#include #include #include #define REG_CTRL 0x0000 #define REG_STATUS 0x0008 #define REG_EEPROM 0x0014 #define REG_CTRL_EXT 0x0018 #define REG_IMASK 0x00D0 #define REG_RCTRL 0x0100 #define REG_RXDESCLO 0x2800 #define REG_RXDESCHI 0x2804 #define REG_RXDESCLEN 0x2808 #define REG_RXDESCHEAD 0x2810 #define REG_RXDESCTAIL 0x2818 #define REG_TCTRL 0x0400 #define REG_TXDESCLO 0x3800 #define REG_TXDESCHI 0x3804 #define REG_TXDESCLEN 0x3808 #define REG_TXDESCHEAD 0x3810 #define REG_TXDESCTAIL 0x3818 #define REG_RDTR 0x2820 // RX Delay Timer Register #define REG_RXDCTL 0x3828 // RX Descriptor Control #define REG_RADV 0x282C // RX Int. Absolute Delay Timer #define REG_RSRPD 0x2C00 // RX Small Packet Detect Interrupt #define REG_TIPG 0x0410 // Transmit Inter Packet Gap #define ECTRL_SLU 0x40 //set link up #define RCTL_EN (1 << 1) // Receiver Enable #define RCTL_SBP (1 << 2) // Store Bad Packets #define RCTL_UPE (1 << 3) // Unicast Promiscuous Enabled #define RCTL_MPE (1 << 4) // Multicast Promiscuous Enabled #define RCTL_LPE (1 << 5) // Long Packet Reception Enable #define RCTL_LBM_NONE (0 << 6) // No Loopback #define RCTL_LBM_PHY (3 << 6) // PHY or external SerDesc loopback #define RTCL_RDMTS_HALF (0 << 8) // Free Buffer Threshold is 1/2 of RDLEN #define RTCL_RDMTS_QUARTER (1 << 8) // Free Buffer Threshold is 1/4 of RDLEN #define RTCL_RDMTS_EIGHTH (2 << 8) // Free Buffer Threshold is 1/8 of RDLEN #define RCTL_MO_36 (0 << 12) // Multicast Offset - bits 47:36 #define RCTL_MO_35 (1 << 12) // Multicast Offset - bits 46:35 #define RCTL_MO_34 (2 << 12) // Multicast Offset - bits 45:34 #define RCTL_MO_32 (3 << 12) // Multicast Offset - bits 43:32 #define RCTL_BAM (1 << 15) // Broadcast Accept Mode #define RCTL_VFE (1 << 18) // VLAN Filter Enable #define RCTL_CFIEN (1 << 19) // Canonical Form Indicator Enable #define RCTL_CFI (1 << 20) // Canonical Form Indicator Bit Value #define RCTL_DPF (1 << 22) // Discard Pause Frames #define RCTL_PMCF (1 << 23) // Pass MAC Control Frames #define RCTL_SECRC (1 << 26) // Strip Ethernet CRC // Buffer Sizes #define RCTL_BSIZE_256 (3 << 16) #define RCTL_BSIZE_512 (2 << 16) #define RCTL_BSIZE_1024 (1 << 16) #define RCTL_BSIZE_2048 (0 << 16) #define RCTL_BSIZE_4096 ((3 << 16) | (1 << 25)) #define RCTL_BSIZE_8192 ((2 << 16) | (1 << 25)) #define RCTL_BSIZE_16384 ((1 << 16) | (1 << 25)) // Transmit Command #define CMD_EOP (1 << 0) // End of Packet #define CMD_IFCS (1 << 1) // Insert FCS #define CMD_IC (1 << 2) // Insert Checksum #define CMD_RS (1 << 3) // Report Status #define CMD_RPS (1 << 4) // Report Packet Sent #define CMD_VLE (1 << 6) // VLAN Packet Enable #define CMD_IDE (1 << 7) // Interrupt Delay Enable // TCTL Register #define TCTL_EN (1 << 1) // Transmit Enable #define TCTL_PSP (1 << 3) // Pad Short Packets #define TCTL_CT_SHIFT 4 // Collision Threshold #define TCTL_COLD_SHIFT 12 // Collision Distance #define TCTL_SWXOFF (1 << 22) // Software XOFF Transmission #define TCTL_RTLC (1 << 24) // Re-transmit on Late Collision #define TSTA_DD (1 << 0) // Descriptor Done #define TSTA_EC (1 << 1) // Excess Collisions #define TSTA_LC (1 << 2) // Late Collision #define LSTA_TU (1 << 3) // Transmit Underrun // STATUS Register #define STATUS_FD 0x01 #define STATUS_LU 0x02 #define STATUS_TXOFF 0x08 #define STATUS_SPEED 0xC0 #define STATUS_SPEED_10MB 0x00 #define STATUS_SPEED_100MB 0x40 #define STATUS_SPEED_1000MB1 0x80 #define STATUS_SPEED_1000MB2 0xC0 OwnPtr E1000NetworkAdapter::autodetect() { static const PCI::ID qemu_bochs_vbox_id = { 0x8086, 0x100e }; PCI::Address found_address; PCI::enumerate_all([&](const PCI::Address& address, PCI::ID id) { if (id == qemu_bochs_vbox_id) { found_address = address; return; } }); if (found_address.is_null()) return nullptr; u8 irq = PCI::get_interrupt_line(found_address); return make(found_address, irq); } E1000NetworkAdapter::E1000NetworkAdapter(PCI::Address pci_address, u8 irq) : IRQHandler(irq) , m_pci_address(pci_address) { set_interface_name("e1k"); kprintf("E1000: Found at PCI address %b:%b:%b\n", pci_address.bus(), pci_address.slot(), pci_address.function()); enable_bus_mastering(m_pci_address); m_mmio_base = PhysicalAddress(PCI::get_BAR0(m_pci_address)); u32 mmio_base_size = PCI::get_BAR_Space_Size(pci_address, 0); MM.map_for_kernel(VirtualAddress(m_mmio_base.get()), m_mmio_base); MM.map_for_kernel(VirtualAddress(m_mmio_base.offset(4096).get()), m_mmio_base.offset(4096)); MM.map_for_kernel(VirtualAddress(m_mmio_base.offset(8192).get()), m_mmio_base.offset(8192)); MM.map_for_kernel(VirtualAddress(m_mmio_base.offset(12288).get()), m_mmio_base.offset(12288)); MM.map_for_kernel(VirtualAddress(m_mmio_base.offset(16384).get()), m_mmio_base.offset(16384)); m_use_mmio = true; m_io_base = PCI::get_BAR1(m_pci_address) & ~1; m_interrupt_line = PCI::get_interrupt_line(m_pci_address); kprintf("E1000: IO port base: %w\n", m_io_base); kprintf("E1000: MMIO base: P%x\n", m_mmio_base); kprintf("E1000: MMIO base size: %u bytes\n", mmio_base_size); kprintf("E1000: Interrupt line: %u\n", m_interrupt_line); detect_eeprom(); kprintf("E1000: Has EEPROM? %u\n", m_has_eeprom); read_mac_address(); const auto& mac = mac_address(); kprintf("E1000: MAC address: %b:%b:%b:%b:%b:%b\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); u32 flags = in32(REG_CTRL); out32(REG_CTRL, flags | ECTRL_SLU); initialize_rx_descriptors(); initialize_tx_descriptors(); out32(REG_IMASK, 0x1f6dc); out32(REG_IMASK, 0xff & ~4); in32(0xc0); enable_irq(); } E1000NetworkAdapter::~E1000NetworkAdapter() { } void E1000NetworkAdapter::handle_irq() { out32(REG_IMASK, 0x1); u32 status = in32(0xc0); if (status & 4) { u32 flags = in32(REG_CTRL); out32(REG_CTRL, flags | ECTRL_SLU); } if (status & 0x10) { // Threshold OK? } if (status & 0x80) { receive(); } m_wait_queue.wake_all(); } void E1000NetworkAdapter::detect_eeprom() { out32(REG_EEPROM, 0x1); for (volatile int i = 0; i < 999; ++i) { u32 data = in32(REG_EEPROM); if (data & 0x10) { m_has_eeprom = true; return; } } m_has_eeprom = false; } u32 E1000NetworkAdapter::read_eeprom(u8 address) { u16 data = 0; u32 tmp = 0; if (m_has_eeprom) { out32(REG_EEPROM, ((u32)address << 8) | 1); while (!((tmp = in32(REG_EEPROM)) & (1 << 4))) ; } else { out32(REG_EEPROM, ((u32)address << 2) | 1); while (!((tmp = in32(REG_EEPROM)) & (1 << 1))) ; } data = (tmp >> 16) & 0xffff; return data; } void E1000NetworkAdapter::read_mac_address() { if (m_has_eeprom) { u8 mac[6]; u32 tmp = read_eeprom(0); mac[0] = tmp & 0xff; mac[1] = tmp >> 8; tmp = read_eeprom(1); mac[2] = tmp & 0xff; mac[3] = tmp >> 8; tmp = read_eeprom(2); mac[4] = tmp & 0xff; mac[5] = tmp >> 8; set_mac_address(mac); } else { ASSERT_NOT_REACHED(); } } bool E1000NetworkAdapter::link_up() { return (in32(REG_STATUS) & STATUS_LU); } void E1000NetworkAdapter::initialize_rx_descriptors() { auto ptr = (u32)kmalloc_eternal(sizeof(e1000_rx_desc) * number_of_rx_descriptors + 16); // Make sure it's 16-byte aligned. if (ptr % 16) ptr = (ptr + 16) - (ptr % 16); m_rx_descriptors = (e1000_rx_desc*)ptr; for (int i = 0; i < number_of_rx_descriptors; ++i) { auto& descriptor = m_rx_descriptors[i]; descriptor.addr = (u64)kmalloc_eternal(8192 + 16); descriptor.status = 0; } out32(REG_RXDESCLO, ptr); out32(REG_RXDESCHI, 0); out32(REG_RXDESCLEN, number_of_rx_descriptors * sizeof(e1000_rx_desc)); out32(REG_RXDESCHEAD, 0); out32(REG_RXDESCTAIL, number_of_rx_descriptors - 1); out32(REG_RCTRL, RCTL_EN | RCTL_SBP | RCTL_UPE | RCTL_MPE | RCTL_LBM_NONE | RTCL_RDMTS_HALF | RCTL_BAM | RCTL_SECRC | RCTL_BSIZE_8192); } void E1000NetworkAdapter::initialize_tx_descriptors() { auto ptr = (u32)kmalloc_eternal(sizeof(e1000_tx_desc) * number_of_tx_descriptors + 16); // Make sure it's 16-byte aligned. if (ptr % 16) ptr = (ptr + 16) - (ptr % 16); m_tx_descriptors = (e1000_tx_desc*)ptr; for (int i = 0; i < number_of_tx_descriptors; ++i) { auto& descriptor = m_tx_descriptors[i]; descriptor.addr = (u64)kmalloc_eternal(8192 + 16); descriptor.cmd = 0; } out32(REG_TXDESCLO, ptr); out32(REG_TXDESCHI, 0); out32(REG_TXDESCLEN, number_of_tx_descriptors * sizeof(e1000_tx_desc)); out32(REG_TXDESCHEAD, 0); out32(REG_TXDESCTAIL, 0); out32(REG_TCTRL, in32(REG_TCTRL) | TCTL_EN | TCTL_PSP); out32(REG_TIPG, 0x0060200A); } void E1000NetworkAdapter::out8(u16 address, u8 data) { if (m_use_mmio) { auto* ptr = (volatile u8*)(m_mmio_base.get() + address); *ptr = data; return; } IO::out8(m_io_base + address, data); } void E1000NetworkAdapter::out16(u16 address, u16 data) { if (m_use_mmio) { auto* ptr = (volatile u16*)(m_mmio_base.get() + address); *ptr = data; return; } IO::out16(m_io_base + address, data); } void E1000NetworkAdapter::out32(u16 address, u32 data) { if (m_use_mmio) { auto* ptr = (volatile u32*)(m_mmio_base.get() + address); *ptr = data; return; } IO::out32(m_io_base + address, data); } u8 E1000NetworkAdapter::in8(u16 address) { if (m_use_mmio) return *(volatile u8*)(m_mmio_base.get() + address); return IO::in8(m_io_base + address); } u16 E1000NetworkAdapter::in16(u16 address) { if (m_use_mmio) return *(volatile u16*)(m_mmio_base.get() + address); return IO::in16(m_io_base + address); } u32 E1000NetworkAdapter::in32(u16 address) { if (m_use_mmio) return *(volatile u32*)(m_mmio_base.get() + address); return IO::in32(m_io_base + address); } void E1000NetworkAdapter::send_raw(const u8* data, int length) { disable_irq(); u32 tx_current = in32(REG_TXDESCTAIL); #ifdef E1000_DEBUG kprintf("E1000: Sending packet (%d bytes)\n", length); #endif auto& descriptor = m_tx_descriptors[tx_current]; ASSERT(length <= 8192); memcpy((void*)descriptor.addr, data, length); descriptor.length = length; descriptor.status = 0; descriptor.cmd = CMD_EOP | CMD_IFCS | CMD_RS; #ifdef E1000_DEBUG kprintf("E1000: Using tx descriptor %d (head is at %d)\n", tx_current, in32(REG_TXDESCHEAD)); #endif tx_current = (tx_current + 1) % number_of_tx_descriptors; out32(REG_TXDESCTAIL, tx_current); cli(); enable_irq(); for (;;) { if (descriptor.status) { sti(); break; } current->wait_on(m_wait_queue); } #ifdef E1000_DEBUG kprintf("E1000: Sent packet, status is now %b!\n", descriptor.status); #endif } void E1000NetworkAdapter::receive() { u32 rx_current; for (;;) { rx_current = in32(REG_RXDESCTAIL); if (rx_current == in32(REG_RXDESCHEAD)) return; rx_current = (rx_current + 1) % number_of_rx_descriptors; if (!(m_rx_descriptors[rx_current].status & 1)) break; auto* buffer = (u8*)m_rx_descriptors[rx_current].addr; u16 length = m_rx_descriptors[rx_current].length; #ifdef E1000_DEBUG kprintf("E1000: Received 1 packet @ %p (%u) bytes!\n", buffer, length); #endif did_receive(buffer, length); m_rx_descriptors[rx_current].status = 0; out32(REG_RXDESCTAIL, rx_current); } }