/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include extern u8 end_of_kernel_image[]; namespace Kernel::Memory { static Singleton> s_cr3_map; static IntrusiveRedBlackTree<&PageDirectory::m_tree_node>& cr3_map() { VERIFY_INTERRUPTS_DISABLED(); return *s_cr3_map; } RefPtr PageDirectory::find_by_cr3(FlatPtr cr3) { SpinlockLocker lock(s_mm_lock); return cr3_map().find(cr3); } UNMAP_AFTER_INIT NonnullRefPtr PageDirectory::must_create_kernel_page_directory() { auto directory = adopt_ref_if_nonnull(new (nothrow) PageDirectory).release_nonnull(); // make sure this starts in a new page directory to make MemoryManager::initialize_physical_pages() happy FlatPtr start_of_range = ((FlatPtr)end_of_kernel_image & ~(FlatPtr)0x1fffff) + 0x200000; directory->m_range_allocator.initialize_with_range(VirtualAddress(start_of_range), KERNEL_PD_END - start_of_range); return directory; } KResultOr> PageDirectory::try_create_for_userspace(VirtualRangeAllocator const* parent_range_allocator) { constexpr FlatPtr userspace_range_base = 0x00800000; FlatPtr const userspace_range_ceiling = USER_RANGE_CEILING; auto directory = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) PageDirectory)); if (parent_range_allocator) { directory->m_range_allocator.initialize_from_parent(*parent_range_allocator); } else { size_t random_offset = (get_fast_random() % 32 * MiB) & PAGE_MASK; u32 base = userspace_range_base + random_offset; directory->m_range_allocator.initialize_with_range(VirtualAddress(base), userspace_range_ceiling - base); } // NOTE: Take the MM lock since we need it for quickmap. SpinlockLocker lock(s_mm_lock); #if ARCH(X86_64) directory->m_pml4t = MM.allocate_user_physical_page(); if (!directory->m_pml4t) return ENOMEM; #endif directory->m_directory_table = MM.allocate_user_physical_page(); if (!directory->m_directory_table) return ENOMEM; auto kernel_pd_index = (kernel_mapping_base >> 30) & 0x1ffu; for (size_t i = 0; i < kernel_pd_index; i++) { directory->m_directory_pages[i] = MM.allocate_user_physical_page(); if (!directory->m_directory_pages[i]) return ENOMEM; } // Share the top 1 GiB of kernel-only mappings (>=kernel_mapping_base) directory->m_directory_pages[kernel_pd_index] = MM.kernel_page_directory().m_directory_pages[kernel_pd_index]; #if ARCH(X86_64) { auto& table = *(PageDirectoryPointerTable*)MM.quickmap_page(*directory->m_pml4t); table.raw[0] = (FlatPtr)directory->m_directory_table->paddr().as_ptr() | 7; MM.unquickmap_page(); } #endif { auto& table = *(PageDirectoryPointerTable*)MM.quickmap_page(*directory->m_directory_table); for (size_t i = 0; i < sizeof(m_directory_pages) / sizeof(m_directory_pages[0]); i++) { if (directory->m_directory_pages[i]) { #if ARCH(I386) table.raw[i] = (FlatPtr)directory->m_directory_pages[i]->paddr().as_ptr() | 1; #else table.raw[i] = (FlatPtr)directory->m_directory_pages[i]->paddr().as_ptr() | 7; #endif } } // 2 ** MAXPHYADDR - 1 // Where MAXPHYADDR = physical_address_bit_width u64 max_physical_address = (1ULL << Processor::current().physical_address_bit_width()) - 1; // bit 63 = no execute // bit 7 = page size // bit 5 = accessed // bit 4 = cache disable // bit 3 = write through // bit 2 = user/supervisor // bit 1 = read/write // bit 0 = present constexpr u64 pdpte_bit_flags = 0x80000000000000BF; // This is to notify us of bugs where we're: // 1. Going over what the processor is capable of. // 2. Writing into the reserved bits (51:MAXPHYADDR), where doing so throws a GPF // when writing out the PDPT pointer to CR3. // The reason we're not checking the page directory's physical address directly is because // we're checking for sign extension when putting it into a PDPTE. See issue #4584. for (auto table_entry : table.raw) VERIFY((table_entry & ~pdpte_bit_flags) <= max_physical_address); MM.unquickmap_page(); } // Clone bottom 2 MiB of mappings from kernel_page_directory PageDirectoryEntry buffer; auto* kernel_pd = MM.quickmap_pd(MM.kernel_page_directory(), 0); memcpy(&buffer, kernel_pd, sizeof(PageDirectoryEntry)); auto* new_pd = MM.quickmap_pd(*directory, 0); memcpy(new_pd, &buffer, sizeof(PageDirectoryEntry)); cr3_map().insert(directory->cr3(), directory); return directory; } PageDirectory::PageDirectory() { } UNMAP_AFTER_INIT void PageDirectory::allocate_kernel_directory() { // Adopt the page tables already set up by boot.S #if ARCH(X86_64) dmesgln("MM: boot_pml4t @ {}", boot_pml4t); m_pml4t = PhysicalPage::create(boot_pml4t, MayReturnToFreeList::No); #endif dmesgln("MM: boot_pdpt @ {}", boot_pdpt); dmesgln("MM: boot_pd0 @ {}", boot_pd0); dmesgln("MM: boot_pd_kernel @ {}", boot_pd_kernel); m_directory_table = PhysicalPage::create(boot_pdpt, MayReturnToFreeList::No); m_directory_pages[0] = PhysicalPage::create(boot_pd0, MayReturnToFreeList::No); m_directory_pages[(kernel_mapping_base >> 30) & 0x1ff] = PhysicalPage::create(boot_pd_kernel, MayReturnToFreeList::No); } PageDirectory::~PageDirectory() { SpinlockLocker lock(s_mm_lock); if (m_space) cr3_map().remove(cr3()); } }