { constexpr size_t minimum_arp_frame_size = sizeof(EthernetFrameHeader) + sizeof(ARPPacket); if (frame_size < minimum_arp_frame_size) { dbgln("handle_arp: Frame too small ({}, need {})", frame_size, minimum_arp_frame_size); return; } auto& packet = *static_cast(eth.payload()); if (packet.hardware_type() != 1 || packet.hardware_address_length() != sizeof(MACAddress)) { dbgln("handle_arp: Hardware type not ethernet ({:#04x}, len={})", packet.hardware_type(), packet.hardware_address_length()); return; } if (packet.protocol_type() != EtherType::IPv4 || packet.protocol_address_length() != sizeof(IPv4Address)) { dbgln("handle_arp: Protocol type not IPv4 ({:#04x}, len={})", packet.protocol_type(), packet.protocol_address_length()); return; } dbgln_if(ARP_DEBUG, "handle_arp: operation={:#04x}, sender={}/{}, target={}/{}", packet.operation(), packet.sender_hardware_address().to_string(), packet.sender_protocol_address().to_string(), packet.target_hardware_address().to_string(), packet.target_protocol_address().to_string()); if (!packet.sender_hardware_address().is_zero() && !packet.sender_protocol_address().is_zero()) { // Someone has this IPv4 address. I guess we can try to remember that. // FIXME: Protect against ARP spamming. update_arp_table(packet.sender_protocol_address(), packet.sender_hardware_address(), UpdateTable::Set); } if (packet.operation() == ARPOperation::Request) { // Who has this IP address? if (auto adapter = NetworkingManagement::the().from_ipv4_address(packet.target_protocol_address())) { // We do! dbgln("handle_arp: Responding to ARP request for my IPv4 address ({})", adapter->ipv4_address()); ARPPacket response; response.set_operation(ARPOperation::Response); response.set_target_hardware_address(packet.sender_hardware_address()); response.set_target_protocol_address(packet.sender_protocol_address()); response.set_sender_hardware_address(adapter->mac_address()); response.set_sender_protocol_address(adapter->ipv4_address()); adapter->send(packet.sender_hardware_address(), response); } return; } } void handle_ipv4(EthernetFrameHeader const& eth, size_t frame_size, Time const& packet_timestamp) { constexpr size_t minimum_ipv4_frame_size = sizeof(EthernetFrameHeader) + sizeof(IPv4Packet); if (frame_size < minimum_ipv4_frame_size) { dbgln("handle_ipv4: Frame too small ({}, need {})", frame_size, minimum_ipv4_frame_size); return; } auto& packet = *static_cast(eth.payload()); if (packet.length() < sizeof(IPv4Packet)) { dbgln("handle_ipv4: IPv4 packet too short ({}, need {})", packet.length(), sizeof(IPv4Packet)); return; } size_t actual_ipv4_packet_length = frame_size - sizeof(EthernetFrameHeader); if (packet.length() > actual_ipv4_packet_length) { dbgln("handle_ipv4: IPv4 packet claims to be longer than it is ({}, actually {})", packet.length(), actual_ipv4_packet_length); return; } dbgln_if(IPV4_DEBUG, "handle_ipv4: source={}, destination={}", packet.source(), packet.destination()); NetworkingManagement::the().for_each([&](auto& adapter) { if (adapter.ipv4_address().is_zero() || !adapter.link_up()) return; auto my_net = adapter.ipv4_address().to_u32() & adapter.ipv4_netmask().to_u32(); auto their_net = packet.source().to_u32() & adapter.ipv4_netmask().to_u32(); if (my_net == their_net) update_arp_table(packet.source(), eth.source(), UpdateTable::Set); }); switch ((IPv4Protocol)packet.protocol()) { case IPv4Protocol::ICMP: return handle_icmp(eth, packet, packet_timestamp); case IPv4Protocol::UDP: return handle_udp(packet, packet_timestamp); case IPv4Protocol::TCP: return handle_tcp(packet, packet_timestamp); default: dbgln_if(IPV4_DEBUG, "handle_ipv4: Unhandled protocol {:#02x}", packet.protocol()); break; } } void handle_icmp(EthernetFrameHeader const& eth, IPv4Packet const& ipv4_packet, Time const& packet_timestamp) { auto& icmp_header = *static_cast(ipv4_packet.payload()); dbgln_if(ICMP_DEBUG, "handle_icmp: source={}, destination={}, type={:#02x}, code={:#02x}", ipv4_packet.source().to_string(), ipv4_packet.destination().to_string(), icmp_header.type(), icmp_header.code()); { Vector> icmp_sockets; IPv4Socket::all_sockets().with_exclusive([&](auto& sockets) { for (auto& socket : sockets) { if (socket.protocol() == (unsigned)IPv4Protocol::ICMP) icmp_sockets.append(socket); } }); for (auto& socket : icmp_sockets) socket->did_receive(ipv4_packet.source(), 0, { &ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size() }, packet_timestamp); } auto adapter = NetworkingManagement::the().from_ipv4_address(ipv4_packet.destination()); if (!adapter) return; if (icmp_header.type() == ICMPType::EchoRequest) { auto& request = reinterpret_cast(icmp_header); dbgln("handle_icmp: EchoRequest from {}: id={}, seq={}", ipv4_packet.source(), (u16)request.identifier, (u16)request.sequence_number); size_t icmp_packet_size = ipv4_packet.payload_size(); if (icmp_packet_size < sizeof(ICMPEchoPacket)) { dbgln("handle_icmp: EchoRequest packet is too small, ignoring."); return; } auto ipv4_payload_offset = adapter->ipv4_payload_offset(); auto packet = adapter->acquire_packet_buffer(ipv4_payload_offset + icmp_packet_size); if (!packet) { dbgln("Could not allocate packet buffer while sending ICMP packet"); return; } adapter->fill_in_ipv4_header(*packet, adapter->ipv4_address(), eth.source(), ipv4_packet.source(), IPv4Protocol::ICMP, icmp_packet_size, 0, 64); memset(packet->buffer->data() + ipv4_payload_offset, 0, sizeof(ICMPEchoPacket)); auto& response = *(ICMPEchoPacket*)(packet->buffer->data() + ipv4_payload_offset); response.header.set_type(ICMPType::EchoReply); response.header.set_code(0); response.identifier = request.identifier; response.sequence_number = request.sequence_number; if (size_t icmp_payload_size = icmp_packet_size - sizeof(ICMPEchoPacket)) memcpy(response.payload(), request.payload(), icmp_payload_size); response.header.set_checksum(internet_checksum(&response, icmp_packet_size)); // FIXME: What is the right TTL value here? Is 64 ok? Should we use the same TTL as the echo request? adapter->send_packet(packet->bytes()); adapter->release_packet_buffer(*packet); } } void handle_udp(IPv4Packet const& ipv4_packet, Time const& packet_timestamp) { if (ipv4_packet.payload_size() < sizeof(UDPPacket)) { dbgln("handle_udp: Packet too small ({}, need {})", ipv4_packet.payload_size(), sizeof(UDPPacket)); return; } auto& udp_packet = *static_cast(ipv4_packet.payload()); dbgln_if(UDP_DEBUG, "handle_udp: source={}:{}, destination={}:{}, length={}", ipv4_packet.source(), udp_packet.source_port(), ipv4_packet.destination(), udp_packet.destination_port(), udp_packet.length()); auto socket = UDPSocket::from_port(udp_packet.destination_port()); if (!socket) { dbgln_if(UDP_DEBUG, "handle_udp: No local UDP socket for {}:{}", ipv4_packet.destination(), udp_packet.destination_port()); return; } VERIFY(socket->type() == SOCK_DGRAM); VERIFY(socket->local_port() == udp_packet.destination_port()); auto& destination = ipv4_packet.destination(); if (destination == IPv4Address(255, 255, 255, 255) || NetworkingManagement::the().from_ipv4_address(destination) || socket->multicast_memberships().contains_slow(destination)) socket->did_receive(ipv4_packet.source(), udp_packet.source_port(), { &ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size() }, packet_timestamp); } void send_delayed_tcp_ack(TCPSocket& socket) { VERIFY(socket.mutex().is_locked()); if (!socket.should_delay_next_ack()) { [[maybe_unused]] auto result = socket.send_ack(); return; } delayed_ack_sockets->set(move(socket)); } void flush_delayed_tcp_acks() { Vector, 32> remaining_sockets; for (auto& socket : *delayed_ack_sockets) { MutexLocker locker(socket->mutex()); if (socket->should_delay_next_ack()) { MUST(remaining_sockets.try_append(*socket)); continue; } [[maybe_unused]] auto result = socket->send_ack(); } if (remaining_sockets.size() != delayed_ack_sockets->size()) { delayed_ack_sockets->clear(); if (remaining_sockets.size() > 0) dbgln("flush_delayed_tcp_acks: {} sockets remaining", remaining_sockets.size()); for (auto&& socket : remaining_sockets) delayed_ack_sockets->set(move(socket)); } } void send_tcp_rst(IPv4Packet const& ipv4_packet, TCPPacket const& tcp_packet, RefPtr adapter) { auto routing_decision = route_to(ipv4_packet.source(), ipv4_packet.destination(), adapter); if (routing_decision.is_zero()) return; auto ipv4_payload_offset = routing_decision.adapter->ipv4_payload_offset(); const size_t options_size = 0; const size_t tcp_header_size = sizeof(TCPPacket) + options_size; const size_t buffer_size = ipv4_payload_offset + tcp_header_size; auto packet = routing_decision.adapter->acquire_packet_buffer(buffer_size); if (!packet) return; routing_decision.adapter->fill_in_ipv4_header(*packet, ipv4_packet.destination(), routing_decision.next_hop, ipv4_packet.source(), IPv4Protocol::TCP, buffer_size - ipv4_payload_offset, 0, 64); auto& rst_packet = *(TCPPacket*)(packet->buffer->data() + ipv4_payload_offset); rst_packet = {}; rst_packet.set_source_port(tcp_packet.destination_port()); rst_packet.set_destination_port(tcp_packet.source_port()); rst_packet.set_window_size(0); rst_packet.set_sequence_number(0); rst_packet.set_ack_number(tcp_packet.sequence_number() + 1); rst_packet.set_data_offset(tcp_header_size / sizeof(u32)); rst_packet.set_flags(TCPFlags::RST | TCPFlags::ACK); rst_packet.set_checksum(TCPSocket::compute_tcp_checksum(ipv4_packet.source(), ipv4_packet.destination(), rst_packet, 0)); routing_decision.adapter->send_packet(packet->bytes()); routing_decision.adapter->release_packet_buffer(*packet); } void handle_tcp(IPv4Packet const& ipv4_packet, Time const& packet_timestamp) { if (ipv4_packet.payload_size() < sizeof(TCPPacket)) { dbgln("handle_tcp: IPv4 payload is too small to be a TCP packet ({}, need {})", ipv4_packet.payload_size(), sizeof(TCPPacket)); return; } auto& tcp_packet = *static_cast(ipv4_packet.payload()); size_t minimum_tcp_header_size = 5 * sizeof(u32); size_t maximum_tcp_header_size = 15 * sizeof(u32); if (tcp_packet.header_size() < minimum_tcp_header_size || tcp_packet.header_size() > maximum_tcp_header_size) { dbgln("handle_tcp: TCP packet header has invalid size {}", tcp_packet.header_size()); } if (ipv4_packet.payload_size() < tcp_packet.header_size()) { dbgln("handle_tcp: IPv4 payload is smaller than TCP header claims ({}, supposedly {})", ipv4_packet.payload_size(), tcp_packet.header_size()); return; } size_t payload_size = ipv4_packet.payload_size() - tcp_packet.header_size(); dbgln_if(TCP_DEBUG, "handle_tcp: source={}:{}, destination={}:{}, seq_no={}, ack_no={}, flags={:#04x} ({}{}{}{}), window_size={}, payload_size={}", ipv4_packet.source().to_string(), tcp_packet.source_port(), ipv4_packet.destination().to_string(), tcp_packet.destination_port(), tcp_packet.sequence_number(), tcp_packet.ack_number(), tcp_packet.flags(), tcp_packet.has_syn() ? "SYN " : "", tcp_packet.has_ack() ? "ACK " : "", tcp_packet.has_fin() ? "FIN " : "", tcp_packet.has_rst() ? "RST " : "", tcp_packet.window_size(), payload_size); auto adapter = NetworkingManagement::the().from_ipv4_address(ipv4_packet.destination()); if (!adapter) { dbgln("handle_tcp: this packet is not for me, it's for {}", ipv4_packet.destination()); return; } IPv4SocketTuple tuple(ipv4_packet.destination(), tcp_packet.destination_port(), ipv4_packet.source(), tcp_packet.source_port()); dbgln_if(TCP_DEBUG, "handle_tcp: looking for socket; tuple={}", tuple.to_string()); auto socket = TCPSocket::from_tuple(tuple); if (!socket) { if (!tcp_packet.has_rst()) { dbgln("handle_tcp: No TCP socket for tuple {}. Sending RST.", tuple.to_string()); send_tcp_rst(ipv4_packet, tcp_packet, adapter); } return; } MutexLocker locker(socket->mutex()); VERIFY(socket->type() == SOCK_STREAM); VERIFY(socket->local_port() == tcp_packet.destination_port()); dbgln_if(TCP_DEBUG, "handle_tcp: got socket {}; state={}", socket->tuple().to_string(), TCPSocket::to_string(socket->state())); socket->receive_tcp_packet(tcp_packet, ipv4_packet.payload_size()); switch (socket->state()) { case TCPSocket::State::Closed: dbgln("handle_tcp: unexpected flags in Closed state ({:x})", tcp_packet.flags()); // TODO: we may want to send an RST here, maybe as a configurable option return; case TCPSocket::State::TimeWait: dbgln("handle_tcp: unexpected flags in TimeWait state ({:x})", tcp_packet.flags()); (void)socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; case TCPSocket::State::Listen: switch (tcp_packet.flags()) { case TCPFlags::SYN: { dbgln_if(TCP_DEBUG, "handle_tcp: incoming connection"); auto& local_address = ipv4_packet.destination(); auto& peer_address = ipv4_packet.source(); auto client_or_error = socket->try_create_client(local_address, tcp_packet.destination_port(), peer_address, tcp_packet.source_port()); if (client_or_error.is_error()) { dmesgln("handle_tcp: couldn't create client socket: {}", client_or_error.error()); return; } auto client = client_or_error.release_value(); MutexLocker locker(client->mutex()); dbgln_if(TCP_DEBUG, "handle_tcp: created new client socket with tuple {}", client->tuple().to_string()); client->set_sequence_number(1000); client->set_ack_number(tcp_packet.sequence_number() + payload_size + 1); [[maybe_unused]] auto rc2 = client->send_tcp_packet(TCPFlags::SYN | TCPFlags::ACK); client->set_state(TCPSocket::State::SynReceived); return; } default: dbgln("handle_tcp: unexpected flags in Listen state ({:x})", tcp_packet.flags()); // socket->send_tcp_packet(TCPFlags::RST); return; } case TCPSocket::State::SynSent: switch (tcp_packet.flags()) { case TCPFlags::SYN: socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1); (void)socket->send_tcp_packet(TCPFlags::SYN | TCPFlags::ACK); socket->set_state(TCPSocket::State::SynReceived); return; case TCPFlags::ACK | TCPFlags::SYN: socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1); (void)socket->send_ack(true); socket->set_state(TCPSocket::State::Established); socket->set_setup_state(Socket::SetupState::Completed); socket->set_connected(true); return; case TCPFlags::ACK | TCPFlags::FIN: socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1); send_delayed_tcp_ack(*socket); socket->set_state(TCPSocket::State::Closed); socket->set_error(TCPSocket::Error::FINDuringConnect); socket->set_setup_state(Socket::SetupState::Completed); return; case TCPFlags::ACK | TCPFlags::RST: socket->set_state(TCPSocket::State::Closed); socket->set_error(TCPSocket::Error::RSTDuringConnect); socket->set_setup_state(Socket::SetupState::Completed); return; default: dbgln("handle_tcp: unexpected flags in SynSent state ({:x})", tcp_packet.flags()); (void)socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); socket->set_error(TCPSocket::Error::UnexpectedFlagsDuringConnect); socket->set_setup_state(Socket::SetupState::Completed); return; } case TCPSocket::State::SynReceived: switch (tcp_packet.flags()) { case TCPFlags::ACK: socket->set_ack_number(tcp_packet.sequence_number() + payload_size); switch (socket->direction()) { case TCPSocket::Direction::Incoming: if (!socket->has_originator()) { dbgln("handle_tcp: connection doesn't have an originating socket; maybe it went away?"); (void)socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; } socket->set_state(TCPSocket::State::Established); socket->set_setup_state(Socket::SetupState::Completed); socket->release_to_originator(); return; case TCPSocket::Direction::Outgoing: socket->set_state(TCPSocket::State::Established); socket->set_setup_state(Socket::SetupState::Completed); socket->set_connected(true); return; default: dbgln("handle_tcp: got ACK in SynReceived state but direction is invalid ({})", TCPSocket::to_string(socket->direction())); (void)socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; } VERIFY_NOT_REACHED(); case TCPFlags::SYN: dbgln("handle_tcp: ignoring SYN for partially established connection"); return; default: dbgln("handle_tcp: unexpected flags in SynReceived state ({:x})", tcp_packet.flags()); (void)socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; } case TCPSocket::State::CloseWait: switch (tcp_packet.flags()) { default: dbgln("handle_tcp: unexpected flags in CloseWait state ({:x})", tcp_packet.flags()); (void)socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; } case TCPSocket::State::LastAck: switch (tcp_packet.flags()) { case TCPFlags::ACK: socket->set_ack_number(tcp_packet.sequence_number() + payload_size); socket->set_state(TCPSocket::State::Closed); return; default: dbgln("handle_tcp: unexpected flags in LastAck state ({:x})", tcp_packet.flags()); (void)socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; } case TCPSocket::State::FinWait1: switch (tcp_packet.flags()) { case TCPFlags::ACK: socket->set_ack_number(tcp_packet.sequence_number() + payload_size); socket->set_state(TCPSocket::State::FinWait2); return; case TCPFlags::FIN: socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1); socket->set_state(TCPSocket::State::Closing); (void)socket->send_ack(true); return; case TCPFlags::FIN | TCPFlags::ACK: socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1); socket->set_state(TCPSocket::State::TimeWait); (void)socket->send_ack(true); return; default: dbgln("handle_tcp: unexpected flags in FinWait1 state ({:x})", tcp_packet.flags()); (void)socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; } case TCPSocket::State::FinWait2: switch (tcp_packet.flags()) { case TCPFlags::FIN: socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1); socket->set_state(TCPSocket::State::TimeWait); (void)socket->send_ack(true); return; case TCPFlags::ACK | TCPFlags::RST: // FIXME: Verify that this transition is legitimate. socket->set_state(TCPSocket::State::Closed); return; default: dbgln("handle_tcp: unexpected flags in FinWait2 state ({:x})", tcp_packet.flags()); (void)socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; } case TCPSocket::State::Closing: switch (tcp_packet.flags()) { case TCPFlags::ACK: socket->set_ack_number(tcp_packet.sequence_number() + payload_size); socket->set_state(TCPSocket::State::TimeWait); return; default: dbgln("handle_tcp: unexpected flags in Closing state ({:x})", tcp_packet.flags()); (void)socket->send_tcp_packet(TCPFlags::RST); socket->set_state(TCPSocket::State::Closed); return; } case TCPSocket::State::Established: if (tcp_packet.has_rst()) { socket->set_state(TCPSocket::State::Closed); return; } if (tcp_packet.sequence_number() != socket->ack_number()) { dbgln_if(TCP_DEBUG, "Discarding out of order packet: seq {} vs. ack {}", tcp_packet.sequence_number(), socket->ack_number()); if (socket->duplicate_acks() < TCPSocket::maximum_duplicate_acks) { dbgln_if(TCP_DEBUG, "Sending ACK with same ack number to trigger fast retransmission"); socket->set_duplicate_acks(socket->duplicate_acks() + 1); [[maybe_unused]] auto result = socket->send_ack(true); } return; } socket->set_duplicate_acks(0); if (tcp_packet.has_fin()) { if (payload_size != 0) socket->did_receive(ipv4_packet.source(), tcp_packet.source_port(), { &ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size() }, packet_timestamp); socket->set_ack_number(tcp_packet.sequence_number() + payload_size + 1); send_delayed_tcp_ack(*socket); socket->set_state(TCPSocket::State::CloseWait); socket->set_connected(false); return; } if (payload_size) { if (socket->did_receive(ipv4_packet.source(), tcp_packet.source_port(), { &ipv4_packet, sizeof(IPv4Packet) + ipv4_packet.payload_size() }, packet_timestamp)) { socket->set_ack_number(tcp_packet.sequence_number() + payload_size); dbgln_if(TCP_DEBUG, "Got packet with ack_no={}, seq_no={}, payload_size={}, acking it with new ack_no={}, seq_no={}", tcp_packet.ack_number(), tcp_packet.sequence_number(), payload_size, socket->ack_number(), socket->sequence_number()); send_delayed_tcp_ack(*socket); } } } } void retransmit_tcp_packets() { // We must keep the sockets alive until after we've unlocked the hash table // in case retransmit_packets() realizes that it wants to close the socket. Vector, 16> sockets; TCPSocket::sockets_for_retransmit().for_each_shared([&](auto const& socket) { // We ignore allocation failures above the first 16 guaranteed socket slots, as // we will just retransmit their packets the next time around (void)sockets.try_append(socket); }); for (auto& socket : sockets) { MutexLocker socket_locker(socket->mutex()); socket->retransmit_packets(); } } }