/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include namespace Kernel { #define REG_CTRL 0x0000 #define REG_STATUS 0x0008 #define REG_EEPROM 0x0014 #define REG_CTRL_EXT 0x0018 #define REG_INTERRUPT_CAUSE_READ 0x00C0 #define REG_INTERRUPT_RATE 0x00C4 #define REG_INTERRUPT_MASK_SET 0x00D0 #define REG_INTERRUPT_MASK_CLEAR 0x00D8 #define REG_RCTRL 0x0100 #define REG_RXDESCLO 0x2800 #define REG_RXDESCHI 0x2804 #define REG_RXDESCLEN 0x2808 #define REG_RXDESCHEAD 0x2810 #define REG_RXDESCTAIL 0x2818 #define REG_TCTRL 0x0400 #define REG_TXDESCLO 0x3800 #define REG_TXDESCHI 0x3804 #define REG_TXDESCLEN 0x3808 #define REG_TXDESCHEAD 0x3810 #define REG_TXDESCTAIL 0x3818 #define REG_RDTR 0x2820 // RX Delay Timer Register #define REG_RXDCTL 0x3828 // RX Descriptor Control #define REG_RADV 0x282C // RX Int. Absolute Delay Timer #define REG_RSRPD 0x2C00 // RX Small Packet Detect Interrupt #define REG_TIPG 0x0410 // Transmit Inter Packet Gap #define ECTRL_SLU 0x40 //set link up #define RCTL_EN (1 << 1) // Receiver Enable #define RCTL_SBP (1 << 2) // Store Bad Packets #define RCTL_UPE (1 << 3) // Unicast Promiscuous Enabled #define RCTL_MPE (1 << 4) // Multicast Promiscuous Enabled #define RCTL_LPE (1 << 5) // Long Packet Reception Enable #define RCTL_LBM_NONE (0 << 6) // No Loopback #define RCTL_LBM_PHY (3 << 6) // PHY or external SerDesc loopback #define RTCL_RDMTS_HALF (0 << 8) // Free Buffer Threshold is 1/2 of RDLEN #define RTCL_RDMTS_QUARTER (1 << 8) // Free Buffer Threshold is 1/4 of RDLEN #define RTCL_RDMTS_EIGHTH (2 << 8) // Free Buffer Threshold is 1/8 of RDLEN #define RCTL_MO_36 (0 << 12) // Multicast Offset - bits 47:36 #define RCTL_MO_35 (1 << 12) // Multicast Offset - bits 46:35 #define RCTL_MO_34 (2 << 12) // Multicast Offset - bits 45:34 #define RCTL_MO_32 (3 << 12) // Multicast Offset - bits 43:32 #define RCTL_BAM (1 << 15) // Broadcast Accept Mode #define RCTL_VFE (1 << 18) // VLAN Filter Enable #define RCTL_CFIEN (1 << 19) // Canonical Form Indicator Enable #define RCTL_CFI (1 << 20) // Canonical Form Indicator Bit Value #define RCTL_DPF (1 << 22) // Discard Pause Frames #define RCTL_PMCF (1 << 23) // Pass MAC Control Frames #define RCTL_SECRC (1 << 26) // Strip Ethernet CRC // Buffer Sizes #define RCTL_BSIZE_256 (3 << 16) #define RCTL_BSIZE_512 (2 << 16) #define RCTL_BSIZE_1024 (1 << 16) #define RCTL_BSIZE_2048 (0 << 16) #define RCTL_BSIZE_4096 ((3 << 16) | (1 << 25)) #define RCTL_BSIZE_8192 ((2 << 16) | (1 << 25)) #define RCTL_BSIZE_16384 ((1 << 16) | (1 << 25)) // Transmit Command #define CMD_EOP (1 << 0) // End of Packet #define CMD_IFCS (1 << 1) // Insert FCS #define CMD_IC (1 << 2) // Insert Checksum #define CMD_RS (1 << 3) // Report Status #define CMD_RPS (1 << 4) // Report Packet Sent #define CMD_VLE (1 << 6) // VLAN Packet Enable #define CMD_IDE (1 << 7) // Interrupt Delay Enable // TCTL Register #define TCTL_EN (1 << 1) // Transmit Enable #define TCTL_PSP (1 << 3) // Pad Short Packets #define TCTL_CT_SHIFT 4 // Collision Threshold #define TCTL_COLD_SHIFT 12 // Collision Distance #define TCTL_SWXOFF (1 << 22) // Software XOFF Transmission #define TCTL_RTLC (1 << 24) // Re-transmit on Late Collision #define TSTA_DD (1 << 0) // Descriptor Done #define TSTA_EC (1 << 1) // Excess Collisions #define TSTA_LC (1 << 2) // Late Collision #define LSTA_TU (1 << 3) // Transmit Underrun // STATUS Register #define STATUS_FD 0x01 #define STATUS_LU 0x02 #define STATUS_TXOFF 0x08 #define STATUS_SPEED 0xC0 #define STATUS_SPEED_10MB 0x00 #define STATUS_SPEED_100MB 0x40 #define STATUS_SPEED_1000MB1 0x80 #define STATUS_SPEED_1000MB2 0xC0 // Interrupt Masks #define INTERRUPT_TXDW (1 << 0) #define INTERRUPT_TXQE (1 << 1) #define INTERRUPT_LSC (1 << 2) #define INTERRUPT_RXSEQ (1 << 3) #define INTERRUPT_RXDMT0 (1 << 4) #define INTERRUPT_RXO (1 << 6) #define INTERRUPT_RXT0 (1 << 7) #define INTERRUPT_MDAC (1 << 9) #define INTERRUPT_RXCFG (1 << 10) #define INTERRUPT_PHYINT (1 << 12) #define INTERRUPT_TXD_LOW (1 << 15) #define INTERRUPT_SRPD (1 << 16) // https://www.intel.com/content/dam/doc/manual/pci-pci-x-family-gbe-controllers-software-dev-manual.pdf Section 5.2 static bool is_valid_device_id(u16 device_id) { // FIXME: It would be nice to distinguish which particular device it is. // Especially since it's needed to determine which registers we can access. // The reason I haven't done it now is because there's some IDs with multiple devices // and some devices with multiple IDs. switch (device_id) { case 0x1019: // 82547EI-A0, 82547EI-A1, 82547EI-B0, 82547GI-B0 case 0x101A: // 82547EI-B0 case 0x1010: // 82546EB-A1 case 0x1012: // 82546EB-A1 case 0x101D: // 82546EB-A1 case 0x1079: // 82546GB-B0 case 0x107A: // 82546GB-B0 case 0x107B: // 82546GB-B0 case 0x100F: // 82545EM-A case 0x1011: // 82545EM-A case 0x1026: // 82545GM-B case 0x1027: // 82545GM-B case 0x1028: // 82545GM-B case 0x1107: // 82544EI-A4 case 0x1112: // 82544GC-A4 case 0x1013: // 82541EI-A0, 82541EI-B0 case 0x1018: // 82541EI-B0 case 0x1076: // 82541GI-B1, 82541PI-C0 case 0x1077: // 82541GI-B1 case 0x1078: // 82541ER-C0 case 0x1017: // 82540EP-A case 0x1016: // 82540EP-A case 0x100E: // 82540EM-A case 0x1015: // 82540EM-A return true; default: return false; } } UNMAP_AFTER_INIT void E1000NetworkAdapter::detect() { PCI::enumerate([&](const PCI::Address& address, PCI::ID id) { if (address.is_null()) return; if (id.vendor_id != (u16)PCIVendorID::Intel) return; if (!is_valid_device_id(id.device_id)) return; u8 irq = PCI::get_interrupt_line(address); [[maybe_unused]] auto& unused = adopt_ref(*new E1000NetworkAdapter(address, irq)).leak_ref(); }); } UNMAP_AFTER_INIT E1000NetworkAdapter::E1000NetworkAdapter(PCI::Address address, u8 irq) : PCI::Device(address, irq) , m_io_base(PCI::get_BAR1(pci_address()) & ~1) , m_rx_descriptors_region(MM.allocate_contiguous_kernel_region(page_round_up(sizeof(e1000_rx_desc) * number_of_rx_descriptors + 16), "E1000 RX", Region::Access::Read | Region::Access::Write)) , m_tx_descriptors_region(MM.allocate_contiguous_kernel_region(page_round_up(sizeof(e1000_tx_desc) * number_of_tx_descriptors + 16), "E1000 TX", Region::Access::Read | Region::Access::Write)) { set_interface_name("e1k"); dmesgln("E1000: Found @ {}", pci_address()); enable_bus_mastering(pci_address()); size_t mmio_base_size = PCI::get_BAR_space_size(pci_address(), 0); m_mmio_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of(PCI::get_BAR0(pci_address()))), page_round_up(mmio_base_size), "E1000 MMIO", Region::Access::Read | Region::Access::Write, Region::Cacheable::No); m_mmio_base = m_mmio_region->vaddr(); m_use_mmio = true; m_interrupt_line = PCI::get_interrupt_line(pci_address()); dmesgln("E1000: port base: {}", m_io_base); dmesgln("E1000: MMIO base: {}", PhysicalAddress(PCI::get_BAR0(pci_address()) & 0xfffffffc)); dmesgln("E1000: MMIO base size: {} bytes", mmio_base_size); dmesgln("E1000: Interrupt line: {}", m_interrupt_line); detect_eeprom(); dmesgln("E1000: Has EEPROM? {}", m_has_eeprom); read_mac_address(); const auto& mac = mac_address(); dmesgln("E1000: MAC address: {}", mac.to_string()); u32 flags = in32(REG_CTRL); out32(REG_CTRL, flags | ECTRL_SLU); out32(REG_INTERRUPT_RATE, 6000); // Interrupt rate of 1.536 milliseconds initialize_rx_descriptors(); initialize_tx_descriptors(); out32(REG_INTERRUPT_MASK_SET, INTERRUPT_LSC | INTERRUPT_RXT0 | INTERRUPT_RXO); in32(REG_INTERRUPT_CAUSE_READ); enable_irq(); } UNMAP_AFTER_INIT E1000NetworkAdapter::~E1000NetworkAdapter() { } void E1000NetworkAdapter::handle_irq(const RegisterState&) { u32 status = in32(REG_INTERRUPT_CAUSE_READ); m_entropy_source.add_random_event(status); if (status & INTERRUPT_LSC) { u32 flags = in32(REG_CTRL); out32(REG_CTRL, flags | ECTRL_SLU); } if (status & INTERRUPT_RXDMT0) { // Threshold OK? } if (status & INTERRUPT_RXO) { dbgln_if(E1000_DEBUG, "E1000: RX buffer overrun"); } if (status & INTERRUPT_RXT0) { receive(); } m_wait_queue.wake_all(); out32(REG_INTERRUPT_CAUSE_READ, 0xffffffff); } UNMAP_AFTER_INIT void E1000NetworkAdapter::detect_eeprom() { out32(REG_EEPROM, 0x1); for (int i = 0; i < 999; ++i) { u32 data = in32(REG_EEPROM); if (data & 0x10) { m_has_eeprom = true; return; } } m_has_eeprom = false; } UNMAP_AFTER_INIT u32 E1000NetworkAdapter::read_eeprom(u8 address) { u16 data = 0; u32 tmp = 0; if (m_has_eeprom) { out32(REG_EEPROM, ((u32)address << 8) | 1); while (!((tmp = in32(REG_EEPROM)) & (1 << 4))) ; } else { out32(REG_EEPROM, ((u32)address << 2) | 1); while (!((tmp = in32(REG_EEPROM)) & (1 << 1))) ; } data = (tmp >> 16) & 0xffff; return data; } UNMAP_AFTER_INIT void E1000NetworkAdapter::read_mac_address() { if (m_has_eeprom) { MACAddress mac {}; u32 tmp = read_eeprom(0); mac[0] = tmp & 0xff; mac[1] = tmp >> 8; tmp = read_eeprom(1); mac[2] = tmp & 0xff; mac[3] = tmp >> 8; tmp = read_eeprom(2); mac[4] = tmp & 0xff; mac[5] = tmp >> 8; set_mac_address(mac); } else { VERIFY_NOT_REACHED(); } } bool E1000NetworkAdapter::link_up() { return (in32(REG_STATUS) & STATUS_LU); } UNMAP_AFTER_INIT void E1000NetworkAdapter::initialize_rx_descriptors() { auto* rx_descriptors = (e1000_tx_desc*)m_rx_descriptors_region->vaddr().as_ptr(); for (size_t i = 0; i < number_of_rx_descriptors; ++i) { auto& descriptor = rx_descriptors[i]; auto region = MM.allocate_contiguous_kernel_region(8192, "E1000 RX buffer", Region::Access::Read | Region::Access::Write); VERIFY(region); m_rx_buffers_regions.append(region.release_nonnull()); descriptor.addr = m_rx_buffers_regions[i].physical_page(0)->paddr().get(); descriptor.status = 0; } out32(REG_RXDESCLO, m_rx_descriptors_region->physical_page(0)->paddr().get()); out32(REG_RXDESCHI, 0); out32(REG_RXDESCLEN, number_of_rx_descriptors * sizeof(e1000_rx_desc)); out32(REG_RXDESCHEAD, 0); out32(REG_RXDESCTAIL, number_of_rx_descriptors - 1); out32(REG_RCTRL, RCTL_EN | RCTL_SBP | RCTL_UPE | RCTL_MPE | RCTL_LBM_NONE | RTCL_RDMTS_HALF | RCTL_BAM | RCTL_SECRC | RCTL_BSIZE_8192); } UNMAP_AFTER_INIT void E1000NetworkAdapter::initialize_tx_descriptors() { auto* tx_descriptors = (e1000_tx_desc*)m_tx_descriptors_region->vaddr().as_ptr(); for (size_t i = 0; i < number_of_tx_descriptors; ++i) { auto& descriptor = tx_descriptors[i]; auto region = MM.allocate_contiguous_kernel_region(8192, "E1000 TX buffer", Region::Access::Read | Region::Access::Write); VERIFY(region); m_tx_buffers_regions.append(region.release_nonnull()); descriptor.addr = m_tx_buffers_regions[i].physical_page(0)->paddr().get(); descriptor.cmd = 0; } out32(REG_TXDESCLO, m_tx_descriptors_region->physical_page(0)->paddr().get()); out32(REG_TXDESCHI, 0); out32(REG_TXDESCLEN, number_of_tx_descriptors * sizeof(e1000_tx_desc)); out32(REG_TXDESCHEAD, 0); out32(REG_TXDESCTAIL, 0); out32(REG_TCTRL, in32(REG_TCTRL) | TCTL_EN | TCTL_PSP); out32(REG_TIPG, 0x0060200A); } void E1000NetworkAdapter::out8(u16 address, u8 data) { dbgln_if(E1000_DEBUG, "E1000: OUT8 {:#02x} @ {:#04x}", data, address); if (m_use_mmio) { auto* ptr = (volatile u8*)(m_mmio_base.get() + address); *ptr = data; return; } m_io_base.offset(address).out(data); } void E1000NetworkAdapter::out16(u16 address, u16 data) { dbgln_if(E1000_DEBUG, "E1000: OUT16 {:#04x} @ {:#04x}", data, address); if (m_use_mmio) { auto* ptr = (volatile u16*)(m_mmio_base.get() + address); *ptr = data; return; } m_io_base.offset(address).out(data); } void E1000NetworkAdapter::out32(u16 address, u32 data) { dbgln_if(E1000_DEBUG, "E1000: OUT32 {:#08x} @ {:#04x}", data, address); if (m_use_mmio) { auto* ptr = (volatile u32*)(m_mmio_base.get() + address); *ptr = data; return; } m_io_base.offset(address).out(data); } u8 E1000NetworkAdapter::in8(u16 address) { dbgln_if(E1000_DEBUG, "E1000: IN8 @ {:#04x}", address); if (m_use_mmio) return *(volatile u8*)(m_mmio_base.get() + address); return m_io_base.offset(address).in(); } u16 E1000NetworkAdapter::in16(u16 address) { dbgln_if(E1000_DEBUG, "E1000: IN16 @ {:#04x}", address); if (m_use_mmio) return *(volatile u16*)(m_mmio_base.get() + address); return m_io_base.offset(address).in(); } u32 E1000NetworkAdapter::in32(u16 address) { dbgln_if(E1000_DEBUG, "E1000: IN32 @ {:#04x}", address); if (m_use_mmio) return *(volatile u32*)(m_mmio_base.get() + address); return m_io_base.offset(address).in(); } void E1000NetworkAdapter::send_raw(ReadonlyBytes payload) { disable_irq(); size_t tx_current = in32(REG_TXDESCTAIL) % number_of_tx_descriptors; dbgln_if(E1000_DEBUG, "E1000: Sending packet ({} bytes)", payload.size()); auto* tx_descriptors = (e1000_tx_desc*)m_tx_descriptors_region->vaddr().as_ptr(); auto& descriptor = tx_descriptors[tx_current]; VERIFY(payload.size() <= 8192); auto* vptr = (void*)m_tx_buffers_regions[tx_current].vaddr().as_ptr(); memcpy(vptr, payload.data(), payload.size()); descriptor.length = payload.size(); descriptor.status = 0; descriptor.cmd = CMD_EOP | CMD_IFCS | CMD_RS; dbgln_if(E1000_DEBUG, "E1000: Using tx descriptor {} (head is at {})", tx_current, in32(REG_TXDESCHEAD)); tx_current = (tx_current + 1) % number_of_tx_descriptors; cli(); enable_irq(); out32(REG_TXDESCTAIL, tx_current); for (;;) { if (descriptor.status) { sti(); break; } m_wait_queue.wait_forever("E1000NetworkAdapter"); } dbgln_if(E1000_DEBUG, "E1000: Sent packet, status is now {:#02x}!", (u8)descriptor.status); } void E1000NetworkAdapter::receive() { auto* rx_descriptors = (e1000_tx_desc*)m_rx_descriptors_region->vaddr().as_ptr(); u32 rx_current; for (;;) { rx_current = in32(REG_RXDESCTAIL) % number_of_rx_descriptors; rx_current = (rx_current + 1) % number_of_rx_descriptors; if (!(rx_descriptors[rx_current].status & 1)) break; auto* buffer = m_rx_buffers_regions[rx_current].vaddr().as_ptr(); u16 length = rx_descriptors[rx_current].length; VERIFY(length <= 8192); dbgln_if(E1000_DEBUG, "E1000: Received 1 packet @ {:p} ({} bytes)", buffer, length); did_receive({ buffer, length }); rx_descriptors[rx_current].status = 0; out32(REG_RXDESCTAIL, rx_current); } } }