/* * Copyright (c) 2018-2020, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define IRQ_APIC_TIMER (0xfc - IRQ_VECTOR_BASE) #define IRQ_APIC_IPI (0xfd - IRQ_VECTOR_BASE) #define IRQ_APIC_ERR (0xfe - IRQ_VECTOR_BASE) #define IRQ_APIC_SPURIOUS (0xff - IRQ_VECTOR_BASE) #define APIC_ICR_DELIVERY_PENDING (1 << 12) #define APIC_ENABLED (1 << 8) #define APIC_BASE_MSR 0x1b #define APIC_REGS_MSR_BASE 0x800 #define APIC_REG_ID 0x20 #define APIC_REG_EOI 0xb0 #define APIC_REG_LD 0xd0 #define APIC_REG_DF 0xe0 #define APIC_REG_SIV 0xf0 #define APIC_REG_TPR 0x80 #define APIC_REG_ICR_LOW 0x300 #define APIC_REG_ICR_HIGH 0x310 #define APIC_REG_LVT_TIMER 0x320 #define APIC_REG_LVT_THERMAL 0x330 #define APIC_REG_LVT_PERFORMANCE_COUNTER 0x340 #define APIC_REG_LVT_LINT0 0x350 #define APIC_REG_LVT_LINT1 0x360 #define APIC_REG_LVT_ERR 0x370 #define APIC_REG_TIMER_INITIAL_COUNT 0x380 #define APIC_REG_TIMER_CURRENT_COUNT 0x390 #define APIC_REG_TIMER_CONFIGURATION 0x3e0 namespace Kernel { static Singleton s_apic; class APICIPIInterruptHandler final : public GenericInterruptHandler { public: explicit APICIPIInterruptHandler(u8 interrupt_vector) : GenericInterruptHandler(interrupt_vector, true) { } virtual ~APICIPIInterruptHandler() { } static void initialize(u8 interrupt_number) { auto* handler = new APICIPIInterruptHandler(interrupt_number); handler->register_interrupt_handler(); } virtual bool handle_interrupt(RegisterState const&) override; virtual bool eoi() override; virtual HandlerType type() const override { return HandlerType::IRQHandler; } virtual StringView purpose() const override { return "IPI Handler"sv; } virtual StringView controller() const override { return {}; } virtual size_t sharing_devices_count() const override { return 0; } virtual bool is_shared_handler() const override { return false; } virtual bool is_sharing_with_others() const override { return false; } private: }; class APICErrInterruptHandler final : public GenericInterruptHandler { public: explicit APICErrInterruptHandler(u8 interrupt_vector) : GenericInterruptHandler(interrupt_vector, true) { } virtual ~APICErrInterruptHandler() { } static void initialize(u8 interrupt_number) { auto* handler = new APICErrInterruptHandler(interrupt_number); handler->register_interrupt_handler(); } virtual bool handle_interrupt(RegisterState const&) override; virtual bool eoi() override; virtual HandlerType type() const override { return HandlerType::IRQHandler; } virtual StringView purpose() const override { return "SMP Error Handler"sv; } virtual StringView controller() const override { return {}; } virtual size_t sharing_devices_count() const override { return 0; } virtual bool is_shared_handler() const override { return false; } virtual bool is_sharing_with_others() const override { return false; } private: }; bool APIC::initialized() { return s_apic.is_initialized(); } APIC& APIC::the() { VERIFY(APIC::initialized()); return *s_apic; } UNMAP_AFTER_INIT void APIC::initialize() { VERIFY(!APIC::initialized()); s_apic.ensure_instance(); } PhysicalAddress APIC::get_base() { MSR msr(APIC_BASE_MSR); auto base = msr.get(); return PhysicalAddress(base & 0xfffff000); } void APIC::set_base(PhysicalAddress const& base) { MSR msr(APIC_BASE_MSR); u64 flags = 1 << 11; if (m_is_x2) flags |= 1 << 10; msr.set(base.get() | flags); } void APIC::write_register(u32 offset, u32 value) { if (m_is_x2) { MSR msr(APIC_REGS_MSR_BASE + (offset >> 4)); msr.set(value); } else { *reinterpret_cast(m_apic_base->vaddr().offset(offset).as_ptr()) = value; } } u32 APIC::read_register(u32 offset) { if (m_is_x2) { MSR msr(APIC_REGS_MSR_BASE + (offset >> 4)); return (u32)msr.get(); } return *reinterpret_cast(m_apic_base->vaddr().offset(offset).as_ptr()); } void APIC::set_lvt(u32 offset, u8 interrupt) { write_register(offset, read_register(offset) | interrupt); } void APIC::set_siv(u32 offset, u8 interrupt) { write_register(offset, read_register(offset) | interrupt | APIC_ENABLED); } void APIC::wait_for_pending_icr() { while ((read_register(APIC_REG_ICR_LOW) & APIC_ICR_DELIVERY_PENDING) != 0) { IO::delay(200); } } void APIC::write_icr(ICRReg const& icr) { if (m_is_x2) { MSR msr(APIC_REGS_MSR_BASE + (APIC_REG_ICR_LOW >> 4)); msr.set(icr.x2_value()); } else { write_register(APIC_REG_ICR_HIGH, icr.x_high()); write_register(APIC_REG_ICR_LOW, icr.x_low()); } } #define APIC_LVT_TIMER_ONESHOT 0 #define APIC_LVT_TIMER_PERIODIC (1 << 17) #define APIC_LVT_TIMER_TSCDEADLINE (1 << 18) #define APIC_LVT_MASKED (1 << 16) #define APIC_LVT_TRIGGER_LEVEL (1 << 14) #define APIC_LVT(iv, dm) (((iv)&0xff) | (((dm)&0x7) << 8)) extern "C" void apic_ap_start(void); extern "C" u16 apic_ap_start_size; extern "C" FlatPtr ap_cpu_init_stacks; extern "C" FlatPtr ap_cpu_init_processor_info_array; extern "C" u32 ap_cpu_init_cr0; extern "C" FlatPtr ap_cpu_init_cr3; extern "C" u32 ap_cpu_init_cr4; extern "C" FlatPtr ap_cpu_gdtr; extern "C" FlatPtr ap_cpu_idtr; #if ARCH(X86_64) extern "C" FlatPtr ap_cpu_kernel_map_base; extern "C" FlatPtr ap_cpu_kernel_entry_function; #endif extern "C" [[noreturn]] void init_ap(FlatPtr, Processor*); void APIC::eoi() { write_register(APIC_REG_EOI, 0x0); } u8 APIC::spurious_interrupt_vector() { return IRQ_APIC_SPURIOUS; } #define APIC_INIT_VAR_PTR(tpe, vaddr, varname) \ reinterpret_cast(reinterpret_cast(vaddr) \ + reinterpret_cast(&varname) \ - reinterpret_cast(&apic_ap_start)) UNMAP_AFTER_INIT bool APIC::init_bsp() { // FIXME: Use the ACPI MADT table if (!MSR::have()) return false; // check if we support local apic CPUID id(1); if ((id.edx() & (1 << 9)) == 0) return false; if (id.ecx() & (1 << 21)) m_is_x2 = true; PhysicalAddress apic_base = get_base(); dbgln_if(APIC_DEBUG, "Initializing {}APIC, base: {}", m_is_x2 ? "x2" : "x", apic_base); set_base(apic_base); if (!m_is_x2) { auto region_or_error = MM.allocate_kernel_region(apic_base.page_base(), PAGE_SIZE, {}, Memory::Region::Access::ReadWrite); if (region_or_error.is_error()) { dbgln("APIC: Failed to allocate memory for APIC base"); return false; } m_apic_base = region_or_error.release_value(); } auto rsdp = ACPI::StaticParsing::find_rsdp(); if (!rsdp.has_value()) { dbgln("APIC: RSDP not found"); return false; } auto madt_address = ACPI::StaticParsing::find_table(rsdp.value(), "APIC"sv); if (!madt_address.has_value()) { dbgln("APIC: MADT table not found"); return false; } if (kernel_command_line().is_smp_enabled()) { auto madt_or_error = Memory::map_typed(madt_address.value()); if (madt_or_error.is_error()) { dbgln("APIC: Failed to map MADT table"); return false; } auto madt = madt_or_error.release_value(); size_t entry_index = 0; size_t entries_length = madt->h.length - sizeof(ACPI::Structures::MADT); auto* madt_entry = madt->entries; while (entries_length > 0) { size_t entry_length = madt_entry->length; if (madt_entry->type == (u8)ACPI::Structures::MADTEntryType::LocalAPIC) { auto* plapic_entry = (const ACPI::Structures::MADTEntries::ProcessorLocalAPIC*)madt_entry; dbgln_if(APIC_DEBUG, "APIC: AP found @ MADT entry {}, processor ID: {}, xAPIC ID: {}, flags: {:#08x}", entry_index, plapic_entry->acpi_processor_id, plapic_entry->apic_id, plapic_entry->flags); m_processor_cnt++; if ((plapic_entry->flags & 0x1) != 0) m_processor_enabled_cnt++; } else if (madt_entry->type == (u8)ACPI::Structures::MADTEntryType::Local_x2APIC) { // Only used for APID IDs >= 255 auto* plx2apic_entry = (const ACPI::Structures::MADTEntries::ProcessorLocalX2APIC*)madt_entry; dbgln_if(APIC_DEBUG, "APIC: AP found @ MADT entry {}, processor ID: {}, x2APIC ID: {}, flags: {:#08x}", entry_index, plx2apic_entry->acpi_processor_id, plx2apic_entry->apic_id, plx2apic_entry->flags); m_processor_cnt++; if ((plx2apic_entry->flags & 0x1) != 0) m_processor_enabled_cnt++; } madt_entry = (ACPI::Structures::MADTEntryHeader*)(VirtualAddress(madt_entry).offset(entry_length).get()); entries_length -= entry_length; entry_index++; } dbgln("APIC processors found: {}, enabled: {}", m_processor_cnt, m_processor_enabled_cnt); } if (m_processor_enabled_cnt < 1) m_processor_enabled_cnt = 1; if (m_processor_cnt < 1) m_processor_cnt = 1; enable(0); return true; } UNMAP_AFTER_INIT void APIC::setup_ap_boot_environment() { VERIFY(!m_ap_boot_environment); VERIFY(m_processor_enabled_cnt > 1); u32 aps_to_enable = m_processor_enabled_cnt - 1; // Copy the APIC startup code and variables to P0x00008000 // Also account for the data appended to: // * aps_to_enable u32 values for ap_cpu_init_stacks // * aps_to_enable u32 values for ap_cpu_init_processor_info_array constexpr u64 apic_startup_region_base = 0x8000; auto apic_startup_region_size = Memory::page_round_up(apic_ap_start_size + (2 * aps_to_enable * sizeof(FlatPtr))).release_value_but_fixme_should_propagate_errors(); VERIFY(apic_startup_region_size < USER_RANGE_BASE); auto apic_startup_region = MUST(MM.create_identity_mapped_region(PhysicalAddress(apic_startup_region_base), apic_startup_region_size)); u8* apic_startup_region_ptr = apic_startup_region->vaddr().as_ptr(); memcpy(apic_startup_region_ptr, reinterpret_cast(apic_ap_start), apic_ap_start_size); // Allocate enough stacks for all APs m_ap_temporary_boot_stacks.ensure_capacity(aps_to_enable); for (u32 i = 0; i < aps_to_enable; i++) { auto stack_region_or_error = MM.allocate_kernel_region(Thread::default_kernel_stack_size, {}, Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow); if (stack_region_or_error.is_error()) { dbgln("APIC: Failed to allocate stack for AP #{}", i); return; } auto stack_region = stack_region_or_error.release_value(); stack_region->set_stack(true); m_ap_temporary_boot_stacks.unchecked_append(move(stack_region)); } // Store pointers to all stacks for the APs to use auto* ap_stack_array = APIC_INIT_VAR_PTR(FlatPtr, apic_startup_region_ptr, ap_cpu_init_stacks); VERIFY(aps_to_enable == m_ap_temporary_boot_stacks.size()); for (size_t i = 0; i < aps_to_enable; i++) { ap_stack_array[i] = m_ap_temporary_boot_stacks[i]->vaddr().get() + Thread::default_kernel_stack_size; dbgln_if(APIC_DEBUG, "APIC: CPU[{}] stack at {}", i + 1, VirtualAddress { ap_stack_array[i] }); } // Allocate Processor structures for all APs and store the pointer to the data m_ap_processor_info.resize(aps_to_enable); for (size_t i = 0; i < aps_to_enable; i++) m_ap_processor_info[i] = adopt_nonnull_own_or_enomem(new (nothrow) Processor()).release_value_but_fixme_should_propagate_errors(); auto* ap_processor_info_array = &ap_stack_array[aps_to_enable]; for (size_t i = 0; i < aps_to_enable; i++) { ap_processor_info_array[i] = FlatPtr(m_ap_processor_info[i].ptr()); dbgln_if(APIC_DEBUG, "APIC: CPU[{}] processor at {}", i + 1, VirtualAddress { ap_processor_info_array[i] }); } *APIC_INIT_VAR_PTR(FlatPtr, apic_startup_region_ptr, ap_cpu_init_processor_info_array) = FlatPtr(&ap_processor_info_array[0]); // Store the BSP's CR3 value for the APs to use *APIC_INIT_VAR_PTR(FlatPtr, apic_startup_region_ptr, ap_cpu_init_cr3) = MM.kernel_page_directory().cr3(); // Store the BSP's GDT and IDT for the APs to use auto const& gdtr = Processor::current().get_gdtr(); *APIC_INIT_VAR_PTR(FlatPtr, apic_startup_region_ptr, ap_cpu_gdtr) = FlatPtr(&gdtr); auto const& idtr = get_idtr(); *APIC_INIT_VAR_PTR(FlatPtr, apic_startup_region_ptr, ap_cpu_idtr) = FlatPtr(&idtr); #if ARCH(X86_64) // TODO: Use these also in i686 builds *APIC_INIT_VAR_PTR(FlatPtr, apic_startup_region_ptr, ap_cpu_kernel_map_base) = FlatPtr(kernel_mapping_base); *APIC_INIT_VAR_PTR(FlatPtr, apic_startup_region_ptr, ap_cpu_kernel_entry_function) = FlatPtr(&init_ap); #endif // Store the BSP's CR0 and CR4 values for the APs to use *APIC_INIT_VAR_PTR(FlatPtr, apic_startup_region_ptr, ap_cpu_init_cr0) = read_cr0(); *APIC_INIT_VAR_PTR(FlatPtr, apic_startup_region_ptr, ap_cpu_init_cr4) = read_cr4(); m_ap_boot_environment = move(apic_startup_region); } UNMAP_AFTER_INIT void APIC::do_boot_aps() { VERIFY(m_ap_boot_environment); VERIFY(m_processor_enabled_cnt > 1); u32 aps_to_enable = m_processor_enabled_cnt - 1; // Create an idle thread for each processor. We have to do this here // because we won't be able to send FlushTLB messages, so we have to // have all memory set up for the threads so that when the APs are // starting up, they can access all the memory properly m_ap_idle_threads.resize(aps_to_enable); for (u32 i = 0; i < aps_to_enable; i++) m_ap_idle_threads[i] = Scheduler::create_ap_idle_thread(i + 1); dbgln_if(APIC_DEBUG, "APIC: Starting {} AP(s)", aps_to_enable); // INIT write_icr({ 0, 0, ICRReg::INIT, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf }); IO::delay(10 * 1000); for (int i = 0; i < 2; i++) { // SIPI write_icr({ 0x08, 0, ICRReg::StartUp, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf }); // start execution at P8000 IO::delay(200); } // Now wait until the ap_cpu_init_pending variable dropped to 0, which means all APs are initialized and no longer need these special mappings if (m_apic_ap_count.load(AK::MemoryOrder::memory_order_consume) != aps_to_enable) { dbgln_if(APIC_DEBUG, "APIC: Waiting for {} AP(s) to finish initialization...", aps_to_enable); do { // Wait a little bit IO::delay(200); } while (m_apic_ap_count.load(AK::MemoryOrder::memory_order_consume) != aps_to_enable); } dbgln_if(APIC_DEBUG, "APIC: {} processors are initialized and running", m_processor_enabled_cnt); // NOTE: Since this region is identity-mapped, we have to unmap it manually to prevent the virtual // address range from leaking into the general virtual range allocator. m_ap_boot_environment->unmap(); m_ap_boot_environment = nullptr; // When the APs signal that they finished their initialization they have already switched over to their // idle thread's stack, so the temporary boot stack can be deallocated m_ap_temporary_boot_stacks.clear(); } UNMAP_AFTER_INIT void APIC::boot_aps() { if (m_processor_enabled_cnt <= 1) return; // We split this into another call because do_boot_aps() will cause // MM calls upon exit, and we don't want to call smp_enable before that do_boot_aps(); // Enable SMP, which means IPIs may now be sent Processor::smp_enable(); dbgln_if(APIC_DEBUG, "All processors initialized and waiting, trigger all to continue"); // Now trigger all APs to continue execution (need to do this after // the regions have been freed so that we don't trigger IPIs m_apic_ap_continue.store(1, AK::MemoryOrder::memory_order_release); } UNMAP_AFTER_INIT void APIC::enable(u32 cpu) { VERIFY(m_is_x2 || cpu < 8); u32 apic_id; if (m_is_x2) { dbgln_if(APIC_DEBUG, "Enable x2APIC on CPU #{}", cpu); // We need to enable x2 mode on each core independently set_base(get_base()); apic_id = read_register(APIC_REG_ID); } else { dbgln_if(APIC_DEBUG, "Setting logical xAPIC ID for CPU #{}", cpu); // Use the CPU# as logical apic id VERIFY(cpu <= 8); write_register(APIC_REG_LD, (read_register(APIC_REG_LD) & 0x00ffffff) | (cpu << 24)); // read it back to make sure it's actually set apic_id = read_register(APIC_REG_LD) >> 24; } dbgln_if(APIC_DEBUG, "CPU #{} apic id: {}", cpu, apic_id); Processor::current().info().set_apic_id(apic_id); dbgln_if(APIC_DEBUG, "Enabling local APIC for CPU #{}, logical APIC ID: {}", cpu, apic_id); if (cpu == 0) { SpuriousInterruptHandler::initialize(IRQ_APIC_SPURIOUS); APICErrInterruptHandler::initialize(IRQ_APIC_ERR); // register IPI interrupt vector APICIPIInterruptHandler::initialize(IRQ_APIC_IPI); } if (!m_is_x2) { // local destination mode (flat mode), not supported in x2 mode write_register(APIC_REG_DF, 0xf0000000); } // set error interrupt vector set_lvt(APIC_REG_LVT_ERR, IRQ_APIC_ERR); // set spurious interrupt vector set_siv(APIC_REG_SIV, IRQ_APIC_SPURIOUS); write_register(APIC_REG_LVT_TIMER, APIC_LVT(0, 0) | APIC_LVT_MASKED); write_register(APIC_REG_LVT_THERMAL, APIC_LVT(0, 0) | APIC_LVT_MASKED); write_register(APIC_REG_LVT_PERFORMANCE_COUNTER, APIC_LVT(0, 0) | APIC_LVT_MASKED); write_register(APIC_REG_LVT_LINT0, APIC_LVT(0, 7) | APIC_LVT_MASKED); write_register(APIC_REG_LVT_LINT1, APIC_LVT(0, 0) | APIC_LVT_TRIGGER_LEVEL); write_register(APIC_REG_TPR, 0); } Thread* APIC::get_idle_thread(u32 cpu) const { VERIFY(cpu > 0); return m_ap_idle_threads[cpu - 1]; } UNMAP_AFTER_INIT void APIC::init_finished(u32 cpu) { // This method is called once the boot stack is no longer needed VERIFY(cpu > 0); VERIFY(cpu < m_processor_enabled_cnt); // Since we're waiting on other APs here, we shouldn't have the // scheduler lock VERIFY(!g_scheduler_lock.is_locked_by_current_processor()); // Notify the BSP that we are done initializing. It will unmap the startup data at P8000 m_apic_ap_count.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel); dbgln_if(APIC_DEBUG, "APIC: CPU #{} initialized, waiting for all others", cpu); // The reason we're making all APs wait until the BSP signals them is that // we don't want APs to trigger IPIs (e.g. through MM) while the BSP // is unable to process them while (!m_apic_ap_continue.load(AK::MemoryOrder::memory_order_consume)) { IO::delay(200); } dbgln_if(APIC_DEBUG, "APIC: CPU #{} continues, all others are initialized", cpu); // do_boot_aps() freed memory, so we need to update our tlb Processor::flush_entire_tlb_local(); // Now enable all the interrupts APIC::the().enable(cpu); } void APIC::broadcast_ipi() { dbgln_if(APIC_SMP_DEBUG, "SMP: Broadcast IPI from CPU #{}", Processor::current_id()); wait_for_pending_icr(); write_icr({ IRQ_APIC_IPI + IRQ_VECTOR_BASE, 0xffffffff, ICRReg::Fixed, ICRReg::Logical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf }); } void APIC::send_ipi(u32 cpu) { dbgln_if(APIC_SMP_DEBUG, "SMP: Send IPI from CPU #{} to CPU #{}", Processor::current_id(), cpu); VERIFY(cpu != Processor::current_id()); VERIFY(cpu < Processor::count()); wait_for_pending_icr(); write_icr({ IRQ_APIC_IPI + IRQ_VECTOR_BASE, m_is_x2 ? Processor::by_id(cpu).info().apic_id() : cpu, ICRReg::Fixed, m_is_x2 ? ICRReg::Physical : ICRReg::Logical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::NoShorthand }); } UNMAP_AFTER_INIT APICTimer* APIC::initialize_timers(HardwareTimerBase& calibration_timer) { if (!m_apic_base && !m_is_x2) return nullptr; // We should only initialize and calibrate the APIC timer once on the BSP! VERIFY(Processor::is_bootstrap_processor()); VERIFY(!m_apic_timer); m_apic_timer = APICTimer::initialize(IRQ_APIC_TIMER, calibration_timer); return m_apic_timer; } void APIC::setup_local_timer(u32 ticks, TimerMode timer_mode, bool enable) { u32 flags = 0; switch (timer_mode) { case TimerMode::OneShot: flags |= APIC_LVT_TIMER_ONESHOT; break; case TimerMode::Periodic: flags |= APIC_LVT_TIMER_PERIODIC; break; case TimerMode::TSCDeadline: flags |= APIC_LVT_TIMER_TSCDEADLINE; break; } if (!enable) flags |= APIC_LVT_MASKED; write_register(APIC_REG_LVT_TIMER, APIC_LVT(IRQ_APIC_TIMER + IRQ_VECTOR_BASE, 0) | flags); u32 config = read_register(APIC_REG_TIMER_CONFIGURATION); config &= ~0xf; // clear divisor (bits 0-3) switch (get_timer_divisor()) { case 1: config |= (1 << 3) | 3; break; case 2: break; case 4: config |= 1; break; case 8: config |= 2; break; case 16: config |= 3; break; case 32: config |= (1 << 3); break; case 64: config |= (1 << 3) | 1; break; case 128: config |= (1 << 3) | 2; break; default: VERIFY_NOT_REACHED(); } write_register(APIC_REG_TIMER_CONFIGURATION, config); if (timer_mode == TimerMode::Periodic) write_register(APIC_REG_TIMER_INITIAL_COUNT, ticks / get_timer_divisor()); } u32 APIC::get_timer_current_count() { return read_register(APIC_REG_TIMER_CURRENT_COUNT); } u32 APIC::get_timer_divisor() { return 16; } bool APICIPIInterruptHandler::handle_interrupt(RegisterState const&) { dbgln_if(APIC_SMP_DEBUG, "APIC IPI on CPU #{}", Processor::current_id()); return true; } bool APICIPIInterruptHandler::eoi() { dbgln_if(APIC_SMP_DEBUG, "SMP: IPI EOI"); APIC::the().eoi(); return true; } bool APICErrInterruptHandler::handle_interrupt(RegisterState const&) { dbgln("APIC: SMP error on CPU #{}", Processor::current_id()); return true; } bool APICErrInterruptHandler::eoi() { APIC::the().eoi(); return true; } bool HardwareTimer::eoi() { APIC::the().eoi(); return true; } }