/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include //#define E1000_DEBUG namespace Kernel { #define REG_CTRL 0x0000 #define REG_STATUS 0x0008 #define REG_EEPROM 0x0014 #define REG_CTRL_EXT 0x0018 #define REG_INTERRUPT_CAUSE_READ 0x00C0 #define REG_INTERRUPT_RATE 0x00C4 #define REG_INTERRUPT_MASK_SET 0x00D0 #define REG_INTERRUPT_MASK_CLEAR 0x00D8 #define REG_RCTRL 0x0100 #define REG_RXDESCLO 0x2800 #define REG_RXDESCHI 0x2804 #define REG_RXDESCLEN 0x2808 #define REG_RXDESCHEAD 0x2810 #define REG_RXDESCTAIL 0x2818 #define REG_TCTRL 0x0400 #define REG_TXDESCLO 0x3800 #define REG_TXDESCHI 0x3804 #define REG_TXDESCLEN 0x3808 #define REG_TXDESCHEAD 0x3810 #define REG_TXDESCTAIL 0x3818 #define REG_RDTR 0x2820 // RX Delay Timer Register #define REG_RXDCTL 0x3828 // RX Descriptor Control #define REG_RADV 0x282C // RX Int. Absolute Delay Timer #define REG_RSRPD 0x2C00 // RX Small Packet Detect Interrupt #define REG_TIPG 0x0410 // Transmit Inter Packet Gap #define ECTRL_SLU 0x40 //set link up #define RCTL_EN (1 << 1) // Receiver Enable #define RCTL_SBP (1 << 2) // Store Bad Packets #define RCTL_UPE (1 << 3) // Unicast Promiscuous Enabled #define RCTL_MPE (1 << 4) // Multicast Promiscuous Enabled #define RCTL_LPE (1 << 5) // Long Packet Reception Enable #define RCTL_LBM_NONE (0 << 6) // No Loopback #define RCTL_LBM_PHY (3 << 6) // PHY or external SerDesc loopback #define RTCL_RDMTS_HALF (0 << 8) // Free Buffer Threshold is 1/2 of RDLEN #define RTCL_RDMTS_QUARTER (1 << 8) // Free Buffer Threshold is 1/4 of RDLEN #define RTCL_RDMTS_EIGHTH (2 << 8) // Free Buffer Threshold is 1/8 of RDLEN #define RCTL_MO_36 (0 << 12) // Multicast Offset - bits 47:36 #define RCTL_MO_35 (1 << 12) // Multicast Offset - bits 46:35 #define RCTL_MO_34 (2 << 12) // Multicast Offset - bits 45:34 #define RCTL_MO_32 (3 << 12) // Multicast Offset - bits 43:32 #define RCTL_BAM (1 << 15) // Broadcast Accept Mode #define RCTL_VFE (1 << 18) // VLAN Filter Enable #define RCTL_CFIEN (1 << 19) // Canonical Form Indicator Enable #define RCTL_CFI (1 << 20) // Canonical Form Indicator Bit Value #define RCTL_DPF (1 << 22) // Discard Pause Frames #define RCTL_PMCF (1 << 23) // Pass MAC Control Frames #define RCTL_SECRC (1 << 26) // Strip Ethernet CRC // Buffer Sizes #define RCTL_BSIZE_256 (3 << 16) #define RCTL_BSIZE_512 (2 << 16) #define RCTL_BSIZE_1024 (1 << 16) #define RCTL_BSIZE_2048 (0 << 16) #define RCTL_BSIZE_4096 ((3 << 16) | (1 << 25)) #define RCTL_BSIZE_8192 ((2 << 16) | (1 << 25)) #define RCTL_BSIZE_16384 ((1 << 16) | (1 << 25)) // Transmit Command #define CMD_EOP (1 << 0) // End of Packet #define CMD_IFCS (1 << 1) // Insert FCS #define CMD_IC (1 << 2) // Insert Checksum #define CMD_RS (1 << 3) // Report Status #define CMD_RPS (1 << 4) // Report Packet Sent #define CMD_VLE (1 << 6) // VLAN Packet Enable #define CMD_IDE (1 << 7) // Interrupt Delay Enable // TCTL Register #define TCTL_EN (1 << 1) // Transmit Enable #define TCTL_PSP (1 << 3) // Pad Short Packets #define TCTL_CT_SHIFT 4 // Collision Threshold #define TCTL_COLD_SHIFT 12 // Collision Distance #define TCTL_SWXOFF (1 << 22) // Software XOFF Transmission #define TCTL_RTLC (1 << 24) // Re-transmit on Late Collision #define TSTA_DD (1 << 0) // Descriptor Done #define TSTA_EC (1 << 1) // Excess Collisions #define TSTA_LC (1 << 2) // Late Collision #define LSTA_TU (1 << 3) // Transmit Underrun // STATUS Register #define STATUS_FD 0x01 #define STATUS_LU 0x02 #define STATUS_TXOFF 0x08 #define STATUS_SPEED 0xC0 #define STATUS_SPEED_10MB 0x00 #define STATUS_SPEED_100MB 0x40 #define STATUS_SPEED_1000MB1 0x80 #define STATUS_SPEED_1000MB2 0xC0 // Interrupt Masks #define INTERRUPT_TXDW (1 << 0) #define INTERRUPT_TXQE (1 << 1) #define INTERRUPT_LSC (1 << 2) #define INTERRUPT_RXSEQ (1 << 3) #define INTERRUPT_RXDMT0 (1 << 4) #define INTERRUPT_RXO (1 << 6) #define INTERRUPT_RXT0 (1 << 7) #define INTERRUPT_MDAC (1 << 9) #define INTERRUPT_RXCFG (1 << 10) #define INTERRUPT_PHYINT (1 << 12) #define INTERRUPT_TXD_LOW (1 << 15) #define INTERRUPT_SRPD (1 << 16) void E1000NetworkAdapter::detect() { static const PCI::ID qemu_bochs_vbox_id = { 0x8086, 0x100e }; PCI::enumerate([&](const PCI::Address& address, PCI::ID id) { if (address.is_null()) return; if (id != qemu_bochs_vbox_id) return; u8 irq = PCI::get_interrupt_line(address); (void)adopt(*new E1000NetworkAdapter(address, irq)).leak_ref(); }); } E1000NetworkAdapter::E1000NetworkAdapter(PCI::Address address, u8 irq) : PCI::Device(address, irq) , m_io_base(PCI::get_BAR1(pci_address()) & ~1) , m_rx_descriptors_region(MM.allocate_contiguous_kernel_region(PAGE_ROUND_UP(sizeof(e1000_rx_desc) * number_of_rx_descriptors + 16), "E1000 RX", Region::Access::Read | Region::Access::Write)) , m_tx_descriptors_region(MM.allocate_contiguous_kernel_region(PAGE_ROUND_UP(sizeof(e1000_tx_desc) * number_of_tx_descriptors + 16), "E1000 TX", Region::Access::Read | Region::Access::Write)) { set_interface_name("e1k"); klog() << "E1000: Found @ " << pci_address(); enable_bus_mastering(pci_address()); size_t mmio_base_size = PCI::get_BAR_space_size(pci_address(), 0); m_mmio_region = MM.allocate_kernel_region(PhysicalAddress(page_base_of(PCI::get_BAR0(pci_address()))), PAGE_ROUND_UP(mmio_base_size), "E1000 MMIO", Region::Access::Read | Region::Access::Write, false, false); m_mmio_base = m_mmio_region->vaddr(); m_use_mmio = true; m_interrupt_line = PCI::get_interrupt_line(pci_address()); klog() << "E1000: port base: " << m_io_base; klog() << "E1000: MMIO base: " << PhysicalAddress(PCI::get_BAR0(pci_address()) & 0xfffffffc); klog() << "E1000: MMIO base size: " << mmio_base_size << " bytes"; klog() << "E1000: Interrupt line: " << m_interrupt_line; detect_eeprom(); klog() << "E1000: Has EEPROM? " << m_has_eeprom; read_mac_address(); const auto& mac = mac_address(); klog() << "E1000: MAC address: " << String::format("%b", mac[0]) << ":" << String::format("%b", mac[1]) << ":" << String::format("%b", mac[2]) << ":" << String::format("%b", mac[3]) << ":" << String::format("%b", mac[4]) << ":" << String::format("%b", mac[5]); u32 flags = in32(REG_CTRL); out32(REG_CTRL, flags | ECTRL_SLU); out16(REG_INTERRUPT_RATE, 6000); // Interrupt rate of 1.536 milliseconds initialize_rx_descriptors(); initialize_tx_descriptors(); out32(REG_INTERRUPT_MASK_SET, 0x1f6dc); out32(REG_INTERRUPT_MASK_SET, INTERRUPT_LSC | INTERRUPT_RXT0); in32(REG_INTERRUPT_CAUSE_READ); enable_irq(); } E1000NetworkAdapter::~E1000NetworkAdapter() { } void E1000NetworkAdapter::handle_irq(const RegisterState&) { out32(REG_INTERRUPT_MASK_CLEAR, 0xffffffff); u32 status = in32(REG_INTERRUPT_CAUSE_READ); m_entropy_source.add_random_event(status); if (status & 4) { u32 flags = in32(REG_CTRL); out32(REG_CTRL, flags | ECTRL_SLU); } if (status & 0x80) { receive(); } if (status & 0x10) { // Threshold OK? } m_wait_queue.wake_all(); out32(REG_INTERRUPT_MASK_SET, INTERRUPT_LSC | INTERRUPT_RXT0 | INTERRUPT_RXO); } void E1000NetworkAdapter::detect_eeprom() { out32(REG_EEPROM, 0x1); for (int i = 0; i < 999; ++i) { u32 data = in32(REG_EEPROM); if (data & 0x10) { m_has_eeprom = true; return; } } m_has_eeprom = false; } u32 E1000NetworkAdapter::read_eeprom(u8 address) { u16 data = 0; u32 tmp = 0; if (m_has_eeprom) { out32(REG_EEPROM, ((u32)address << 8) | 1); while (!((tmp = in32(REG_EEPROM)) & (1 << 4))) ; } else { out32(REG_EEPROM, ((u32)address << 2) | 1); while (!((tmp = in32(REG_EEPROM)) & (1 << 1))) ; } data = (tmp >> 16) & 0xffff; return data; } void E1000NetworkAdapter::read_mac_address() { if (m_has_eeprom) { u8 mac[6]; u32 tmp = read_eeprom(0); mac[0] = tmp & 0xff; mac[1] = tmp >> 8; tmp = read_eeprom(1); mac[2] = tmp & 0xff; mac[3] = tmp >> 8; tmp = read_eeprom(2); mac[4] = tmp & 0xff; mac[5] = tmp >> 8; set_mac_address(mac); } else { ASSERT_NOT_REACHED(); } } bool E1000NetworkAdapter::link_up() { return (in32(REG_STATUS) & STATUS_LU); } void E1000NetworkAdapter::initialize_rx_descriptors() { auto* rx_descriptors = (e1000_tx_desc*)m_rx_descriptors_region->vaddr().as_ptr(); for (size_t i = 0; i < number_of_rx_descriptors; ++i) { auto& descriptor = rx_descriptors[i]; auto region = MM.allocate_contiguous_kernel_region(8192, "E1000 RX buffer", Region::Access::Read | Region::Access::Write); ASSERT(region); m_rx_buffers_regions.append(region.release_nonnull()); descriptor.addr = m_rx_buffers_regions[i].physical_page(0)->paddr().get(); descriptor.status = 0; } out32(REG_RXDESCLO, m_rx_descriptors_region->physical_page(0)->paddr().get()); out32(REG_RXDESCHI, 0); out32(REG_RXDESCLEN, number_of_rx_descriptors * sizeof(e1000_rx_desc)); out32(REG_RXDESCHEAD, 0); out32(REG_RXDESCTAIL, number_of_rx_descriptors - 1); out32(REG_RCTRL, RCTL_EN | RCTL_SBP | RCTL_UPE | RCTL_MPE | RCTL_LBM_NONE | RTCL_RDMTS_HALF | RCTL_BAM | RCTL_SECRC | RCTL_BSIZE_8192); } void E1000NetworkAdapter::initialize_tx_descriptors() { auto* tx_descriptors = (e1000_tx_desc*)m_tx_descriptors_region->vaddr().as_ptr(); for (size_t i = 0; i < number_of_tx_descriptors; ++i) { auto& descriptor = tx_descriptors[i]; auto region = MM.allocate_contiguous_kernel_region(8192, "E1000 TX buffer", Region::Access::Read | Region::Access::Write); ASSERT(region); m_tx_buffers_regions.append(region.release_nonnull()); descriptor.addr = m_tx_buffers_regions[i].physical_page(0)->paddr().get(); descriptor.cmd = 0; } out32(REG_TXDESCLO, m_tx_descriptors_region->physical_page(0)->paddr().get()); out32(REG_TXDESCHI, 0); out32(REG_TXDESCLEN, number_of_tx_descriptors * sizeof(e1000_tx_desc)); out32(REG_TXDESCHEAD, 0); out32(REG_TXDESCTAIL, 0); out32(REG_TCTRL, in32(REG_TCTRL) | TCTL_EN | TCTL_PSP); out32(REG_TIPG, 0x0060200A); } void E1000NetworkAdapter::out8(u16 address, u8 data) { #ifdef E1000_DEBUG dbg() << "E1000: OUT @ 0x" << address; #endif if (m_use_mmio) { auto* ptr = (volatile u8*)(m_mmio_base.get() + address); *ptr = data; return; } m_io_base.offset(address).out(data); } void E1000NetworkAdapter::out16(u16 address, u16 data) { #ifdef E1000_DEBUG dbg() << "E1000: OUT @ 0x" << address; #endif if (m_use_mmio) { auto* ptr = (volatile u16*)(m_mmio_base.get() + address); *ptr = data; return; } m_io_base.offset(address).out(data); } void E1000NetworkAdapter::out32(u16 address, u32 data) { #ifdef E1000_DEBUG dbg() << "E1000: OUT @ 0x" << address; #endif if (m_use_mmio) { auto* ptr = (volatile u32*)(m_mmio_base.get() + address); *ptr = data; return; } m_io_base.offset(address).out(data); } u8 E1000NetworkAdapter::in8(u16 address) { #ifdef E1000_DEBUG dbg() << "E1000: IN @ 0x" << address; #endif if (m_use_mmio) return *(volatile u8*)(m_mmio_base.get() + address); return m_io_base.offset(address).in(); } u16 E1000NetworkAdapter::in16(u16 address) { #ifdef E1000_DEBUG dbg() << "E1000: IN @ 0x " << address; #endif if (m_use_mmio) return *(volatile u16*)(m_mmio_base.get() + address); return m_io_base.offset(address).in(); } u32 E1000NetworkAdapter::in32(u16 address) { #ifdef E1000_DEBUG dbg() << "E1000: IN @ 0x" << address; #endif if (m_use_mmio) return *(volatile u32*)(m_mmio_base.get() + address); return m_io_base.offset(address).in(); } void E1000NetworkAdapter::send_raw(ReadonlyBytes payload) { disable_irq(); size_t tx_current = in32(REG_TXDESCTAIL) % number_of_tx_descriptors; #ifdef E1000_DEBUG klog() << "E1000: Sending packet (" << length << " bytes)"; #endif auto* tx_descriptors = (e1000_tx_desc*)m_tx_descriptors_region->vaddr().as_ptr(); auto& descriptor = tx_descriptors[tx_current]; ASSERT(payload.size() <= 8192); auto* vptr = (void*)m_tx_buffers_regions[tx_current].vaddr().as_ptr(); memcpy(vptr, payload.data(), payload.size()); descriptor.length = payload.size(); descriptor.status = 0; descriptor.cmd = CMD_EOP | CMD_IFCS | CMD_RS; #ifdef E1000_DEBUG klog() << "E1000: Using tx descriptor " << tx_current << " (head is at " << in32(REG_TXDESCHEAD) << ")"; #endif tx_current = (tx_current + 1) % number_of_tx_descriptors; cli(); enable_irq(); out32(REG_TXDESCTAIL, tx_current); for (;;) { if (descriptor.status) { sti(); break; } Thread::current()->wait_on(m_wait_queue, "E1000NetworkAdapter"); } #ifdef E1000_DEBUG klog() << "E1000: Sent packet, status is now " << String::format("%b", descriptor.status) << "!"; #endif } void E1000NetworkAdapter::receive() { auto* rx_descriptors = (e1000_tx_desc*)m_rx_descriptors_region->vaddr().as_ptr(); u32 rx_current; for (;;) { rx_current = in32(REG_RXDESCTAIL) % number_of_rx_descriptors; if (rx_current == (in32(REG_RXDESCHEAD) % number_of_rx_descriptors)) return; rx_current = (rx_current + 1) % number_of_rx_descriptors; if (!(rx_descriptors[rx_current].status & 1)) break; auto* buffer = m_rx_buffers_regions[rx_current].vaddr().as_ptr(); u16 length = rx_descriptors[rx_current].length; ASSERT(length <= 8192); #ifdef E1000_DEBUG klog() << "E1000: Received 1 packet @ " << buffer << " (" << length << ") bytes!"; #endif did_receive({ buffer, length }); rx_descriptors[rx_current].status = 0; out32(REG_RXDESCTAIL, rx_current); } } }