/* * Copyright (c) 2021, Andreas Kling * Copyright (c) 2021, Leon Albrecht * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include namespace Kernel::Memory { KResultOr> AddressSpace::try_create(AddressSpace const* parent) { auto page_directory = TRY(PageDirectory::try_create_for_userspace(parent ? &parent->page_directory().range_allocator() : nullptr)); auto space = TRY(adopt_nonnull_own_or_enomem(new (nothrow) AddressSpace(page_directory))); space->page_directory().set_space({}, *space); return space; } AddressSpace::AddressSpace(NonnullRefPtr page_directory) : m_page_directory(move(page_directory)) { } AddressSpace::~AddressSpace() { } KResult AddressSpace::unmap_mmap_range(VirtualAddress addr, size_t size) { if (!size) return EINVAL; auto range_to_unmap = TRY(VirtualRange::expand_to_page_boundaries(addr.get(), size)); if (!is_user_range(range_to_unmap)) return EFAULT; if (auto* whole_region = find_region_from_range(range_to_unmap)) { if (!whole_region->is_mmap()) return EPERM; PerformanceManager::add_unmap_perf_event(Process::current(), whole_region->range()); deallocate_region(*whole_region); return KSuccess; } if (auto* old_region = find_region_containing(range_to_unmap)) { if (!old_region->is_mmap()) return EPERM; // Remove the old region from our regions tree, since were going to add another region // with the exact same start address, but don't deallocate it yet. auto region = take_region(*old_region); // We manually unmap the old region here, specifying that we *don't* want the VM deallocated. region->unmap(Region::ShouldDeallocateVirtualRange::No); auto new_regions = TRY(try_split_region_around_range(*region, range_to_unmap)); // Instead we give back the unwanted VM manually. page_directory().range_allocator().deallocate(range_to_unmap); // And finally we map the new region(s) using our page directory (they were just allocated and don't have one). for (auto* new_region : new_regions) { // TODO: Ideally we should do this in a way that can be rolled back on failure, as failing here // leaves the caller in an undefined state. TRY(new_region->map(page_directory())); } PerformanceManager::add_unmap_perf_event(Process::current(), range_to_unmap); return KSuccess; } // Try again while checking multiple regions at a time. auto const& regions = find_regions_intersecting(range_to_unmap); if (regions.is_empty()) return KSuccess; // Check if any of the regions is not mmap'ed, to not accidentally // error out with just half a region map left. for (auto* region : regions) { if (!region->is_mmap()) return EPERM; } Vector new_regions; for (auto* old_region : regions) { // If it's a full match we can remove the entire old region. if (old_region->range().intersect(range_to_unmap).size() == old_region->size()) { deallocate_region(*old_region); continue; } // Remove the old region from our regions tree, since were going to add another region // with the exact same start address, but don't deallocate it yet. auto region = take_region(*old_region); // We manually unmap the old region here, specifying that we *don't* want the VM deallocated. region->unmap(Region::ShouldDeallocateVirtualRange::No); // Otherwise, split the regions and collect them for future mapping. auto split_regions = TRY(try_split_region_around_range(*region, range_to_unmap)); if (new_regions.try_extend(split_regions)) return ENOMEM; } // Give back any unwanted VM to the range allocator. page_directory().range_allocator().deallocate(range_to_unmap); // And finally map the new region(s) into our page directory. for (auto* new_region : new_regions) { // TODO: Ideally we should do this in a way that can be rolled back on failure, as failing here // leaves the caller in an undefined state. TRY(new_region->map(page_directory())); } PerformanceManager::add_unmap_perf_event(Process::current(), range_to_unmap); return KSuccess; } KResultOr AddressSpace::try_allocate_range(VirtualAddress vaddr, size_t size, size_t alignment) { vaddr.mask(PAGE_MASK); size = page_round_up(size); if (vaddr.is_null()) return page_directory().range_allocator().try_allocate_anywhere(size, alignment); return page_directory().range_allocator().try_allocate_specific(vaddr, size); } KResultOr AddressSpace::try_allocate_split_region(Region const& source_region, VirtualRange const& range, size_t offset_in_vmobject) { OwnPtr region_name; if (!source_region.name().is_null()) region_name = TRY(KString::try_create(source_region.name())); auto new_region = TRY(Region::try_create_user_accessible( range, source_region.vmobject(), offset_in_vmobject, move(region_name), source_region.access(), source_region.is_cacheable() ? Region::Cacheable::Yes : Region::Cacheable::No, source_region.is_shared())); auto* region = TRY(add_region(move(new_region))); region->set_syscall_region(source_region.is_syscall_region()); region->set_mmap(source_region.is_mmap()); region->set_stack(source_region.is_stack()); size_t page_offset_in_source_region = (offset_in_vmobject - source_region.offset_in_vmobject()) / PAGE_SIZE; for (size_t i = 0; i < region->page_count(); ++i) { if (source_region.should_cow(page_offset_in_source_region + i)) region->set_should_cow(i, true); } return region; } KResultOr AddressSpace::allocate_region(VirtualRange const& range, StringView name, int prot, AllocationStrategy strategy) { VERIFY(range.is_valid()); OwnPtr region_name; if (!name.is_null()) region_name = TRY(KString::try_create(name)); auto vmobject = TRY(AnonymousVMObject::try_create_with_size(range.size(), strategy)); auto region = TRY(Region::try_create_user_accessible(range, move(vmobject), 0, move(region_name), prot_to_region_access_flags(prot), Region::Cacheable::Yes, false)); TRY(region->map(page_directory())); return add_region(move(region)); } KResultOr AddressSpace::allocate_region_with_vmobject(VirtualRange const& range, NonnullRefPtr vmobject, size_t offset_in_vmobject, StringView name, int prot, bool shared) { VERIFY(range.is_valid()); size_t end_in_vmobject = offset_in_vmobject + range.size(); if (end_in_vmobject <= offset_in_vmobject) { dbgln("allocate_region_with_vmobject: Overflow (offset + size)"); return EINVAL; } if (offset_in_vmobject >= vmobject->size()) { dbgln("allocate_region_with_vmobject: Attempt to allocate a region with an offset past the end of its VMObject."); return EINVAL; } if (end_in_vmobject > vmobject->size()) { dbgln("allocate_region_with_vmobject: Attempt to allocate a region with an end past the end of its VMObject."); return EINVAL; } offset_in_vmobject &= PAGE_MASK; OwnPtr region_name; if (!name.is_null()) region_name = TRY(KString::try_create(name)); auto region = TRY(Region::try_create_user_accessible(range, move(vmobject), offset_in_vmobject, move(region_name), prot_to_region_access_flags(prot), Region::Cacheable::Yes, shared)); auto* added_region = TRY(add_region(move(region))); TRY(added_region->map(page_directory())); return added_region; } void AddressSpace::deallocate_region(Region& region) { take_region(region); } NonnullOwnPtr AddressSpace::take_region(Region& region) { SpinlockLocker lock(m_lock); if (m_region_lookup_cache.region.unsafe_ptr() == ®ion) m_region_lookup_cache.region = nullptr; auto found_region = m_regions.unsafe_remove(region.vaddr().get()); VERIFY(found_region.ptr() == ®ion); return found_region; } Region* AddressSpace::find_region_from_range(VirtualRange const& range) { SpinlockLocker lock(m_lock); if (m_region_lookup_cache.range.has_value() && m_region_lookup_cache.range.value() == range && m_region_lookup_cache.region) return m_region_lookup_cache.region.unsafe_ptr(); auto found_region = m_regions.find(range.base().get()); if (!found_region) return nullptr; auto& region = *found_region; size_t size = page_round_up(range.size()); if (region->size() != size) return nullptr; m_region_lookup_cache.range = range; m_region_lookup_cache.region = *region; return region; } Region* AddressSpace::find_region_containing(VirtualRange const& range) { SpinlockLocker lock(m_lock); auto candidate = m_regions.find_largest_not_above(range.base().get()); if (!candidate) return nullptr; return (*candidate)->range().contains(range) ? candidate->ptr() : nullptr; } Vector AddressSpace::find_regions_intersecting(VirtualRange const& range) { Vector regions = {}; size_t total_size_collected = 0; SpinlockLocker lock(m_lock); auto found_region = m_regions.find_largest_not_above(range.base().get()); if (!found_region) return regions; for (auto iter = m_regions.begin_from((*found_region)->vaddr().get()); !iter.is_end(); ++iter) { if ((*iter)->range().base() < range.end() && (*iter)->range().end() > range.base()) { regions.append(*iter); total_size_collected += (*iter)->size() - (*iter)->range().intersect(range).size(); if (total_size_collected == range.size()) break; } } return regions; } KResultOr AddressSpace::add_region(NonnullOwnPtr region) { auto* ptr = region.ptr(); SpinlockLocker lock(m_lock); if (!m_regions.try_insert(region->vaddr().get(), move(region))) return ENOMEM; return ptr; } // Carve out a virtual address range from a region and return the two regions on either side KResultOr> AddressSpace::try_split_region_around_range(const Region& source_region, VirtualRange const& desired_range) { VirtualRange old_region_range = source_region.range(); auto remaining_ranges_after_unmap = old_region_range.carve(desired_range); VERIFY(!remaining_ranges_after_unmap.is_empty()); auto try_make_replacement_region = [&](VirtualRange const& new_range) -> KResultOr { VERIFY(old_region_range.contains(new_range)); size_t new_range_offset_in_vmobject = source_region.offset_in_vmobject() + (new_range.base().get() - old_region_range.base().get()); return try_allocate_split_region(source_region, new_range, new_range_offset_in_vmobject); }; Vector new_regions; for (auto& new_range : remaining_ranges_after_unmap) { auto new_region = TRY(try_make_replacement_region(new_range)); new_regions.unchecked_append(new_region); } return new_regions; } void AddressSpace::dump_regions() { dbgln("Process regions:"); #if ARCH(I386) auto addr_padding = ""; #else auto addr_padding = " "; #endif dbgln("BEGIN{} END{} SIZE{} ACCESS NAME", addr_padding, addr_padding, addr_padding); SpinlockLocker lock(m_lock); for (auto& sorted_region : m_regions) { auto& region = *sorted_region; dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}", region.vaddr().get(), region.vaddr().offset(region.size() - 1).get(), region.size(), region.is_readable() ? 'R' : ' ', region.is_writable() ? 'W' : ' ', region.is_executable() ? 'X' : ' ', region.is_shared() ? 'S' : ' ', region.is_stack() ? 'T' : ' ', region.is_syscall_region() ? 'C' : ' ', region.name()); } MM.dump_kernel_regions(); } void AddressSpace::remove_all_regions(Badge) { SpinlockLocker lock(m_lock); m_regions.clear(); } size_t AddressSpace::amount_dirty_private() const { SpinlockLocker lock(m_lock); // FIXME: This gets a bit more complicated for Regions sharing the same underlying VMObject. // The main issue I'm thinking of is when the VMObject has physical pages that none of the Regions are mapping. // That's probably a situation that needs to be looked at in general. size_t amount = 0; for (auto& region : m_regions) { if (!region->is_shared()) amount += region->amount_dirty(); } return amount; } size_t AddressSpace::amount_clean_inode() const { SpinlockLocker lock(m_lock); HashTable vmobjects; for (auto& region : m_regions) { if (region->vmobject().is_inode()) vmobjects.set(&static_cast(region->vmobject())); } size_t amount = 0; for (auto& vmobject : vmobjects) amount += vmobject->amount_clean(); return amount; } size_t AddressSpace::amount_virtual() const { SpinlockLocker lock(m_lock); size_t amount = 0; for (auto& region : m_regions) { amount += region->size(); } return amount; } size_t AddressSpace::amount_resident() const { SpinlockLocker lock(m_lock); // FIXME: This will double count if multiple regions use the same physical page. size_t amount = 0; for (auto& region : m_regions) { amount += region->amount_resident(); } return amount; } size_t AddressSpace::amount_shared() const { SpinlockLocker lock(m_lock); // FIXME: This will double count if multiple regions use the same physical page. // FIXME: It doesn't work at the moment, since it relies on PhysicalPage ref counts, // and each PhysicalPage is only reffed by its VMObject. This needs to be refactored // so that every Region contributes +1 ref to each of its PhysicalPages. size_t amount = 0; for (auto& region : m_regions) { amount += region->amount_shared(); } return amount; } size_t AddressSpace::amount_purgeable_volatile() const { SpinlockLocker lock(m_lock); size_t amount = 0; for (auto& region : m_regions) { if (!region->vmobject().is_anonymous()) continue; auto const& vmobject = static_cast(region->vmobject()); if (vmobject.is_purgeable() && vmobject.is_volatile()) amount += region->amount_resident(); } return amount; } size_t AddressSpace::amount_purgeable_nonvolatile() const { SpinlockLocker lock(m_lock); size_t amount = 0; for (auto& region : m_regions) { if (!region->vmobject().is_anonymous()) continue; auto const& vmobject = static_cast(region->vmobject()); if (vmobject.is_purgeable() && !vmobject.is_volatile()) amount += region->amount_resident(); } return amount; } }